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Introduction 

This paper concerns properties of interpretations between first-order theories in 

intuitionistic logic, and in particular how certain syntactic properties of such 

interpretations can be characterised by their model-theoretic properties. 

We allow theories written in possibly many-sorted languages. Given two such 

theories 3 and 7, an interpretation of 3 in 3’ will here mean a model of 3 in 

the ‘first-order intuitionistically definable sets of Y”: these can be built up from 

the basic sorts of Y’ using the operations of finite Cartesian product, finite disjoint 

union, separating out a Y’-definable subset and quotienting by a Y-definable 

equivalence relation. (Allowing the formation of quotients (i.e. allowing equality 

relations in 9 to be interpreted by equivalence relation in .Y’) and more 

especially the formation of disjoint unions, makes this a more general notion of 

‘interpretation’ or ‘translation’ than is usually encountered in the literature.) Such 

an interpretation I: 9+ 9’ gives one a way of producing models of F from 

models of Y-‘: given a model M of 9’ in some semantics for first order 

intuitionistic logic, restricting along I yields a model Z*(M) of 3. Similarly if 

h : M, = M2 is an isomorphism of Y-models, one gets by restriction along I, an 

isomorphism Z*(h) : I*(M,) = Z*(M,) of 3-models. Fixing a particular semantics, 

let us say that Z induces an equivalence between the models of 9’ and the models 
of F in the semantics if both of the following statements hold: 

(a) every T-model is isomorphic to one of the form Z*(M) with M a Y-‘-model; 

(b) if M,, M2 are Y-models and k : Z*(M,) = Z*(M,) is a T-model isomorph- 

ism, then there is a unique Y-model isomorphism h : M, = A& with k = I*(h). 

(In category-theoretic language: Z induces an equivalence between models if the 

functor I* gives an equivalence of categories between the category of Y-models 

and isomorphisms and the cagegory of F-models and isomorphisms.) 

Conditions (a) and (b) are not much of a constraint on Z if there are not many 

models of 9 or 9’ in the given semantics. So let us now assume that the 
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semantics is complete, in the sense tnat a sentence is intuitionistically derivable 
from a theory Y iff it is satisfied by every Y-model in the semantics. (For 
example, one could consider sheaf models over complete Heyting algebras, as 
in [5].) 

A main result of this paper (Theorem 2.1O(ii)) is then: 

Conceptual Completeness for First-Order Intuitionistic Logic. Zf an interpretation 
I: T+ YI’ induces an equivalence between the models of Y’ and the models of 9 

(in some fixed, complete semantics), then Z is already a ‘syntactic equivalence’, i.e. 
there is an interpretation J : FI’ + F with the compositions Jo Z and IO J isomorphic 
to the identity interpretations on 9 and 9’ respectively. 

This theorem is in fact a consequence of the following, stronger result (Theorem 
2.10(i)): 

Zf an interpretation Z : T+ T’ satisfies just condition (b) above (for models in 
the fixed, complete semantics), then 9’ is syntactically equivalent to a quotient 
theory of 9, i.e. one that can be obtained by adding additional axioms to T 

without changing its underlying language. 

A version of this second result for (countable theories in) classical first-order 
logic and set-valued models, was announced by Haim Gaifman in 1975. A proof 
has been given by Michael Makkai in [12], using a mixture of category-theoretic 
and classical model-theoretic techniques (and the Omitting Types theorem in 
particular). The latter methods are of little help in proving the intuitionistic 
versions stated above. Instead, we exploit the full power of the category-theoretic 
ones, as we now indicate: 

Firstly, the category-theoretic approach to logic developed by Freyd, Joyal, 
Makkai, Reyes and others, allows the two theorems above to be reformulated as 
statements about certain categories and functors. The way in which one can use 
categories and functors in place of theories and models is recalled in Section 1. At 
least one advantage of this approach is to allow a very smooth treatment of the 
particular notion of interpretation that we have to consider: this is carried out in 
Section 2. 

More crucially, the category-theoretic reformulation enables the powerful 
functoriul techniques of category theory to be directly applied. Thus at the heart 
of our proof is a certain functorial construction which from a conceptual point of 
view produces (generalised) spaces from theories and (generalised) continuous 
maps from interpretations. The word ‘generalised’ in the previous sentence refers 
to the fact that the construction in fact yields Grothendieck toposes and geometric 
morphisms rather than topological spaces and continuous functions. A Grothen- 
dieck topos is a generalisation of the notion of topological space via its category 
of set-valued sheaves. They were originally introduced by Grothendieck and his 
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school of algebraic geometry [l] in order to develop notions of sheaf and 
cohomology adequate for algebraic geometry. Later, an intimate connection 
between Grothendieck toposes and the so-called geometric fragment (=, A, 
3, V) of infinitary first-order logic emerged. (See [lo], [6] and the references 
therein.) It is really this aspect that it is to the fore here. The properties of 
geometric morphisms between Grothendieck toposes that we need are set out in 
Section 3: the only ones that appear to be new are the (rather easy) 
characterisation of focalic morphisms in terms of the associated diagonal 
morphism being an inclusion (Proposition 3S(ii)) and as a corollary, a sufficient 
condition for being localic in terms of the existence of descent data for sheaves 
(Proposition 3.7). 

The method by which we utilise the sheaf-theoretic results of Section 3 is the 
‘topos of filters’ construction introduced in [14]. There it was used to prove an 
interpolation theorem for interpretations between first-order intuitionistic 
theories and indeed that result plays a key role here. The relevant properties of 
the topos of filters construction are summarized at the beginning of Section 4 and 
then used to prove the conceptual completeness theorem. In an appendix, the 
details of the construction are given in a somewhat different form from that in 
[14], in terms of sites and sheaves. 

The original instance of this kind of result about interpretations was the 
Pretopos Conceptual Completeness Theorem of Makkai and Reyes [lo, Theorem 
7.1.81. This deals with the coherent fragment (=, A, v ,3) of first-order logic, 
where it is natural to consider categories of models and homomorphisms rather 
than isomorphisms. A version of this theorem for pretoposes has been proved by 
the author in [15] using similar methods to those outlined above: it is a 
constructive version, in the sense that the arguments can be carried out in the 
category theory of an arbitrary elementary topos with natural number object. 
Although we have not emphasised this aspect it remains true here, provided the 
conclusion of the conceptual completeness theorem stated above is suitably 
modified by taking ‘syntactic equivalence’ to mean that the functor induced 
between classifying Heyting pretoposes by an interpretation Z (as in 2.3) is full, 
faithful and essentially surjective. (Constructively this is weaker than asserting the 
existence of .Z with .ZoZ = Id, Id = Zo.Z, but just as useful in practice.) 

I gratefully acknowledge many helpful conversations on the subject matter of 
this paper with P. Freyd, A. Joyal, M. Makkai and M. Zawadowski. I also 
acknowledge the helpful comments of the referee. 

1. Theories and categories 

In this section we survey those parts of the category-theoretic approach to 
first-order logic that enable the properties of theories and interpretations in which 
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we are interested to be reformulated as properties of certain kinds of category 
and functor. The reader is referred to the account of Makkai and Reyes [lo] for 
fuller details. 

Let 9 be a many-sorted language: thus 2 consists of a collection of sort, 
relation and function symbols. Moreover each relation or function symbol has a 
designated type; formally these are just finite lists of sort symbols (non-empty lists 
in the latter case), but to suggest the intended interpretation we will denote the 
type of a relation symbol R by 

RwS,,x...xS,_, 

and the type of a function symbol f by 

f : s,, x . * * x s,_1+s, 

where S,, . . . , S,_, and S are sort symbols. (Since we allow the case n = 0, 
constant symbols are special instances of function symbols.) 

Introducing variables for each sort, the terms of 3 are built up from these and 
the function symbols in the usual way, each term being assigned its particular 
sort. Then the first-order formulae of 23 are constructed using A, v , +, 3, V 
from the atomic formulae: T (truth), I (falsity), R(to, . . . , t,-,) and t = t’ 

(where R is a relation symbol and ti, t, t’ are terms of appropriate sorts). 
For such a language .2’, the usual notions of structure and satisfaction of a 

formula by a structure can be generalised by first seeing how to define these 
notions in terms of category-theoretic properties of the category of sets and 
functions, and then by replacing the latter by an arbitrary category with these 
properties. The basic idea is that an Z-structure, M, in a category % assigns to 
each sort symbol S an object MS of %‘, to each function symbol f a morphism Mf 

with appropriate domain and codomain, and to each relation symbols R a 
subobject MR of an appropriate object of %‘. To preserve the intended 
interpretation of the typings of the function and relation symbols, we assume that 
(ehasfiniteproducts: thusifRwS,,x~~~xS,_,andf:S,x~~~xS,_,+S, then 
MR is to be a subobject of the finite product MS,, X . * + X MS,_, in % and Mf a 
morphism in %’ from MS, x * * * x MS,_, to MS. 

One can now define the value of terms in the Z-structure M. Given a term t of 
sort S and a finite list x =x0 * - . x,_~ of distinct variables amongst which lie the 
variables mentioned in t, we define a morphism 

M(t;x):MS,x...xMS,_,+MS 

(where xi is of sort Si) by structural induction; 
. M(_q;x) is the ith projection morphism, JC~; 

. M(f (to, . . . , t,_l);x) is Mfo(M(tj;x) lj<m) 
(where f has type SA x * - * XSL_,+S and (M(tj;X) lj<m) denotes the unique 
morphism whose composition with each nj is M(t,;x). 

But to define the value of first-order formulae in the Y-structure, we have to 
make further assumptions about the category Fe. Thus given a formula C#J and a 
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finite list of distinct variables x amongst which lie the free variables of $, we 

define by structural induction a subobject 

(where Si is the sort of xi). The clauses of this definition (which will be given 

below) give the category-theoretic explanations of the logical symbols =, T, A, 
I, v , +, 3 and V. Equality is interpreted by means of equalizers of parallel pairs 

of maps; and once we assume that % has equalizers as well as finite products then 

of course it has all finite limits, including pullbacks. The propositional connectives 

are interpreted by the corresponding lattice-theoretic operations on the partially 

ordered sets Sub%(X) of subobjects of an object X in 55: T and A require finite 

meets (which exist since %’ has finite limits), -L and v require finite joins (and this 

is an added assumption on %‘) and finally * requires Heyting implication (again, 

an added assumption on %‘), so that Sub,(X) is a Heyting algebra. For 

quantification, it was a key observation of Lawvere that 3 and V can be 

interpreted in terms of left and right adjoints to the order-preserving operations 

of pulling back subobjects along morphisms; the existence of such adjoints is a 

further requirement on %‘. This does not quite finish the list of necessary 

assumptions on V. Under this explanation of the value of terms and formulae of 

._58 in V, the operation of substituting a term for a variable in a formula becomes 

that of pulling back the subobject which is the value of the formula along the 

morphism which is the value of the term. Then, to ensure that substitution has 

the correct properties with respect to =, T, A, I, v , -+, 3 and V, we have to 

assume that the category-theoretic notions mentioned above have suitable 

stability properties with respect to pulling back along a morphism. 

Collecting together the various requirements on %’ mentioned in the previous 

paragraph and eliminating some redundancies, one arrives at the notion of a 

logos (a terminology popularised by P. Freyd): 

1.1. Definition. A category ‘% is called a logos if it has the following properties: 

(i) % has finite limits. 

(ii) For each object X of %‘, the partially ordered set Sub,(X) of subobjects of 

X has finite (including empty) joins. 

(iii) For each morphism f : Y + X in %, the order-preserving operation 

f-‘:Sub%(X)+Sub&Y) f o pulling back a subobject along f (which exists by 

virtue of (i)) has both left and right adjoints, denoted 3f and Vf respectively. 

These adjoints are called the operations of existential and universal quantification 

of subobjects along f. 
(iv) For each pullback square 

wh’z 

k 
I 1 

R 

Y-x f 

in %, it is the case that g-‘o3f = 3h 0 k-‘. 
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1.2. Remarks and notation. (i) As usual, m :A F+ X will denote that a morphism 
m is a monomorphism. We will (harmlessly) confuse such an m with the 
subobject of X which it determines. Clause (i) of Definition 1.1 guarantees that 
Subwe has a top element, denoted T, and binary meet, denoted A A B. 

(ii) The bottom element and binary join in Sub%(X) that are guaranteed by 
l.l(ii) will be denoted I and A v B respectively. Note that pulling back preserves 
joins, since by l.l(iii) each f-’ has a right adjoint. 

