
Computational Adequacy via

�Mixed� Inductive De�nitions

Andrew M� Pitts�

University of Cambridge Computer Laboratory�
Pembroke Street� Cambridge CB� �QG� England

Abstract� For programming languages whose denotational semantics
uses �xed points of domain constructors of mixed variance� proofs of
correspondence between operational and denotational semantics �or be�
tween two di�erent denotational semantics	 often depend upon the exis�
tence of relations speci�ed as the �xed point of non�monotonic operators

This paper describes a new approach to constructing such relations which
avoids having to delve into the detailed construction of the recursively
de�ned domains themselves
 The method is introduced by example� by
considering the proof of computational adequacy of a denotational se�
mantics for expression evaluation in a simple� untyped functional pro�
gramming language


� Introduction

It is well known that various domain constructors can be extended to act on rela�

tions on domains� For example� given binary relationsR and S on domainsD and
E� there is a binary relation R�S on the domain of continuous functionsD�E
given by� �f� g� � �R�S� if and only if for all �x� y� � R� �f�x�� g�y�� � S� The
utility of such constructions on relations can be seen in the various applica�
tions of �logical relations	 techniques in denotational semantics� pioneered by
Milne 
��� Plotkin 

�� 

� and Reynolds 

��� For applications to programming
language semantics� undoubtedly the most important domain�construction tech�
nique is that of solving recursive domain equations� In general� the body of a
domain equation may involve not only positive� but also negative occurrences of
the de�ned domain� Traditionally� the construction of the action on relations of
such a recursively de�ned domain constructor has involved delving into the quite
heavy technical machinery used to establish the existence of the domain itself�
In 
�� the author described a more elementary method of construction� inspired
by Freyd	s recent categorical analysis of recursive types 

� �� ��� It makes use of
mixed inductive�co�inductive de�nitions� Apart from this� only quite straight�
forward domain�theoretic techniques are needed�namely �xed point induction
and the fact that the identity function on a recursively de�ned domain is the

� Research supported by UK SERC grant GR�G���
�� CEC ESPRIT project CLICS�
II and CEC SCIENCE project PL������



least �xed point of a certain continuous functional canonically associated with
the domain equation�

In this paper� we illustrate the use of this new method of construction of
relations on recursively de�ned domains by example� We consider a speci�c ap�
plication where such relations are needed�namely the proof of correspondence
between the denotational and operational semantics of a functional program�
ming language� Recall that a denotational semantics is called �computationally
adequate	 for an operationally de�ned expression evaluator provided any expres�
sion evaluates to canonical form just in case its denotation is not the bottom
element of the corresponding semantic domain� This property is important since�
combined with compositionality of the denotational semantics� it implies that
observational equivalence of programming language expressions may be estab�
lished via equality of denotations� See Meyer 
�� for a discussion of this property�
Proofs of computational adequacy are non�trivial when the denotational seman�
tics of the programming language involves solving recursive domain equations
X � ��X� in which X occurs negatively �and maybe also positively� in the
domain constructor ��X�� We consider a very simple example of this � an un�
typed lambda calculus � in order not to obscure the novelty of our approach
with language�related details�

The computational adequacy property is reviewed in Sect� �� where we recall
how it can be established via the existence of a certain recursively speci�ed
relation of �formal approximation	 between domain elements and programs� Our
new method of construction of the formal approximation relation C is given in
Sect� �� The method involves three steps�

� First� the negative and positive occurrences of C in the body of its recursive
speci�cation C� ��C� are replaced by fresh variables C� and C� respec�
tively� This results in a new operator ��C��C�� which is monotonic in C��
anti�monotonic in C�� and from which the original operator � can be ob�
tained by diagonalizing� �This separation of variables is a key feature of
Freyd	s recent analysis of recursive types��

� Secondly� the new operator � is used to give simultaneous inductive de�ni�
tions of positive and negative versions of the formal approximation relation�

� Lastly� these positive and negative versions are proved equal� and so by con�
struction constitute the required relation� The proof of equality is a simple
�xed point induction argument� It makes use of a key property of recur�
sively de�ned domains� namely that they are �minimal invariants	 for their
associated domain constructor� see De�nition ��

Finally in Sect� � we indicate an important aspect of the above method of con�
struction� namely that it not only produces a suitable relation� but also charac�
terizes it via a �universal property	 �in the category�theoretic sense�� It is this
universal property which gives rise to the reasoning principles established in