(iii) Call a morphism f : X+ Y a cover if 3f( T) = T in Sub-((Y). We will 

denote this by 

f :X-DY. 

The existence of the left adjoint 3f satisfying l.l(iv) is equivalent to asking that 
every morphism factor as a cover composed with a monomorphism and that 
covers be stable under pullback. 

(iv) Clause (iv) of 1.1 has come to be called a Beck-Chevalley condition; it 
implies the same condition for V. 

(v) Note that each Sub,(X) is a Heyting algebra: finite meets and joins have 
been mentioned above and for A, B E Sub%(X), the Heyting implication A+ B is 
given by Va (K’B) where a is a monomorphism representing A. From this 
observation and the Beck-Chevalley condition for V, it follows that the 
operations f -’ preserve *. 

(vi) Note that being a logos is a category-theoretic property: if % is a logos and 
9 is a category equivalent to %, then 9 is also a logos. 

Suppose now that Ce is a logos and 2 a many-sorted language. As indicated 
above, an L!?-structure in % assigns to each sort symbol S an object MS of ye, to 
each function symbol f : So x . * . x S,_, -+ S a morphism 

Mf:MS,x.. . x MS,_,+ MS 

in %, and to each relation symbol R wSO x * * * x SE_, a subobject 

MRwMS,x...xMS,_,. 

Now if @ is a formula of 2’ whose free variables occur in the finite list x, define 

(where xi is of sort Si and MS abbreviates MS, x . * * x MS,_,) by structural 
induction: 

(4 

(b) 

M(R(t); x) - MS 

I 1 
( M(ti;x) 1 i < n) is a pullback square; 

MR- MS 

M(t = t’; x) M MS 
M(t;x) 

i MS 
M(t’;x) 

is an equalizer 

(where M(t;x) is defined as above); 
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(cl 

(4 

M(T;x) = T, M(l;x) = I; 

M(~#w;~)=M(~;~)#M(~;~) (where # is A, v or+); 

(e) M(Qx @;x) = QJO~(#;=) 

(where Q is 3 or V, x has sort S and n2: MS x MS+ MS is the second 

projection). 

If cr is a sentence of 2 (i.e. a formula with no free variables), then M(a; ) is a 

subobject of the empty product, i.e. of the terminal object 1 of %. Say that M 

satisfies o and write 

if M(a; ) >--) 1 is the top subobject T. This notion of satisfaction is sound for the 

intuitionistic predicate calculus (IPC), in the sense that a sentence (T of 2 is 

always satisfied by any .Z-structure in any logos if it is provable in IPC. However, 

one must exercise a little care over the precise meaning of ‘provable in IPC’. For 

classical logic and the model theory of set-valued structures it is customary to 

make the somewhat unnatural assumption that sorts are interpreted by non-empty 
sets. When we move to intuitionistic logic this assumption would translate to the 

very unnatural one that sorts be interpreted by inhabited objects. (An object X of 

a logos is inhabited if the unique morphism from X to the terminal object 1 is a 

cover.) We make no such assumption and so require a formulation of the axioms 

and rules of IPC that reflect this fact. One good way of doing this is via a calculus 

of labelled sequents, where the usual notion of sequent is modified by including a 

list of variables, amongst which should be the free variables of any formula 

mentioned in the sequent. The reader can see this carried out in detail for higher 

order logic in [4]. (An alternative approach is taken by Makkai and Reyes in [lo, 

Chapter 51.) 

With those provisos, and writing 

IPCt-a 

to mean that the sentence (T is derivable in such a suitable system of deduction for 

first order intuitionistic predicate logic, let us record the result mentioned above: 

1.3. Soundness Theorem. If V is a logos, 23 a many-sorted language and M an 

Z’-structure in %‘, then for any Z-sentence CT, if IPC t 0, then M k o. 

1.4. Definition. Let 9 be a theory in IPC, i.e. a many-sorted language 2? plus a 

collection of Z-sentences closed under deduction in IPC; write 3 k o to denote 

that a sentence G is in this collection. By a model of 9 in a logos %’ is meant an 

Z-structure M in % such that M l= o whenever T k o. 

This notion of model encompasses the possibly more familiar ones. Thus when 

% is the category of sets, one regains the classical notion of model. More 
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generally, when % is the category of set-valued sheaves on a topological space, 

one regains the topological semantics for IPC (including Kripke and Beth 

semantics). 

We wish to organise the models of a theory 9 in a logos % into a category and 

hence must consider homomorphisms of models. More generally, given Z- 

structures M and N in %, a homomorphism h : M --, N is given by a collection of 

morphisms 

h,:MS-+NS 

indexed by the sort symbols of 2, which satisfies that for each function symbol 

f:S,x- . . x Sn_l+S the diagram in Ce 

MS,, x . . . x MS,-, Mf, MS 

h,,, x . x h\,a , 
1 I 

4 

NS,, x . . . x NS,,_, x NS 

commutes, and that for each relation symbol R H SC, X . . . X S,_, there is a 

commutative square 

MR- M&x ... xMS,_, 

NS)--, NS,,x ... xNS,,-, 

in % (i.e. 3(h,,, X . . . x h,__,)MR s NR in SubV(NSo x . . . x N&-J). 

Homomorphisms compose in the obvious manner and each 2’-structure has an 

identity homomorphism: in this way, one gets a category of Z-structures and 

homomorphisms in the logos % which will be denoted 

Mod(.Z, %). 

Then, if 9 is a theory in the language 2, 

Mod(3, %) 

will denote the full subcategory of Mod(2’, %) whose objects are the models of 3 

in (e. 
Next we consider the relationship between models of a theory 9 in different 

logoses. To do this we must introduce the notion of a morphism of logoses. Since 

a logos is a category with certain properties, it is clear that a logos morphism 

should be a functor which preserves these properties: 

1.5. Definition. A morphism of logoses is a functor 9: %+ 9 between logoses 

which preserves finite limits, finite joins of subobjects and both existential and 

universal quantification of subobjects along maps. (The latter condition means 

that 9(3fA) = 3(5f)(FA) and %(VfA) = V(@f)(%A).) 
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Now if 9: % + 9 is such a morphism and M is an .Z-structure in %, since 9 

preserves finite products and monomorphisms evidently one gets an T-structure 

9,M in 9 by letting 

(F,M)S=F(MS) 

andforf:S,,x--- xS,_,+S and R-&X.. . xS,_, letting (9,M)fbe 

(9,M)S,x *. . x (9,M)S,_,= 9(MS, x . . . xMS,_,)- 9(Mf) (P*M)S 

and (S*M)R be 

~(MR)HF(MS,,X . . . x MS,_,)=((9,M)S,x.. . x (9,M)S,_,. 

Similarly, for a homomorphism h: M + N of Z-structures in %I, one gets a 

homomorphism 9,h : 9,M + 9,N of .9-structures in 9, where 

(9,h), = P(h,). 

In this way we get a functor 

%* : Mod(_Y, %‘)-+ Mod(Z,9). 

Moreover, for any theory F in the language 2, this functor restricts to one 

between categories of models: 

FF* :Mod(T, %)+ Mod(F, 5.3). 

This is because the operation of applying 9 to subobjects preserves the 

interpretation of first order logic in %, i.e. we have that the subobjects 

S(M(@;x)) and S++M($;x) correspond under the isomorphism S(MS) = 
(9,M)S; and hence in particular M k u implies 9,M k o for any sentence o of 2. 

The assignment of Mod(9, %) to % and 5F* : Mod(3, ‘X)-+ Mod(3,9) to 

9: %+= 9 extends to natural transformations between logos morphisms. Given 

two such morphisms 9, 9’ : Ce 3 9 and a natural transformation CIJ : S+ S’, one 

gets 

(Y*:3*+%-:, 

by defining my, to be the natural transformation whose component at an object M 
of Mod(9, 92) is the homomorphism of F-models 

a,M:5FeM-,9:M 

whose value at a sort symbol S is 

(cx,M)~= aM,:9(MS)+9'(MS). 

We now come to a crucial point: the concept of a logos as a place for 

interpreting intuitionistic first-order logic is sufficiently flexible to allow the 

construction, for a given theory, of a logos containing a generic (or universal) 



42 A.M. Pit& 

model of the theory. The following theorem makes precise what is meant by this: 

1.6. Theorem. Let 5 be a theory in IPC. There is a logos Y(9) and a model G of 
Y in %‘( 3) with the following properties : 

(a) For any other logos 9 and model M of 3 in 9, there is a logos morphism 

9 : %( 3) --, 5% and an isomorphism 9,(G) = M of F-models in 9. 
(b) Zf 9, 9’ : %‘(T)+ 9 are both logos morphisms and a : 9,(G) = @k(G) is a 

Y-model isomorphism in 9, then there is a unique natural isomorphism (Y : 9 = 9’ 

with a = a,(G). 

Proof. We refer the reader to Chapter 8 of [lo] for a detailed proof of this 

theorem, cofining ourselves here to a brief description of the logos Y(F) and the 

generic model G. 
Let 2 be the underlying language of the theory Y. Roughly speaking, the 

objects of q(9) are pairs #; x where @ is an Z-formula and x a finite list of 

distinct variables containing the free variables of $I. However, one does not wish 

to distinguish a pair $; x from a pair IJJ;Y if x and y have the same length and 

sorts and + is obtained from $J by substituting y for x (and changing bound 

variables, if necessary). So quotient by the evident equivalence relation and let 

[@;x] denote the equivalence class of the pair @;x: this is the typical object of 

Y?(F). 

A morphism [$;x]+ [r/~,;y] in g(F) is determined by a formula 8 whose free 

variables lie amongst the list x, y (which we take to consist of distinct variables by 

choosing a suitable representative from the equivalence class [v+!J; y]), and which 

satisfies 

T-vx, Y 0(x, y)- @(x) A q(y), (1) 

3IVx,y,y’t3(x,y)~O(x,y’)*y=y’ and (2) 

Tit-vx (@(x)+ 3y 0(x, Y)). (3) 

However, if 8’ is another such formula it should determine the same morphism 

provided 

Ft-t-x, y (OH 0’). (4) 

Thus a typical morphism from [#;x] to [q,; y] is an equivalence class of formulae 

0 satisfying (l), (2) and (3) under the equivalence relation determined by (4). 

The generic model G of F in g(9) sends a sort symbol S to GS = [x =x; x], 

where x is of sort S; more generally if x is of sort S, then [x1 = x1 A . . . A x,-, = 
x,_~;x] is the product of the objects GS, in V(S). G sends a function symbol 

f : S+ S to the equivalence class off(x) = y; and it sends a relation symbol R MS 

to the subobject represented by the monomorphism from [R(x); x] to [x =x;x] 

determined by R(x) A x = x’. Arguing by structural induction, one finds that 
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more generally 

G(@;x)~GS,x~~~xGS,_, 

is given by the monomorphism 

[~;X]~[X=X;n] 

determined by @(x) A x =x’. 0 

1.7. Remarks. (i) For reasons that are evident from the above description, 

%(S) is often called the syntactic category of the theory .Y. It is a generalisation 

of the Lindenbaum-Tarski algebra of 9 (which is here a Heyting algebra rather 

than a Boolean algebra since we are dealing with theories in intutionistic rather 

than classical logic). Indeed, Z(S) contains the Lindenbaum-Tarksi algebra of Y 

as the lattice of subobjects of the terminal object. 

(ii) For logoses ‘%, 9, let LOG(%, 9) denote the category whose objects are 

logos morphisms from % to 9 and whose morphisms are natural transformations. 

Let LOG&%, 9) d enote the non-full subcategory of LOG(%, 9) with the same 

objects but with only natural isomorphisms for morphisms. Similarly, for a theory 

.Y, let Mod&T, D) denote the non-full subcategory of Mod(3, 9) consisting 

Y-models and Y-model isomorphisms in 9. 

In more category-theoretic language, Theorem 1.6 says that the functor 

LOG(‘%(s), 9)+Mod(5,9), 

of 

($5 m*(G) 
9’) I+- (9*(G) - K(G)) 

is (a) essentially surjective and (b) full and faithful for isomorphisms. 

Thus on restricting it to a functor 

LOG,(%(5), 9)-+ Mod,(Y, 9) 

one obtains an equivalence of categories (that is pseudo-natural in 9). For the 

usual category-theoretic reasons, %(S) is determined by this property up to 

equivalence and G is determined up to isomorphism. 

(iii) Each logos % 1s equivalent to a syntactic category V?(Y) for some theory Y 

in IPC. For example, let 9% be the language which has sort symbols for each 

object of %Y, function symbols for the morphisms in % and relation symbols for 

the subobjects in %‘. There is an evident Z&-structure in 59 which takes a symbol 

to the object, morphism or suboject it names; and the collection of sentences that 

are satisfied by this structure form a theory .9& for which one has %(&) = %‘. 

In particular, the properties of being a monomorphism, a finite limit, a finite 

union of subobjects or the existential or universal quantification of a subobject 

along a morphism are all expressible by first-order formulae in 3%: cf. Chapter 2, 

Section 4 of [lo]. There are however further categorical concepts which are 
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similarly expressible in 2&, namely the category-theoretic formulations of the 

notions of disjoint union and quotient by an equivalence relation. We recall their 

definitions: 

1.8. Definitions. Let % be a logos. 

(i) Th e d i . t is ozn coproduct of finitely many objects (Xi 1 i <n) of % is given by 

an object X together with monomorphisms (mj;Xi WX ) i <n) such that in 

Sub,(X) one has 

Xi AXE= _L when i#j, and V Xi= T. 
i<n 

(ii) The effective coequalizer of an equivalence relation (a, b ) : R w X x X in 

V is given by a morphism q :X-+ Q which is a cover (i.e. 3q(T) = T) and which 

makes 
Rb-X 
a 
II 

4 

Xq-Q 

a pullback square in %. 

In a logos, finite disjoint coproducts are coproducts and effective coequalizers 

are coequalizers. That a diagram in %’ is one of these special kinds of colimit is 

expressible by first-order (indeed, by ‘coherent’) formulae of 2%. However, a 

logos in general will not have all finite disjoint coproducts or effective co- 

equalizers for all equivalence relations. Thus, thinking of the syntactic category 

Z(Y) as a category of ‘F-definable sets and functions’, it is in general lacking 

some of these first order definable concepts. 

1.9. Definition. A logos which has all finite disjoint coproducts and effective 

coequalizers of equivalence relations will be called a Heyting pretopos. 

1.10. Remarks. (i) The reason for the above terminology is that a Heyting 

pretopos is in particular a pretopos, i.e. a category with finite limits, finite 

coproducts that are disjoint and stable under pullback and coequalizers of 

equivalence relations that are effective and stable under pullback (cf. Chapter 3, 

Section 4 of [lo]). Heyting pretoposes are precisely those pretoposes which 

possess right adjoints to the operations of pulling back subobjects along 

morphisms. 

(ii) Note that a logos morphism necessarily preserves any disjoint coproducts 

or effective coequalizers of equivalence relations that happen to exist. Thus by a 

‘morphism of Heyting pretoposes’ we shall mean just a morphism of logoses. 

It is possible to ‘complete’ a given logos % to a Heyting pretopos by freely 

adjoining finite disjoint coproducts and effective coequalizers for equivalence 
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relations. To be precise, given % one can construct a Heyting pretopos @ and a 

logos morphism 

with the property that for any Heyting pretopos SY, the functor induced by 9% 

9&:LOG($, EZ)*LOG(%‘, SY), 

is an equivalence of categories. The construction of @ from % was described by 

Makkai and Reyes [12, Part II] (for coherent categories, but the construction for 

logoses is the same; see also [lo]). Briefly, it can be described as follows: 

First note that if 4 : (e+ 3? is a logos morphism to a Heyting pretopos, we 

obtain a full subcategory of 5?? which is also a Heyting pretopos by considering 

those objects Q of %? for which there is a diagram of the form 

(5) 

where 9 is a cover whose domain is the disjoint coproduct of finitely many objects 

in the image of 9. Consequently when 4 = 9,, we expect this full subcategory to 

be the whole of $. Now in (5), if we take the pullback of q against itself we 

obtain an equivalence relation on Hi<,, 9(X,) whose coequalizer is Q: 

Since the coproduct in (6) is disjoint and stable under pullback, we can express 

B as 

for subobjects 

Bij~9(XixXj), i,j<n (7) 

Initially, the only subobjects we know about are those that come from %; so let 

US assume that in (7) Bij G 9(Aij) where 

A, wX; X Xj, i, j>n (8) 

in (e. (It does indeed turn out that 9%. . %‘+ @ is full on subobjects in the sense 

that for any object X of %, any subobject of 9,(X) in @ is in the image of 9,.) 

Putting all this together, one defines a typical object of @ to consist of a finite 

sequence (X, 1 i < n) of objects of 95’ plus a matrix (8) of subobjects in % satisfying 

the following conditions, which for readability are written in the language 3% 
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associated to %’ as in Remark 1.7(iii): 

% L A VXi Aii(Xi, Xi), 
i<n 

% L /j Vxi, Xj (A,(xi, xj)+Aji(Xj, Xi)) and 
i,j<n 

‘Z F i jccn VX;, Xi, xk (Aij(Xi, Xi) A Ajk(Xj, Xk)*Aik(Xi, xk))* 
, 1 

In particular, 9,(X) will be the object of @’ with n = 1, X,r =X and 

diagonal subobject of X X X. 
The morphisms of 9 are specified via their graphs. Thus given objects 

AijHXiXXj, i,j<m, 

&-yk x r,, k,l<n 

A,, the 

and %, a morphism from the first to the second is given by a matrix of subobjects 

EkwXi X &, i-Cm, k<n 

satisfying: 

y k i/J,m kJn VXi, yk (fik(xi, Yk)+Aii(xi, Xi) A B/ck(Yk, yk)), 

y k i ,bm ken VXi, xj, Yk (Aij(Xi, xj) A ekcxj, xk)’ &k(xi, Yk)), 

y k i?, k&E Vxi, yk, Yl (Ektxi, yk) A Bkl(Y/c, Y/j+ h(xi, Yl)), 

@’ k i?, kAn VXi, Yk, Yr (&k(XiYk) A &(Xi, Yl)+ B&k, Yl)) and 

T k i?, V-xi (Aii(xi, xi) + kyn 3yk &k(xi, Yk)). 

In particular for f : X + Y in %, 9&(f) : 9,(X)+ L&(Y) is given simply by the 

graph off: 

(id,f) :X-XX Y. 

These are the essential details of the construction of 9% : %+ %‘. We leave to 
the reader’s imagination how composition and identity morphisms are defined for 
@‘. The proof that @ is a Heyting pretopos, that 9% is a logos morphism and that 
it has the requisite universal property are then routine calculations, if one uses 
the characterisation (mentioned in Remark 1.7(iii)) of the relevant category- 
theoretic concepts by first order formulae of LZv and the Soundness Theorem 1.3. 
We record some properties of 4% : (e- % that come out of the description just 

given: 

1.11. Lemma. (i) 9, is ‘full on subobjects’, i.e. for each object X of % the map 

Sub%(X)+ Sub&%X), 

A ++.%(A) 

i.s surjective. 



Conceptual completeness for first-order intuitionistic logic 47 

(ii) 9, is ‘conservative’, i.e. the maps mentioned in (i) are also injective (and 

hence are bijections). 

(iii) Every object Q of @ is ‘finitely covered via &‘, i.e. there are finitely many 

objects (Xi 1 i < n) of Ce and a cover 

1.12. Notation. If Y is a theory in IPC, then as in Theorem 1.6 one has a logos 
q(Y) and a generic model G E Mod(3, ‘%(S)). Let X(.9) denote the Heyting 
pretopos completion g(Y)*, and let Idr denote the model of 5 in ,X(9) 
obtained from G by appling 9qe(s) : Fe(S)+ X(Y). (The reason for the notation 
IdY will become apparent in Section 2.) 

We shall call %!( 5) the classifying Heyting pretopos of the theory 3. 
Combining Remark 1.7 with the universal property of $,(,-) : T(T)+ %(y)^ = 

X(T), one finds that Id5 is universal amongst model of 9 in Heyting pretoposes 
in the sense that for all Heyting pretoposes X the functor 

LOG,(X(Y), X)+Mod,(3, rc>, 

s,(Id,) 3 9;(Id,)) 

is an equivalence of categories. 
Combining the construction of the syntactic category (e(S) from 5 and the 

construction of @ from Ce, one obtains an explicit description of X( 5) in terms of 
the syntax of the theory Y. From this view-point X(Y) is the category of 
‘Y-definable first-order sets and functions’: on the one hand it contains objects 
for the basic sorts of .Y and is closed under the operations of finite Cartesian 
product, separating out a Y-definable subset, finite disjoint union and quotienting 
by a F-definable equivalence relation; on the other hand, it is not too ‘big’, in the 
following sense (cf. Lemma 1 .ll). 

1.13. Lemma. Let 23 be the underlying language of a theory 3. 
(i) Suppose x is a finite list of variables and S the corresponding list of their 

sorts. Consider the collection of first-order formulae e(x) of L whose free 
variables are amongst the list x, pre-ordered by Y-provability : 

The resulting pre-ordered set is equivalent to the lattice of subobjects of 

IIi<n I&r(&) in x(T). 
(ii) For each object Q of X(Y) there is a diagram of the form 

LI II Id,(&) 
in X(9). 

r<m -j<n(i) 
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2. Interpretations and functors 

Equipped with the concepts of a model of a theory in a logos and of the 

classifying Heyting pretopos of a theory, we can now give the definition of the 

particular notion of interpretation between theories that underlies the results 

presented in this paper: 

2.1. Definition. Let Y and Y-’ be two theories in IPC. By an interpretation of 3 

in 5’ we shall mean a model of 5 in the classifying Heyting pretopos of Y, 

X(Y). An isomorphism between two such interpretations is just an isomorphism 

of !Y-models in X( 5’). 

2.2. Remarks. In view of the syntactic nature of the objects and morphisms in 

the description we gave of X’(Y) in Section 1, the above definition of 

interpretation can be reformulated in terms of the syntax of 3 and Y’. In this 

form it is the same as or includes the various notions of ‘interpretation’ or 

‘translation’ of one first-order theory into another that have been considered in 

the literature. It is particularly important to note that since interpretations of 9 in 

9’ are models in X(5’) rather than (e(Y), we are allowing the basic sorts of Y 

to be interpreted by quotients by definable equivalence relations of finite disjoint 
unions of definable subsets of finite products of the basic sorts of 5’. It is this 

level of generality which permits the Conceptual Completness Theorem (2.10), to 

be proved below; but at the same time, the features of a notion of ‘interpretation’ 

that one might wish are not lost by casting our net this wide. For example, the 

existence of this kind of interpretation certainly implies relative consistency. For 

if 9 is inconsistent, i.e. 5 t I, and I is an interpretation of Y in Y’, then because 

I is a model of Y, Z(I; ) = T in Sub,(r,) (1); but by definition of the semantics, 

Z(I; ) = _L and hence by Lemma 1.13(i), 3’ k I, i.e. Y’ is also inconsistent. 

2.3. Restrictions of models along interpretations. If I: !Y+ 5’ is an interpreta- 

tion between two theories and M is a model of 5’ in some Heyting pretopos X, 

then we can restrict M along Z to obtain a model of 9 in X, denoted Z*(M) and 

defined as follows: 

By definition Z is a model of 3 in X(3’). Now as in (9) there is an equivalence 

Mod,(Y’, X) = LOG,(X(Y’), X) 

and M = M,(Id,,) for some morphism &Z : Z’(T)+ 3% which is uniquely deter- 

mined by M up to unique isomorphism. Then Z*(M) is defined to be &Z,(Z). 

Similarly, if a : M = M’ is an isomorphism of 9 models in X we can restrict it 

along Z to obtain Z*(a) :Z*(M) = Z*(M’) an isomorphism of 9 models in X. Z*(a) 

is defined to be d,(Z) where 5 :M G&Z’ is a natural isomorphism such that 

5,(Idr.) is equal to 

#*(Id,,) = M g M’ = M;(Id,.). 
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In this way, restriction along Z becomes a functor 

Z*:Mod,(F’, X)+Mod,(F, X) 

between categories of models and isomorphisms in X. 

If 1: X(F)-+ X(Y) denotes the Heyting pretopos morphism corresponding to 

I under the equivalence 

Mod&Y, X(5’)) = LOG,(X(5), X(Y)), 

then on replacing the categories of models by the equivalent categories of 

morphisms, I* becomes identified with composition with i: 

Modz(.Y’, X) = LOG,(X(.Y), XC> 

I* 
I i 

i* = Loci .(I, q 

Mod,(!F, X) = LOG(X(S), YC) 

2.4. Composition of interpretations. If I is an interpretation of 3 in 3 and .Z is 

an interpretation of F’ in gll, then we can compose J with I to obtain an 

interpretation of 3 in F”, denoted JoZ and defined as follows: 

As in 2.3, let J : X(T)+ EX(F”) correspond to J under the equivalence 

Mod,(Y, SY(F”)) = LOG,(X(Y), X(9”)). 

(Thus j is determined up to unique isomorphism by the requirement 

j,(Id,.) = J.) Then Jo Z is defined to be J,(Z). 

With this definition of composition, the collection of theories in IPC, 

interpretations between them and isomorphism between the interpretations 

becomes a &category in the sense of Benabou [2]. In particular, the generic 

model IdTF E Mod&T-, X(9)) regarded as an interpretation of .Y in itself, acts as 

an identity for composition: 

The assignment 

is then the object part of a full and faithful homomorphism of bicategories to the 

bicategory of Heyting pretoposes, morphisms of such and natural isomorphisms. 

Moreover, since every Heyting pretopos is equivalent to X( 9) for some theory 5 

(e.g. take 5 to be as defined in Remark 1.7(iii)), this gives an equivalence of 

bicategories. 

In passing from 9 to X(F), what is lost is a knowledge of the underlying 

language and axioms of 5. In other words, in working with Heyting pretoposes 

one is dealing with the presentation-free properties of theories and interpretations 

in IPC. What is gained is the fact that Heyting pretoposes are directly amenable 

to algebraic manipulation and also to the powerful functorial techniques of 
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category theory: the proof of the conceptural completeness theorem given below 

illustrates both these aspects. The results so gained can then be translated back 

across the equivalence of bicategories mentioned above to ones about first-order 

logic and model theory. 

2.5. Equivalent theories. Call two theories 5 and .FF’ equivalent (and write 

FI- S’) if there are interpretations I: F-+ F’ and J: Y’+ 9 with .ZoZ = Idr and 

Z0.Z = Idrr. It follows from 2.4 that 9 and F’ are equivalent theories iff x(y) 

and x(9’) are equivalent categories. Note also that, using the operations of 

restricting models along interpretations defined in 2.3, equivalent theories have 

equivalent categories of models and isomorphisms in any Heyting pretopos. 

2.6. Conservative interpretations. As usual, an interpretation I: 9--+ F’ will be 

called conservative if it reflects the validity of sentences, i.e. if whenever u is a 

sentence of 9 which is satisfied by the model Z of 5 in %‘( S’), then already y t o. 

For Heyting pretoposes (or logoses), the concept corresponding to ‘sentence’ is 

‘subobject of the terminal object’ (cf. Lemma 1.13(i)). Thus a morphism 

9 : 2f!+ X’ of Heyting pretoposes will be called conservative if whenever A w 1 

in %7 is such that 4(A) w 9(l) = 1 is the top subobject of 1 in X’, then A w 1 is 

already the top subobject of 1 in X. 

One has: 

(i) 4: %?+ X’ is conservative iff 4 reflects isomorphisms (i.e. 9(f) an 

isomorphism implies f is), iff 4 is faithful (i.e. 9(f) = 9(g) implies f = g). 

(ii) An interpretation I: 9+= 5’ between theories is conservative iff the 

corresponding Heyting pretopos morphism Z : X( 9) + SY( 5’) is conservative. 

2.7. Quotient theories. If 9 and F-’ are theories in IPC, y’ is a quotient of F if it 

is obtained from 9 by leaving the underlying language unchanged but adding 

extra sentences as axioms. In this case there is a canonical interpretation F+= F’, 

the corresponding morphism EK( S) + x(5’) being essentially the identity on 

objects and on morphisms sending (the T-provable equivalence classes of) 

y-provably functional relations to the corresponding (9’-provable equivalence 

classes of) F-provable functional relations. In particular such a Heyting pretopos 

morphism enjoys the two following properties: 

(i) A Heyting pretopos morphism 9 : X + SY’ will be called full on subobjects 
if for all objects X of 5%’ and subobjects B w 9(X) in %‘, there is A H X in x 

with B = $(A) in Sub,,($X). 

(ii) A Heyting pretopos morphism 4 : C% + X’ will be called subcovering if for 

all objects Y of W there is an object X of F#! and a diagram of the form 

.e,Y 

m 
1 

9(X) 

(m a monomorphism, e a cover) 

in W. (In the above diagram, Y will be said to be a subquotient of 9(X).) 
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Conversely, given I : Y+ 9’ such that the corresponding 1: x(Z)+ Z(S’) 

satisfies (i) and (ii), then one can find a theory p equivalent to y’ so that 5” is a 

quotient of 9 and the composition of I: 9+ 9’ with 5’ = 5” is the canonical 

interpretation of 3 in the quotient 9”. 

In fact, in the presence of condition (i), condition (ii) is equivalent to just 

requiring that 9 be essentially surjective, i.e. that for each Yin X’ there is X in 5V 

with 9(X) = Y. For suppose that $ : %f - X’ satisfies both (i) and (ii). Then given 

any Y in %‘I, evidently one can find some X in R and a cover e : 9(X)--c 

Pulling e back along itself yields an equivalence relation 

s~9(x)x9(x)=9(xxx) 

which by (i) is of the form S = 9(R) for some subobject R MX x X. Now in 

there is a subobject I/ -1 of the terminal object which is the interpretation 

the statement “R is an equivalence relation” (written in the language -fe, 

1.7(iii)). It follows that R x U is an equivalence relation on X x I/: let 

Y. 

x 
of 

of 

q:Xx U-Q 

be its effective coequalizer. Now 9(U) = T (since it is the interpretation of the 

statement “9R is an equivalence relation”, which is true since 9R = S). 

Therefore 

9(X) =9(Xx U) 2 9(Q) 

coequalizes S = 9R =:4X. But so does e: 9(X)- Y, and hence Y = 9(Q), as 

required. (Note that this argument uses the universal quantification present in a 

Heyting pretopos. Quotient morphisms of pretoposes satisfy (i) and (ii), but are 

not necessarily essentially surjective.) 

Accordingly one can define a Heyting pretopos morphism to be a quotient 
morphism if it is both full on subobjects and essentially surjective. Each Heyting 

pretopos morphism 9 : X+- X’ can be factored as 4 = rto,$ where $ is a 

quotient morphism and yl is conservative: cf. Section 3 of [14] for more details. 

Here we shall need the fact that the only morphisms that are both quotients and 

conservative are equivalences: 

2.8. Lemma. If a Heyting pretopos morphism 9 : X* X is both conservative and 

a quotient, it is an equivalence of categories. 

Proof. Being a quotient, 9 is essentially surjective, being conservative, 9 is 

faithful (2.6(i)). So it is sufficient to show that 9 is also full. Given g:$(X)-+ 

9(X’) in X’, consider the graph of g 

(id, g) : 9(X)+ 9(X) x 9(X’) = 9(X x X’). 

Since 4 is full on subobjects, this particular subobject of 9(X x X’) is of the form 

4(F) for some F WX X X’. Now 9 is conservative and takes F to the graph of a 
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function: hence F is already the graph of a function f :X+X’ (i.e. 

x sends it to an isomorphism). Then 

have = g, as required. 

2.9. Completeness. We have as yet made no size restrictions on theories and 

categories. For simplicity, let us fix a pair of (Grothendieck) universes of sets, the 

elements of the first being ‘sets’ and those of the second being ‘classes’. A 

category is called ‘small’ if its collection of morphisms is a set and is called ‘large’ 

if they form a class. (A better, but less well understood framework is to take 

‘small’ to mean ‘internal to a fixed elementary topos’ and ‘large’ to mean ‘fibred 

over the fixed topos’: cf. [3].) 

We shall henceforward assume that theories have underlying languages with only 
a set of basic sort, function and relation symbols. Consequently for a theory 3, its 

classifying Heyting pretopos X(Y) is a small category; and conversely any small 

Heyting pretopos is equivalent to one of the form X(T) for 9 a theory satisfying 

the above size requirement. Thus the equivalences of bicategories mentioned in 

2.4 now becomes one between the bicategory of (small) theories in IPC and the 

bicategory of small Heyting pretoposes. 

We shall say that a collection 6 of (large) Heyting pretoposes is complete for 

theories in IPC if it satisfies that for every theory 

Y t o just in case M L u for all M E Mod( 5, YC) and all rC E 4. 

The existence of generic models in classifying Heyting pretoposes implies that 

the collection of all small Heyting pretoposes is an example of such an 4. Less 

trivially, the collection of categories of sheaves on complete Heyting algebras is 

also an example: cf. Fourman and Scott [5]. (If one restrict the class of theories 

one is interested in, then it is possible to take smaller collections; for example the 

single Heyting pretopos of sheaves on Baire space (NN) is complete for finitely 

axiomatizable theories. But in contrast to the case for classical logic, one can 

show that no set of Heyting pretoposes can be complete in the above sense, i.e. 

for all (small) theories in IPC simultaneously.) 

Replacing theories by the small Heyting pretoposes which classify them, one 

can characterize the above notion of completeness for a collection !$ of large 

Heyting pretoposes in category-theoretic terms, as follows: 

Generalising from 2.6, we shall call a collection of Heyting pretopos morphisms 

with common domain X, (q : SV-+ Xi 1 i E I), jointly convervative if whenever we 

have A M 1 in %? such that for each i E I, %(A M. 1) is an isomorphism, then A - 1 

is already an isomorphism. Then a collection 4 of Heyting pretoposes will be 

called sufficient for small Heyting pretoposes if for all small Heyting pretoposes X, 

the collection of Heyting pretopos morphisms from J% to members of @ is jointly 

conservative. Under the equivalence of the bicategory of theories and the 

bicategory of small Heyting pretoposes, one has: @ is complete for IPC if it is 
suficient for small Heyting pretoposes. 
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We can now state precisely the main result of this paper, first as a theorem 

about interpretations between theories in IPC, and then in an equivalent form as 

a result about morphisms of Heyting pretoposes: 

2.10. Conceptual Completeness Theorem for IPC. Let $j be a collection of 
Heyting pretoposes which is complete for theories in IPC. Let I: .T+= 9’ be an 
interpretation between such theories. Then 

(i) 5’ is equivalent to a quotient theory of 3 via I, if for all K E 6 

I* : Mod&Y’, X)+ Mod,(T, X) 

is full and faithful. 
(ii) 5 and 5’ are equivalent theories, via I, if for all X E @ 

I* : Mod,(Y, .7t)+ Mod,(5, X) 

is an equivalence of categories. 

2.11. Conceptual Completeness Theorem for Heyting Pretoposes. Let $3 be a 
collection of Heyting pretoposes which is sufficient for small Heyting pretoposes. 
Let 9 : X+- X’ be a morphism of small Heyting pretoposes. Then 

(i) 9 is a quotient morphism if for all X E s;? 

4*:LOG,(X’, X)+LOGzz(X, X) 

is full and faithful. 
(ii) 9 Is an equivalence if for all X E $j 

9* : LOGs(X’, Ku)+ LOG&Z, X) 

is an equivalence. 

Proof (outline). Replacing theories by their classifying Heyting pretoposes, 

categories of models become identified with categories of morphisms and the 

functor restricting models along an interpretation becomes identified with that of 

pre-composing by a morphism: cf. 2.3. In this way 2.10 is a consequence of 2.11. 

We shall now sketch the proof of 2.11; filling in the details will occupy the rest 

of the paper. 

Firstly, one can show easily (see 4S(ii)) that: 

(a) If 4* is essentially surjective for all YC E 4, then 4 is conservative. 

This is simply a consequence of the hypothesis that @ is sufficient for small 

Heyting Pretoposes. Combining (a) with Lemma 2.8, one sees that part (ii) of 

Theorem 2.11 follows from part (i). 

Splitting the definition of quotient morphism into its two component parts 

(2.7(i) and (ii)), we split the proof of 2.11(i) into two implications: 

(b) If 9* is full for all X’ E $5, then 4 is full on subobjects. 

(c) If 9* is full and faithful for all X E 4, then 4 is subcovering. 
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(It is interesting to note that (c) becomes false if one drops the word ‘full’ from its 

hypothesis: a counterexample due to Makkai is presented in 4.8.) 

The proof (in 4.5(i)) of statement (b) is a consequence of the interpolation 

property for pushout squares of Heyting pretoposes (4.3) proven in [14] (and 

which is a generalisation to arbitrary interpretations of the usual interpolation 

theorem for IPC). The method of proof used there was to introduce a certain 

functorial construction, called the topos offilters, which associates to each Heyting 

pretopos a Grothendieck topos (a generalisation of the notion of topological space 

via its category of set-valued sheaves), and associates to a Heyting pretopos 

morphism an open geometric morphism (which correspondingly generalises the 

notion of open continuous map). In fact, this construction allows us to deduce 

both statements (b) and (c) from properties of geometric morphisms. These 

properties are discussed in Section 3. In particular, the proof of (c) (see 4.7) 

requires the consideration of sheaves equipped with descent data. 
The properties of the topos of filters construction which allow one to deduce 

(b) and (c) from the sheaf theoretic considerations of Section 3 are outlined at the 

beginning of Section 4. The details of the construction itself are given in an 

appendix. Cl 

2.12. Remarks. (i) Just as Heyting pretoposes and morphisms can be viewed as 

giving a category-theoretic approach to certain properties of first order in- 

tuitionistic logic, so can Grothendieck toposes and geometric morphisms (or 

rather, their inverse image parts) be viewed as giving one to the geometric 
(=, A, 3, V) fragment of infinitary logic. From this view point, our method of 

proof for the above conceptual completeness theorem is to use a certain nice 

translation of theories in IPC into theories in geometric logic. Whilst at first this 

might seem to complicate matters by replacing the finitary by the infinitary, the 

method succeeds because of the tractability of the geometric fragment compared 

with the full first order one. (For example, formulae of the former kind can be 

rearranged into a standard form (VIA atomics), but nothing of the sort is 

possible intuitionistically for full first-order formulae.) 

(ii) It is rather easy to see that the converses of 2.11(i) and (ii) both hold: 

Obviously, if 9: X-+ X’ is an equivalence, the functorality of the (-)* 

operation implies that 

4* : LOG,(X’, X)+ LOG,(X, X) 

is also one, for any Heyting pretopos X. Less obviously, if 9 : X+ X’ is a 

quotient, then 9 * : LOG,( X’, X)+ LOG&X, X) will be full and faithful for any 

X. The proof of this can be broken into two stages: 

(a) Zf 4 is subcovering, 4* is faithful: For suppose we have a, /3: F+ Ce in 

LOG,(X’, X) with 9*(a)=9*(@, i.e. with cu, =/I$. For any object Y of X’, 
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we can find X in x such that Y is a subquotient of 9(X): 

Be”Y 

m 
1 

9(X) 

(m a monomorphism, e a cover). 

Then by naturality of ff and /3 one has 

~m.,,=~~,,o~rn=p,,a~rn=~rnoPe 

and hence (Ye = Be, since %rn is a monomorphism. But then 

(yy~~e=~eocu,=~e~~,=~,~~e 

and hence LYE = &, since Se is a cover and hence is an epimorphism. Thus 

(Y= p. 

(b) If furthermore, $ is full on subobjects (and hence is a quotient), then .9* is 

also full: For suppose 9, %ELOG,(Z, 2”) and y:9*(9)+$*(%) in 

LOG,(x, x). For each object Y of Z’ one can find an X in 2f? and a cover 

e :9(X)+ Y in X’; and hence on taking the pullback of e against itself, one 

obtains an equivalence relation R HX X X in % such that 

9(R)z9(X)a Y 

is a coequalizer in X’. Thus in the diagram below, the rows are coequalizers: 

99(R) IZ$ 99(X) 3 F(Y) 
I 

YR 
I I 

YX I 
I (YY 

Let (Ye be the unique morphism F(Y) -+ g(Y) making the right-hand square 

above commute. It follows easily that LY~ is natural in Y, is an isomorphism 

(because y is) and satisfies 9*(a) = y. 

3. Some geometric morphisms 

In this section we shall develop those properties of geometric morphisms 

between Grothendieck toposes which will be needed to prove the conceptual 

completeness theorem for IPC. We refer the reader to [l] and [6] for general 

information about toposes. All but one (Theorem 3.5) of the results about 

geometric morphisms can be found in Johnstone [7, 81 and Joyal and Tierney [9]. 

3.1. Notation. (i) GTOP will denote the bicategory 

geometric morphisms and natural transformations 

functors) . 

of Grothendieck toposes, 

(between inverse image 
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(ii) For/ %+ 8 in GTOP, the inverse image functorp : iT+ 9 induces order 
preserving maps on subobject lattices 

p* : Subw(X)+ SubS(/YX), 

(A HX) * (PA ++X). 

The left adjoint of the above map, if it exists, will be denoted by 

/* : Sub,(/X) + Sub,(X) 

(Since the subobject lattices are complete,/x will exist just in casep : Subw(X)+ 
Sub,(pX) preserves arbitrary meets.) 

3.2. Open geometric morphisms. Each Grothendieck topos is in particular a 
Heyting pretopos. But if/ 9 --, 8 is a geometric morphism, p : 8+ 9 is not in 
general a morphism of Heyting pretoposes, since it does not necessarily preserve 
universal quantification of subobjects along maps. An important class of 
geometric morphisms for which this is the case is that comprising the open 

geometric morphisms: a geometric morphism/ $* ‘8 is open just in case the left 
adjoints/x mentioned in 3.l(ii) all exist, are natural in X and satisfy ‘Frobenius 
reciprocity’, i.e. 

This is equivalent to requiringp to preserve injinitury first-order logic, i.e. the 

maps 

p : Sub,(X) + Sub&+X) 

should preserve all meets and universal quantification along maps (and so in 
particular, preserve implication: cf. 1.2(v)); see [7] and [9]. 

We will be particularly concerned with the properties of open geometric 
morphisms under pullback. given two geometric morphisms 

their pullback will be denoted 9 X, 3; thus there is a diagram in GTOP of the 
form 

such that for each Grothendieck topos X, the functor 

GTOP(X, 9 x, g))- GTOP(% 9) xoTOP(aY,g) GTOP(%‘, %), 

,: - (/L e,, 74 
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is an equivalence of categories. (The codomain of this functor is a pullback 

category: its objects are triples (6, (Y, c) where I: ZZ+ 5, c: %-+ $J and (Y:F scYG, 

and whose morphisms (L, (Y, .)-+ (A’, a’, c’) are pairs (p, y) where /3 :X-b’, 

y:c-+c’ and IYo/@ =gyocu. (See 4.2 below.) 

3.3. Proposition. In the pullback square (10) if/is an open geometric morphism, 

then : 
(i) 7 is also open. 

(ii) For any object X of 25’ 

Sub,(/‘*X) 
/i 

- Sub,(X) 

b*l 

Sub,ix,& */*X) ,‘1* 

30,. -- 
I I 

Sub,x,,(+*X) y7.x- Sub&*X) 

commutes. 

(iii) If/is also a surjection, then so is 9. 

(iv) I t p 1 t’ n er o a ion property: for any object X of 2Y and subobjects B W/*X in 9 

and C -g*X in 3, if 

(/l*B ++/*,PX=p.~Y*X) G (a*Cw7*,p-*X) 

in SubOx,&*~*X), then there is a subobject A WX in 8 with B SPA in 

Sub&rX) andg*A G C in Sub%(g*X). 

Proof. For (i), (ii) and (iii) see Chapter VII of [9] or Section 4 of [7]. For (iv), 

take A =/i(B): then B c/‘*A is automatic and g*A G C follows from (ii). 0 

Open geometric morphisms will be important for us because of the logical 

operations which their inverse image functors preserve; but as their name 

suggests, they were originally introduced as a generalisation of the usual notion of 

open continuous map between topological spaces. Similarly, other classes of 

geometric morphisms, named for their ‘geometrical’ properties, are of sig- 

nificance here because of the corresponding ‘logical’ properties of their inverse 

image functors. We introduced in 2.6 and 2.7 the notions of being conservative, 

being full on subobjects, being subcovering and being a quotient morphism of 

Heyting pretoposes. These notions make sense at the level of pretoposes and in 

particular for inverse image parts of geometric morphisms. Then for a geometric 

morphism// s+ ‘8 one has: 

3.4. Lemma. (i) /” is a surjection iff/‘* is conservative. 
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(ii) / is an inclusion iff / is a quotient (i.e. both full on subobjects and 
subcovering). 

(iii) /is localic iffp is subcovering. 

(iv) ,Li.r hyperconnected iff,P is conservative and full on subobjects. 

Proof. For the definitions of surjection and inclusion, see Chapter 4 or [6]. For the 
definitions of localic and hyperconnected morphisms see [S] or VI.5 of [9] (where 
localic morphisms are called ‘spatial’). Proofs of (i) to (iv) can be found in, or 
easily deduced from these references. 0 

We shall need the following characterisation of localic geometric morphisms: 

3.5. Proposition. Given a geometric morphism / Jo r+ 8 between Grothendieck 
toposes, form the pullback square 

and let d: 9+ 9 X, 9 be the diagonal geometric morphism, i.e. the morphism 
(defined uniquely up to unique isomorphism) for which there are isomorphisms 

6,, :bod = tiF and o1 :btd= ;dy 

making 

commute. Then 
(i) Given an object Y of @, it is a subquotient of an object in the image ofr, 

i.e. there is a diagram in 9 of the form 

Ae-Y 

m 
I (11) 

/‘*X 

with X an object in 8, m a monomorphism and e a cover, iff there is a subobject 
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D-&Y xp:Y in .9x, 4 with 

d*D w d*( /$Y x/“,:Y) 

-1 
= 

I 
((W, x (611, 

Ym yxy 

in 9. 
(ii) /is localic iff d is an inclusion. 

(12) 

Proof. (i) A somewhat indirect proof in the spirit of [9] can be given by first 

relativizing to 8, regarding the pullback as a product of toposes over 8, and then 

analysing subobjects in such a product using the fact [9, VI.5.21 that finite 

products are preserved by localic reflection. Instead, we give a rather more direct 

argument suggested by Makkai. 

First observe that every subobject D(y,, y-J of&Y x/;TY in 9 X, 9 is of the 

form 

D(Y,, YJ = i 3Xi ]/GBi(Y, y Xi) AJjfCi(JGx,(X,), YZ)I (13) 

where {Xi ) i E I} is a set of objects in 8 and B, H Y X/*X,, C, H/+X; x Y are 

subobjects in 9. (To see that this is so, consider the characterisation of 9 X, 9 

as the classifying topos of the following geometric theory: two models of the 

theory classified by 9 plus an isomoprhism between the restrictions of these 

models along p to models of the theory classified by %.) Taking the disjoint 

coproduct X = LI icl Xi, we can further assume that the subobject in (13) is of the 

form 

WY,, ~2) = 3~ ]&WY,, x) ~/‘W(~&), YZ)I 

for subobjects B w Y X/*X, C-/*X x Y (obtained from the B; and Ci by 

taking coproducts). 

Now for such a subobject, d*D is 

3~ E X [NY,, x) A Ck YZ)I 

and so (12) holds iff 9 satisfies 

y, =Y,-~x EJ-'[B(Y,, xl A C(x, YJI- (14) 

But if the subobject B(y, x) A C(x, y) of /‘*XX Y is represented by the 

monomorphism 

(m,e):A+*Xx Y, 

then (14) immediately implies that 171 is a monomorphism and e a cover. Thus 

the existence of a D satisfying (12) implies the existence of a diagram of the 

form (11). 
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Conversely, given m and e as in (ll), A(x, y) satisfies 

y, = ~2 f, 3~ E X MT Y,) A A@, ~2)l. 

So as above, we can take D(y,, y2) to be 

3x [&4(x, YI) ~/c:(~&)~ ~2)1 

to satisfy (12). This proves (i). 
(ii) If dis an inclusion, by Lemma 3.4(ii), A* is full on subobjects and hence by 

part (i),p is subcovering; thus by 3.4(iii),/‘is localic. 
Conversely, suppose that / is localic. Note that since d is split by/zi, d* is 

essentially surjective, hence is subcovering. So by Lemma 3.4(ii), to see that dis 
an inclusion it suffices to show that d* is full on subobjects. Since/is localic, by 
3.4(iii),/* is subcovering and hence by part (i), the diagonal subobject 

(idjd) 
Y-YxY=d*(p;YXj$Y) 

is in the image of d*. It follows that any subobject of d*(&Y x/l,TY) is in the 
image of d*. Hence d* is full on subobjects, since every object of 9 X, 9 is a 
subquotient of one of the form&Y xp:Y (Y in 9). 0 

If/ ?F+ 8 is an open geometric morphism, it does not follow that the diagonal 
d: 9+ 9 X, 9 is also open. In proving Theorem 2.11 (step (c)) we shall 
essentially have to show that a certain open geometric morphism is localic: the 
fact that the corresponding diagonal morphism is not necessarily open will block a 
direct application of Proposition 3.5. To get round this problem, we shall now 
develop a sufficient condition (3.7) for a morphism to be localic which eliminates 
consideration of the diagonal morphism in faviour of further pullbacks and 
projections: 

Given a geometric morphism/ 9+ 8, form the pullback squares 

in GTOP. Let byo2. * 9 X, 9 X, 9+ 9 X, 9 be the third projection, defined by 
the requirement that there be isomorphisms 

Jr0 :Jco/to2 qojo1 and n2 :/+02 =/h/12 
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making the following diagram commute: 

Now suppose Y is an object of 9 and y :/$Y +b:Y a morphism in 9 x % 9. 

Then (Y, y) is said to satisfy the cocycle condition if 

&G(Y) 
/42(Y) 

’ /c&w) 
(J%). I I (J&J w-9 
&4xy) 

/1XY) (n,), ./r;;,(Y) 
’ /4&G(Y) 

commutes in 9 X g 9 X 14 9. For example, comparing (17) with (18), it is evident 

that p(X), nx) satisfies the cocycle condition for any object X of 8. 

3.6. Lemma. Suppose that (Y, y) satisfies the cocycle condition and that CL, &, 6, 
are defined as in Proposition 3.5. Then 

c&,*(Y) d*(y)_ dy$(Y) 

(4JY I I C&b 

Y-Y 
Y 

commutes iffy is an isomorphism. 

(19) 

Proof. The lemma is an easy consequence of the fact that 

is essentially a groupoid object in GTOP, the complication being that the relevant 

diagrams commute only up to (coherent) isomorphisms, of which one has to keep 

track. Leaving the book-keeping to the reader, we indicate the essential steps in 

the argument: 

Let C: 9 X, 94 9 X, 9 be the twist morphism: i.e. there are isomorphisms 
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commutes. Then on applying (d x 8 kL9) * 0 (&dF x p c)* and (k& x 8 CL)* 0 (t x 8 dF)* 

to (18), one obtains respectively that 

and 

commute. Thus if (19) commutes, i.e. if (6,),od*(y)o(6,);’ = idy, then the 

above diagrams show that y is an isomorphism with inverse (t,)yot*(y)o(rO);l. 

Conversely, if y is an isomorphism, then so is (6,),~d*(y)~(&,);‘; but on 

applying d* to (20) one finds that the latter map is also idempotent and hence 

must be the identity map for Y. 0 

3.7. Proposition. Suppose that/ 9 + 8 is a geometric morphism between Groth- 
endieck toposes and that Y is an object of @. Suppose further that there is an 

isomorphism y z/z: Y z/t Y in 9 X g 9 satisfying the cocycle condition (18). Then 

Y is subcouered via p, i.e. Y is a subquotient of an object in the image ofp. 

(Thus in particular, a st@cient condition for/ to be localic is that one can find 
such an isomorphism y for each object Y of 9.) 

Proof. Given such a y :&Y =/$Y, by Lemma 3.6 we have that (&),od*(y)o 

(6,)~~ = idy, and this is equivalent to asserting that the graph of y is sent by d* to 

the diagonal subobject of Y X Y zd*(/;,*Y X&Y). Hence by Proposition 3.5(i), 

Y is subcovered by an object in the image ofp, as required. q 

3.8. Remark. A morphism y :&Y+bT Y satisfying the cocycle condition (18) 

and the equivalent conditions of Lemma 3.6, is called descent data for Y. The 

main part of Joyal and Tierney’s Descent theorem [9, VIII.2.11 says that when/is 

an open surjection, every object of 9 equipped with descent data ‘descends’ in 

the sense that there is an object X in 8 and an isomorphism x :r(X) = Y with 

y =&(x) 0 n, O/$(X-~). (We noted above that ~tj, is always descent data forp*X.) 

So in this case Y is actually in the essential image ofp, rather than just being a 

subquotient of an object in the image. When we come (in 4.7) to use Proposition 

3.7, it will indeed by the case that the/involved is an open surjection; however, 

since we shall only need to conclude that/is localic, the rather easy result 3.7 is 

sufficient. So we do not need to appeal here to Joyal and Tierney’s theorem. 
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4. Conceptual completeness 

In order to use the results of the previous section to prove Theorem 2.11, we 

shall use the ‘topos of filters’ of a Heyting pretopos. This construction was 

introduced by the author in [14] and used there to prove a general interpolation 

property of Heyting pretoposes. In fact this property plays a key role in our proof 

of conceptual completeness and we will recall its statement below (4.3). 

In [14] the definition and properties of the topos of filters of a (Heyting) 

pretopos were developed in terms of ‘indexed lattice theory’ and the theory of 

internal locales in toposes. This level of sophistication undoubtedly provides a 

quick and elegant road to these results. However, in an appendix to this paper we 

give the construction rather more concretely, in terms of sites and sheaves. (This 

has the advantage of making more explicit the connection that exists between the 

topos of filters and Makkai’s ‘topos of types’ [ll].) We shall now state the 

properties of the construction that we need, referring the reader to the appendix 

for proofs: 

4.1. The topos of filters. If X is a small Heyting pretopos, its topos of filters 

Q(X) is a certain Grothendieck topos which contains X as a full sub-Heyting 

pretopos, i.e. there is a full and faithful morphism of Heyting pretoposes 

The assignment X* Q(X) is functorial in the sense that for morphisms 

9 : X+ X’ of small Heyting pretoposes, there are geometric morphisms 

satisfying: @(A!) = <a/ and @(go 9) F Q(9) 0 Q(9) (these isomorphisms satisfying 

the usual coherence conditions). It is shown in the appendix that @ has the 

following properties: 

(i) CD(~) is an open geometric morphism (see 3.2); so in particular its inverse 

image functor (@9)* is a morphism of Heyting pretoposes G(X)-= @(X1). 

(ii) 9& : 2 + G(X) is pseudonatural in X, i.e. 

commutes up to (coherent) isomorphism. 

(iii) If 9 : X+ 2’ is conservative (see 2.6), then G(9) is a surjection, i.e. 

(@$a)* is also conservative. (The converse of this is implied by (ii).) 

(iv) Suppose Y is an object of X’ and that 9a,.(Y) is a subquotient of an object 

of @(X’) which tk in the image of (!I@)*. Then Y is a subquotient in X’ of an 
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object in the image of 4. (Zn particular, if Q(9) is localic, then 4 is subcovering 

(see 2.7(ii)); the converse of this is also true.) 

4.2. Pullbacks and pushouts. Given three categories &, 9$, 5Bz and two functors 

z: 9?&+ & (i = 1, 2), by the pullback category %I X, B2, we shall mean the 

category whose objects are triples (b,, a, b2) where bj is an object of 98; and 

a : S,(b,) = 9Jb2) . IS an isomorphism in Se, and whose morphisms from (bI, a, b,) 

to (b;, a’, b;) are pairs (gi, g,) where gj: b;+ bl in ?Z$ and 

%(W - %(U 

commutes in &. Composition and identity morphism are defined from those in 93, 

and Bz in the obvious way. 

Now given two morphisms pi: X -+ pi (i = 1, 2) between (small) Heyting 

pretoposes, their pushout is a (small) Heyting pretopos X1 +x X2 together with 

Ju1, J@2 
1, 

x,- x,+,*x1 

.a, A T & (21) _ T 
%f ,a ’ % I 

and a natural isomorphism A: A,.9, = .A&, satisfying the following universal 

property: 

For any Heyting pretopos X, the functor 

is an equivalence of categories. (Recall that LOG&X, X) denotes the category 

of logos morphisms X+ X and natural isomorphisms and that this is the same as 

the category of Heyting pretopos morphisms and isomorphisms when ST’ and X 

are Heyting pretoposes.) 

In [14], the topos of filters construction (and in particular, properties 4.1(i), (ii) 

and (iii)) is used to deduce the following property of pushouts of Heyting 

pretoposes from the properties of open geometric morphisms given in Proposition 

3.3: 

4.3. Interpolation for Heytiug Pretoposes. In the pushout square (21), suppose 
that X is an object of % and that Bi w 9;(X) (i = 1, 2) are subobjects in xi with the 
property that the subobject 
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is contained in the subobject 

J&B, -J&%(X). 

Then there is a subobject A M-X in YI? with 

B, s 4,A in Sub,,(91X) and 

&A s B2 in Sub,,(9,X). 

4.4. Remarks. (i) More generally, the topos of filters construction can be applied 

to logoses and can be used to prove that pushout squares of logoses have the 

above interpolation property. Alternatively, this can be deduced from 4.3 using 

the Heyting pretopos completion of a logos and its particular properties given in 

Lemma 1.11. 

(ii) The usual interpolation theorem of IPC (for many-sorted languages) can be 

recovered as a special case of 4.3 using the classifying Heyting pretopos of a 

theory and Lemma 3.13. (See also Section 3 of [14].) This depends upon the 

following description of pushouts of Heyting pretoposes in terms of amalgamating 

theories: 

Suppose that X, Z,, & are the classifying Heyting pretoposes of theories 9, 

Y,, 9*. (By 1.7(iii), we can always find such theories.) Then as in 2.3, the 

morphisms %?e-, xj correspond to interpretations 1; : F--, .Ti. One can take for the 

pushout Z?,+, & the classifying Heyting pretopos of the theory consisting of the 

disjoint union of the theories F,, Fz together with new function symbols for the 

graphs of the components of /; plus axioms saying that these components are 

natural and are isomorphisms. 

4.5. Proposition. Let @ be a collection of Heyting pretoposes which is sufJicient 

for small Heyting pretoposes (in the sense of 2.9) and suppose that 4 : Z.JI!+ X’ is a 
morphism of small Heyting pretoposes. 

(i) If for all YC E $I 

$*:LOG,(Z?, X)+LOG,(Zz’, .?“) 

is full, then 4 is full on subobjects. 
(ii) If for all ZK E 6, $ * is essentially surjective, then 4 is conservative. 

Proof. (i) We use the interpolation property 4.3. Form the pushout square 

To show that 9 is full on subobjects, given any object X in 9? and subobject 

B H 9(X) in 5Y’ we have to find A WX in Z with B = 4(A) in Sub,x, (9X), i.e. 
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with B < .9(A) and $(A) c B. By 4.3, it is enough to show that 

J&B M.&~(X) = &.9(X) 

is contained in J&B ++.&+9(X), i.e. that 

3L,(.M,B) s J&B in Sub,. +Ix(.M,9X). 

Since $-I is sufficient for small Heyting pretoposes, this holds if for all X E @ and 

all X E LOG&Z +x X’, x) we have 

X(3Xx(.&B)) < .NjU,B, i.e. ~JVL~(JV’.&B) s .h’“&B. 

Now .,VL is an isomorphism between 4*(N.&) and 9*(.&“.&): so by hypothesis on 

4 *, N/i = X, for some A : N.4, = NJ%,. But then by naturality of X 

commutes, and thus 3NA,(NAl, B) < JYJ&B as required. 

(ii) This is simply a consequence of @ being sufficient for small Heyting 

pretoposes. For suppose we have A WX in X with $(A -X) an isomorphism. 

to show that A WX is already an isomorphism, it is enough to show that 

.,$(A t-,X) is an isomorphism for each JV: x + 5Y with Yt E 6. But by hypothesis 

X = At4 for some At : X’ + .7C, and then &“(A x+X) is an isomorphism because 

.&?(A -X) is. 0 

4.6. Lemma. Suppose that @ is a collection of Heyting pretoposes which is 
suficient for small Heyting pretoposes, and suppose that 9 : X-+ X’ is a morphism 
of small Heyting pretoposes. For 

$*:LOG,(R’, 5Y)+LOG,(x, YE) 

to be full and faithful for all Heyting pretoposes Z, it is suficient that it be so for 
all X E $3. 

Proof. We use the following simple observation about pullbacks of functors 

between groupoids: 

Given a functor 9: 9I+ d between groupoids, forming the pullback category 

58 x, $?3 as in 4.2, consider the diagonal functor 

defined by 
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Then one has: 

9 k full and faithful iff A is an equivalence. (23) 

We apply this in the following way. Form the pushout of Heyting pretoposes 

By its 

called 

universal property (4.2), there is a Heyting pretopos morphism 

V: X’ +z X’+ af’ 

the codiagonal morphism, together with isomorphisms 

m,:VA,=9~ and m2:V&=4d 

Now for any X E 8, 9 * : LOG,( X’ , .X) + LOG&Z, X) is full and faithful. So 

by (23), the diagonal functor 

LOG,(X’, X)+LOG,(X, X) x.,,_(,,,) LOG&X’, X) 

is an equivalence. Composing this with the equivalence (22), by construction 

gives 

V* : LOG,(X’, X)+ LOG,(X’ +x X’, X) 

which is therefore also an equivalence. Therefore, by Proposition 4.5, we have 

that V is full on subobjects and conservative. Since V is split by &, it is also 

essentially surjective: hence it is both a quotient and conservative, and so by 

Lemma 2.8 is an equivalence. Consequently the diagonal functor 

LOG,( X’, X) = LOG,( X’ +H”‘, X) 

= LOG,( X’ , X) x ,_oG~~~,:~~ LOG&X , 7’) 

is an equivalence for any X. But then by (23) again, 

$*:LOG,(X’, X)+LOG,(%‘, X) 

is full and faithful, for any X. 0 
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4.7. Proposition. Suppose that @ is a collection of Heyting pretoposes which is 
sufficient for small Heyting pretoposes, and suppose that 9 : X+ X’ is a morphism 
of small Heyting pretoposes. If for all .X E 6 

$*:LOG,(%“, X)+LOG,(X, X) 

k full and faithful, then 9 in subcovering. 

Proof. Applying the topos of filters construction to 9 : X+ X’, as in 4.1 one 
obtains an open geometric morphism 

@$: @(Ye’)* CD(%) 

and a square of Heyting pretopos morphisms 

commuting up to isomorphism. With notation as in Section 3, take successive 
pullbacks in GTOP: 

(with isomorphisms n : @(.Q, = e(4)/ bl, etc.). By Proposition 3.3(i), /co, /b,, 
b,,r, p12 and bm are all open geometric morphisms, since they are obtained by 
pullback from open ones. (This is by definition for the first four: cf. (15) and (16). 
For the last, JGo2 is the first projection for the pullback of pI against itself.) 
Therefore/;:.&, and&&, are both elements of 

LOG&X’, CD%” x Dz @X’). 

Now by Lemma 4.6, 

$* : LOG,(X’, @X’ x Qx @X’) + LOG,( X, QiX’ x ax @ix’) 

is full. Thus the isomorphism 

(where @ is as in (24)) is of the form y9, for some isomorphism 
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Now again by Lemma 4.6 

4* : LOG,( %“, @%!’ x az @%!? x ex @x’) + LOG,( 2, @%” x axe @X’ x Q,x @E) 

is faithful. But on applying this functor to the diagram 

by definition of y we obtain the diagram (17) (with/= a’(J)) evaluated at 4%, 

which commutes by construction. Hence (25) also commutes. Thus for each 

object Y of X’, 

is an isomorphism satisfying the cocycle condition (18). Therefore by Proposition 

3.7, 9z(Y) is a subquotient of an object of @(%) which is in the image of 

(@$)*. But then by 4.l(iv), Y is a subquotient in %” of an object in the image of 

4. Since Y was an arbitrary object of %!I, we have that $ is subcovering, as 

required. 0 

This completes the proof of the conceptual completeness Theorem 2.11: 4.5(i) 

and 4.7 together give 2.11(i), and then 2.11(ii) follows by 4.5(ii) (and 2.8). 

We noted in Remark 2.12(ii) that when $ is subcovering, the functors $* 

(restricting models along 9) are always faithful. It is natural to wonder whether 

the converse of this holds, i.e. whether the word ‘full’ can be dropped from the 

hypothesis of Proposition 4.7. For pretoposes (i.e. for the =, A, v, 3 fragment of 

first order logic) the equivalent proposition does hold: a morphism of pretoposes 

is subcovering if the induced functor on models is faithful (see [15, Proposition 

2.91 and [lo, Theorem 7.1.61). Nevertheless, the corresponding statement for 

Heyting pretoposes fails. We present an example, due to Makkai, which shows 

this: 

4.8. Example. We will define an interpretation I: T+ 3’ between two theories 

in IPC with the following properties: 

(a) For every Heyting pretopos X 

Z* : Mod& .V, x) - Mod,( 3, X) 

is a faithful functor. 

(b) The morphism 1: aip( 3) + x(3’) between classifying Heyting pretoposes 

corresponding to I, is not subcovering. 

9 is the theory with a single sort symbol X, no function and relation symbols 

and no axioms. 
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5’ is the theory with two sort symbols X, S together with a binary relation 

symbol E HX X S satisfying the axiom 

Vs, s’ E S [s = s’ *Vx E X (E(x, s) ++ E(x, s’))]. (26) 

Evidently models of .Y in a Heyting pretopos correspond to the selection of an 

arbitrary object. Then the interpretation I : 3 ---$ .T’ is to be given by the model of 

!F in x(5’) which selects the object corresponding to the sort symbol X of Y’. 

Proof of (a). Suppose that f, g : M = iV are isomorphisms of Y-models in a 

Heyting pretopos 5Y satisfying Z*(f) = Z*(g), i.e. with fx = g,. Thus we have to 

show also that fs = g, to deduce that f = g. But (phrasing the argument in Yt in 

informal language), if y E NX, s E MS and NE(y, &(s)), then since & is an 

isomorphism there is x E MX with &(x) = y : hence NE(f,(x), &(s)) and there- 

fore ME@, s) (since f is an isomorphism). Thus we also have NE(g&), gs(s)) 

(since g is a homomorphism) and hence NE(y, g,(s)), since y = fx(n) = g,(x). 

We have therefore shown that 

VY E AX [WY, MS))+- WY, g.&))l 

holds in X, and the converse implication holds by a similar argument. Then 

because N satisfies (26), we have 

Vs E NY [b(s) = s&)lt 

so that fs = g, and thus f = g. 

Proof of(b). If 1: X(Y)+ X(5’) were subcovering, then for any model M of Y’ 

in the category of sets, MS would have to be a subquotient of a finite coproduct 

of finite powers of MX (cf. l.l3(ii)). H ence MS would be countable if MX were. 

But there is a model of Y’ with MX the set of natural numbers, MS the powerset 

of MX and E the membership relation. 

Appendix: the topos of filters construction 

The construction will be given in terms of sites and sheaves. The reader is 

referred to Chapter 1 of [lo] and to Makkai’s ‘categories for the working logician’ 

(Part 2 of [12]) for background information. See also [ll]. 

Although we are here concerned with applying the topos of filters construction 

to theories in full first-order intuitionistic logic (via their classifying Heyting 

pretoposes), initially it is best described at the level of the =, v , A, 3 fragment 

of first order logic. Because of its initimate connections with Grothendieck’s 

theory of coherent toposes (cf. [6, Section 7.3]), this fragment has been called 

coherent logic. In Section 1 we outlined the correspondence between theories in 

full first-order IPC and logoses. In exactly the same way, theories in coherent 
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logic correspond to a variety of category termed ‘logical’ in [lo] but now 

commonly called ‘coherent’. 

A.l. Definition. A category % is called coherent if it has finite limits, finite joins 

of subobjects which are preserved under pullbacks, and has existential quantifica- 

tion of subobjects along morphisms, satisfying the Beck-Chavalley condition (see 

l.l(iii) and (iv)). Given two such categories % and 9, a functor 9: %+ 9 is a 

morphism of coherent categories if it preserves finite limits, finite joins of 

subobjects and existential quantification of subobjects along morphisms (cf. 1.5). 

Thus a logos is a coherent category which also has universal quantification of 

subobjects along morphisms. 

A.2. Notation. We shall be using some properties of filters and ideals in 

distributive lattices, and begin by fixing the notation. (The particular properties 

we want are developed in detail in [13].) 

(i) We shall only consider distributive lattices D with greatest and least 

elements: thus in addition to binary meets (A) and binary joints (v), D has the 

empty meet (T) and the empty join (I). Similarly, a morphism of distributive 

lattices will mean a map preserving T and I as well as A and v. 

(ii) AJilter 6 o n a distributive lattice D is a subset of D which is upward closed 

(d’ad~b+d’~6) and closed under finite meets (T~h;d,d’~b=$d~d’~ 
6). 3(D) will denote the collection of filters on D partially ordered by reverse 

inclusion: 6 6 6’~6’ E 6. Thus g(D) is again a distributive lattice with 

T = IT], 6 A 6’ = {d A d’ 1 d E 6 and d’ E S’}, 

I=D and 6v6’={dId~6andd~6’}. 

A morphism 4 : D+ D’ of distributive lattices induces a distributive lattice 

morphism g( 4) : G(D) ---, R( D ‘) where 

B($)(6) = {d’ E D’ 1 3d E 6 #(d) s d’}. 

Note that s(#) has a left adjoint #-’ : g(D’)+ g(D), given by 

@-‘(6’) = {d E D 1 f(d) E S’}. 

(iii) Replacing D by its opposite D Op in (ii), dually one obtains the notion of an 

ideal on D. The distributive lattice of ideals of D partially ordered by inclusion, 

will be denoted S(D). (Thus 3(D) = (~(D”p))“p). As above, @ : D+ D’ induces 

2($):3(D)-+L3(D’) which this time has a right adjoint, +-‘. 

A.3. Definition. Let Ce be a coherent category. 

(i) The category of filters of %, denoted A%?, is defined as follows: 

The objects of A% are pairs (X, E) where X is an object of % and 5 is a filter on 

the distributive lattice of subobjects of X in Ce, Sub%(X). 
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Given objects (X, f) and (Y, q) of A%, consider the partial maps in % from X 

to Y: 
f 

D(f) -Y 

I 
X 

Call such an f ‘admissible’ if for all B E r,r, f-‘B w D(f) w X is in E. There is an 

equivalence relation on the collection of admissible partial maps from X to Y 

given by 

f-g iff 3AtzEwithAGD(f)AD(g)andfl,=gl,. 

(Here flA denotes the partial map 

A A D(f) - D(f) f, Y.) 

I 
X 

Then the --equivalence class [f] of an admissible partial map from X to Y 

determines a typical morphism (X, c)+ (Y, 11) in A%?. The identity morphism on 

(X, 5) is [idx]; and the composition of [f] : (X, Q+ (Y, q) and [g] : (Y, q)+ 
(Z, 5) is [g of] where g of is the partial map 

> -w f -‘D(g 

I 
D(f) 

I 
X 

)LZ 

(ii) There is a functor [-] : % ---, A% defined on objects X of % by 

[X] =(X, T) 

(where as usual, -f E ;F(Sub,(X)) d enotes the greatest element) and on 

morphisms f :X+ Y by 

[f]=(X .)=(Y, T) 

(where f is first regarded as a partial map from X to Y in the usual way). 

The following lemma collects together some easy consequences of Definition 

A.31 

A.4. Lemma. (i) If (X, 5) is an object in A% and m : A H X is a monomorphism 
in % whose corresponding subobject of X is in 5, then [ml: (A, !$I*)+ (X, E) is an 
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isomorphism in A%, where 

EIA = {B ++A 1 (B MA 6 X) E g}. 

(ii) Given finitely many maps in A% with common domain 

(X, 5)+(Y, 77J (i<n), 

by changing (X, E) up to isomorphism as in (i), we can assume that the maps are 
represented by total maps X+ Y in %. 

(iii) For any object (X, g) in A%, the unique map from X to the terminal object 
1 of % determines a map (X, E) -+ [l] in A% and it is the unique such. 

(iv) Given 

(Y, r#+ (X7 C)‘p’- (Z, 5) 

in A% with Y -& X-% Z total maps in %?, letting 

Ph‘Z 

k 
I 1 

g 

Y---,X 
f 

be a pullback square in % and x = 3(k-‘)(q) A z(h-l)(E) E B(Sub,(P)), then 

(P,n) 3 (2 6) 2 _ 

PI/ 
1 

kl 

(Y, r) - (X, E) 
[fl 

is a pullback square in A%. 
(v) For (X, E) an object of A%, id,:X-+ X represents a monomorphism 

[id,] :(X, E) w [X] in A%; Zet h,(E) d enote the corresponding subobject of [X] in 
A%‘. Then the map 

;F(Sub,(X))-+ iHSub/ve([Xl)), 
E- ~x(E> 

is an order-preserving bijection which is natural in X, in the sense that for 
f :X-+ Y and r) E R(Sub,(Y)) one has 

JL(X(f-‘)(V)) = [fl-‘(Mr>) in Sub,,([X]). 

(4 Tf (X, E) . IS an object of A%, then composition with the monomorphism 

[id,]: (X, 5) w [Xl d tn uces a (necessarily) injective map 

Sub&X, 5) w Subm[Xl. 
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The image of this map corresponds under the bijection mentioned in (v) with the 

subset 

I(g) = (5’ E Wub,(X)) ( E’s El 

of g(Sub,(X)). Thus there is an isomorphism of partially ordered sets 

Sub,,z(X, 5) = &). 

Moreover, if [f] : (X, c$) + (Y, q) ti a map in A% with f :X-, Y a total map in %:, 

then 

[f]-’ : Sub,&‘, q)-+ Sub,dX 5) 

is identified under the above isomorphisms with the map 

I(r)+ I(‘% 

rl’ H 5 A S(f -WI’). 

Using the above lemma, one can deduce the following properties of 

[-I: %+A%: 

AS. Proposition. Let Ce be a (small) coherent category. 

(i) Its category of filters A% is a (small) coherent category in which any 
collection of subobjects of an object has a meet. 

(ii) The functor [-] : %+- A% is full and faithful and a morphism of coherent 

categories. 
(iii) Every object of A% is a subobject of one in the image of [-I. 

(iv) For each object X of %, every subobject of [X] in A% is a meet of 
subobjects in the image of [-1; moreover, the map 

@Sub,(X))-+ Subm([Xlh 
5-/\WlbE) 

is a bijection. 

We now extend the definition of A to morphisms of coherent categories: 

A.& Definition. Let 9: % -+ 9 be a morphism of coherent categories. For 

(X, 5) an object of A%, let S(g) E B(Sub,(%X)) be the filter 

~(~)={B~~X(~AE~~A~B}. 

Now define a functor AS: A% + A9 on objects (X, E) by 

As(X, E) = (9X, s(E)) 

and on morphisms [f ] : (X, 5) ---f (Y, v) by 

As[f] = [Sf]. 
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(One checks easily that 9f is admissible when f is, and that if f-f’ then 

Sf - %f ‘.) 

A.7. Proposition. Let 9: Ce + 9 be a morphism of coherent categories. 

(i) As: A%* A9 is also a morphism of coherent categories and preserues 
arbitrary meets of subobjects. 

(ii) 91 k commutes. 

9 I-1_ A9 

(iii) A(&) = .Mand A(970 9) = A‘SoA9. 

Proof. (i) That A preserves the terminal object and pullbacks follows from the 

fact that 9 does together with Lemma A.4. Under the isomorphisms of A.4(vi) 

A.9 : Sub,,(X, 5) + Sub,& 3X, 9( 5_)) 

is identified with the map 

I(E)+ ME), 

6’ I+ 9( E’). 

From this it follows that A9 preserves finite joins and existential quantification of 

subobjects. 

(ii) and (iii) are easy consequences of Definition A.6. 0 

We next recall the definition and some properties of the classifying topos of a 

small coherent category: 

A.8. Coherent toposes. Let % be a small coherent category. A family of maps 

($:Xi-+X) i El) in (e. 1s called finite epimorphic if I is a finite set and 

in Sub,(X). This property of families is preserved under pullback and the 

Grothendieck topology generated by such families is called the precanonical 
topology on (e. The classifying topos of V, Z(%‘), is the category of sheaves on +2 

for this topology. 

Representable presheaves are sheaves for the precanonical topology: so the 

Yoneda embedding V C, [%?‘p, Set] restricts to a full and faithful functor 9% : %+= 

S(Ce) which is a morphism of coherent categories. (‘8(V) being a (Grothendieck) 

topos, it is in particular a coherent category.) 

%5’(q) is in fact the reflection of (e into the bicategory of Grothendieck toposes, 



76 A.M. Pitti 

in the sense that 3% : % += if?(%) has the following universal property: 

For each Grothendieck topos 9, the functor 

??&:GTOP(3, ‘%(%))-+COH(%, 9) 

gives an equivalence between the categories GTOP(S, 8(q)) of geometric 

morphisms 9+- a(‘%) and the category COH( Fe, S) of morphisms of coherent 

categories %+ %. In particular, it follows that the assignment 

extends to a homomorphism of bicategories COHoP-+ GTOP and that ?& ; % 4 

iY( %‘) is pseudonatural in (e. 

We shall need the following particular properties of the classifying topos of a 

small coherent category: 

(i) The topos k%(q) is generated by the objects in the image of 9& : Ce 9 S(Y). 

Thus every object of %(%e) is the codomain of an epimorphism from a small 
coproduct of such objects. 

(ii) For X an object of %, the map 

%Sub,(X))+ Subq,,(%X), 

U+-+ v {3%(A) 1 A E u> 

is an order-preserving bijection. 
(iii) Zf 9: %e-, 9 is a morphism of small coherent categories and 

8( 9) : i?(9) + %( %) the induced geometric morphism between classifying toposes, 
then the inverse image functor 8( 9)* : 8( %) + 8( ‘3) gives a map 

‘@9)*:Sub,&%X) + Sub&%‘(S)* 9eX) = Sub8(3n)( ?!& (9X)) 

for each object X in %. Under the bijections mentioned in (ii), this map is identified 

with the map 

3(Sub,(X))+ 3(Sub,(%X)) 

sending an ideal U to the ideal 

~(U)={B~~XI~AEL~B~~A}. 

We are now in a position to give the definition of the topos of filters 

construction: 

A.9. Definition. Let Ce be a small coherent category. The topos of filters of 55, 

denoted a(U), is defined to be the classifying topos of the coherent category of 

filters of %: 

@( %) = %(A%). 



Conceptual completeness for first-order intuitionistic logic 77 

If 9: %+ 9 is a morphism of small coherent categories, then G(9) : @i(9) + 

@(Vi’) is the geometric morphism 

@(9) = qn3). 

Composing [-] : VA? + A% with 9,,, : A% - %‘(A%‘), one gets 

9, : %?-+ @(%) 

a full and faithful morphism of coherent categories. 

The functorial properties of A and 8 combine to give that @ is a homomorph- 

ism of bicategories COH”P+ GTOP and that 9% is pseudonatural in %?. 

Moreover, combining AS, A.7 and A.8, we have: 

A.lO. Proposition. Let 9: % -+ 9 be a morphism of small coherent categories. 
(i) Every object X of @( %) if the subquotient of a small coproduct of objects in 

the image of 4% : % 4 @( %). 
(ii) For each object X of 557, the map 

&W&(X))+ Sub,C,,(&X) 

sending an ideal I/ of filters of Sub%(X) to the subobject 

is a lattice isomorphism. In particular, every subobject of 9,(X) is expressible as a 
join of meets of subobjects in the image of 9,. Note also that given A WX in %, 
9, (A) H 4% (X) corresponds to the principal ideal 

J(T(A)) = {a E X S%(X) 1 A E a>- 

(iii) The inverse image part of the geometric morphism CD(@) : Q(9)+ @( %) 

gives, for each object X of %, a map 

(@9)* :Sub,,(&X)+Sub,,(@(S)*&X) = Sub,,(.$&(?FX)), 

which under the isomorphisms of (ii) is identified with the map 

$;F(Sub,(X))+ 33(Sub,(sX)) 

sending an ideal U of filters to the ideal 

J%(S)(U) = {p E 3 Sub9(9X) ( 3a E U VA E a %(A) E /3}. 

A.ll. Corollary. (i) If 9: %‘+ 9 is a conservative morphism of small coherent 
categories, then G(9) : Q(9)+ @( %) is a surjective geometric morphism. 

(ii) Suppose that 9: % + 9 is a morphism of small coherent categories and that 
% has finite disjoint coproducts (cf. 1.8(i)). If Y is an object of 9 and 9,(Y) is a 
subquotient in G(9) of an object in the image of G(9)*, then Y is a subquotient in 
9 of an object in the image of 9. 
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Proof. (i) By A.lO(i), ‘t 1 is sufficient to prove that for each object X of %, the 

map 

a(9)* : Sub,&&X)+ Sub,,(@(9)*.9,X) = Sub&L&(5FX)) 

is a monomorphism; and then by A.lO(iii), for this it is sufficient to prove that the 

map 

3g(9):3S(Sub,(X))+F@(Sub,(9X)) 

is a monomorphism. But the functors 3 and 3 (as defined in A.2) preserve 

distributive lattice monomorphisms and by hypothesis 

9: Sub%(X)-+ Subs(9X) 

is one. 

(ii) By A.lO(i) ( an d using the fact that @i(S)*& = 9,9), we may assume that 

&(Y) is a subquotient of the (disjoint) coproduct of objects (9,(9Xi) 1 i E I) 

where I is a set and the Xi are objects of ‘35’: 

.--o&(Y) 

I (27) 

u 9,(9X;). 
iel 

Now by A.lO(ii), the lattice of subobjects of 9,(Y) is isomorphic to the lattice of 

ideals of a distributive lattice (namely 3 sub,(Y)), and hence in particular is 

compact: i.e. if the greatest element of the lattice is equal to the join of a 

collection of elements, then it is equal to the join of a fifinite subcollection of those 

elements. It follows that in (27) we can take I to be a finite set. Then since 9 and 

9& (being morphisms of coherent categories) preserve finite disjoint coproducts 

and since ‘% is assumed to have them, 9,(Y) is a subquotient of a single object of 

the form 9, (9X): 

By A. lO(ii) 

for some U E 3g(Sub9(9X x Y)). Then since B satisfies 

t-3x E &9X B(x, y) (y E 9,Y) 

in G(9), using the (natural) isomorphisms of A.lO(ii), we have that U satisfies 

,“~$@JQ)(U) = T in Dg(Sub,(Y)); 
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and hence there is (Y E U with 

3q(A) = T, for all A E (Y. 

But B also satisfies 

and hence (Y satisfies 

%((~d~, G-% A N(JG, J&‘)~~ W(id x A))(T) 

in 3 SubD(9X x Y x Y) (where the zi are the projections from 5X X Y X Y and 

A : Y+ Y x Y is the diagonal). Since 

3(3(id x A))(T) = T(3id x A(T)) 

is a principal filter, it follows that there is A E (Y with 

(JG~, q-‘A A (JG~, n,)-‘A s 3(id x A)T 

in Sub9(9X x Y X Y). By choice of (Y, A also satisfies 

&c,(A) = T 

in Sub,(Y). Thus A presents Y as a subquotient of 9X in 9: 

A4Y 

& 

9X 

as required. Cl 

We have now demonstrated all the properties of the topos of filters construc- 

tion mentioned in 4.1 except for 4.1(i) and the fact that 9, is a logos morphism 

when %’ is a logos. Again, these are actually corollaries of Proposition A.lO: 

A.12. Corollary. (i) If % is a logos, then 9% : (e 4 @(%) is a logos morphism. 
(ii) Zf 9: (e+ 9 is a morphism of logoses, then a(S) : Q(9)+ @(%) is 

open geometric morphism. 

Proof. (i) Given f :X + Y in (e, since @(%) is a topos, the map 

(9~f)-1:Sub~&9ieY)+Sub~&9VX) 

an 

has both left and right adjoints and so preserves all meets and joins. It follows 

that under the isomorphisms of A.lO(ii), this map is identified with the map 

$3 Sub&Y)-, 33 Sub&X) 

sending an ideal V of filters to the ideal 

Sg(f -l)(V) = {(Y E 8 Sub,(X) I3/3 E V VB E j? f -‘B E (Y} 
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Since f-’ : Sub%(Y)-+ Sub%(X) itself has a right adjoint Vf, then the right adjoint 

to (9, f )-’ can be described as sending an ideal U of filters to 

98(Vf)(U) = (6 E 9Sub%(Y) 13~~ E CJ Va E (Y VfA E p}. 

Note that this map sends the principal ideal ~(T(A)) to the principal ideal 

J(T(VfA)): by A.lO(ii), these principal ideals correspond to 9,(A) and &(VfA) 

respectively. Therefore 

&(VfA) = V(&f )(J%A)> 

i.e. 4% preserves universal quantification. It is thus a logos morphism. In fact 

there is a more fundamental reason why this is so. 9% is the composition of 

[-] : V+ A(%) with YAW :A(%)+ %(A%) = @(%); and in the general (coherent) 

case, these functors actually preserve any universal quantifications which happen 

to exist. (But in general A(%) is not itself a logos when % is.) 

(ii) For each object X in %’ 

4: Sub%(X)+ Sub9(5X) 

is a morphism of Heyting algebras. It follows (cf. [13] Proposition 2.2) that 

CQ(S):~~ SubWe( 33 Sub,(%X) 

has a left adjoint satisfying Frobenius reciprocity (see 3.2); moreover, since 9 

preserves universal quantification, these left adjoints are natural in X. Therefore 

by A.lO(iii), 

(@i9)* : Sub,,(Z)-+ Sub@g((@S)*Z) 

has a left adjoint satisfying Frobenius reciprocity when Z is in the image if 9,; 

and moreover, these left adjoints are natural for maps in the image of 9%. But 

then by A.lO(i), these properties extend to all objects and maps of a(%): hence 

@9 is open. 0 
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