�� ���



� Computational adequacy

In this section we review the standard approach to proving computational ad�
equacy� using a very simple untyped functional programming language L to
illustrate what is involved� L is an untyped version of Plotkin	s call�by�name
PCF 

��� Its expressions are given by�

M ��� x variables
j n numerals
j suc�M� successor
j pred�M� predecessor
j if M � � then M else M conditional
j �x�M function abstraction
j MM function application

where x runs over a �xed� in�nite set of variables� and n runs over the set of
integers� Z� Function abstraction is the only variable�binding construct �occur�
rences of x in M are bound in �x�M�� We denote by M 
M ��x� the result of
substituting an expression M � for all free occurrences of x in M �subject to the
usual conventions about renaming bound variables if necessary to avoid variable
capture��

Let Prog ��programs	� denote the collection of closed expressions in L� i�e�
those with no free variables� We denote by Val ��values	� the subset of Prog

consisting of all canonical forms� which here means all closed expressions that
are either numerals n or function abstractions �x�M � An operational semantics
for L can be given via an evaluation relation

P � V �P � Prog� V � Val�

which is the subset of Prog � Val inductively de�ned by the rules in Table 
�
The last rule embodies the non�strict� or �call�by�name	 scheme for evaluating
function applications�

Table �� Rules for evaluating programs in L


V � V

P � n

suc�P 	 � n� �

P � n� �

pred�P 	 � n

P � � Q � V

�if P � � then Q else R	 � V

P � n R � V
�n �� �	

�if P � � then Q else R	 � V

P � �x�M M �Q�x� � V

PQ � V



Denotational semantics for expressions in L can be given using a solution to
the domain equation

D �� �Z� �D�D��� � �
�

Here we can take �domain	 to mean a partially ordered set with a least element �
and possessing least upper bounds

F
i�� di of all countable chains d� v d� v � � ��

The domain on the right�hand side of �
� is the lift of the disjoint union of the
set of integers Z �discretely ordered� with the domain of continuous functions
D�D �ordered pointwise�� Thus a domain D is a solution to �
� if it comes
equipped with continuous functions

num � Z�� D

fun � �D�D� �� D

which combine to give an order isomorphism between the disjoint union Z�
�D�D� and fd � D j d 	� �g� Given such a D� one can assign to each L�
expression M and each environment 	 �a �nite partial function from the set of
variables to D� whose domain of de�nition contains the free variables of M � an
element



M ��	 � D �

The de�nition of 

M ��	 is by induction on the structure of M and is quite stan�
dard� for the record� we give the clauses of the de�nition in Table �� The clause
for �x�M uses the notation 	
x 
� d� to indicate the environment mapping x to
d and otherwise acting like 	�

If an environment 	� extends 	� then 

M ��	� � 

M ��	� In particular for pro�
grams P � Prog� i�e� for closed expressions� 

P ��	 is an element of D which is
independent of 	� and which we write simply as 

P ��� The following property can
be established by induction on the derivation of the evaluation P � V �

Proposition � �Soundness�� If P � V then 

P �� � 

V ���

Of course one cannot expect the converse of this soundness property to
hold� since function abstractions are canonical forms whether or not the body
of the abstraction is fully evaluated� For example 

�x�suc����� � 

�x�
��� but
�x�suc��� � �x�
 does not hold� However� if 

P �� � 

V ��� then since �from Ta�
ble �� the denotations of canonical forms are non�bottom elements of D� one
at least has that 

P �� 	� �� D is called computationally adequate if for all pro�
grams P � 

P �� 	� � holds �if and� only if P � V holds for some canonical form
V � The point of this property is that it permits observational equivalence of
L�expressions to be established via equality of denotations� see Meyer 
���

Whilst the soundness property of Proposition 
 holds for any domainD which
is a solution for the domain equation �
�� computational adequacy only holds ifD
is a suitably minimal solution� One way of expressing this minimality� essentially
due to D� Scott� is as follows�



Table �� Denotations of L�expressions


��x��� � ��x	

��n��� � num�n	

��suc�M	��� �

�
num�n� �	 if ��M ��� � num�n	
� otherwise

��pred�M	��� �

�
num�n� �	 if ��M ��� � num�n	
� otherwise

��if M � � then M � else M ����� �

�
��M ���� if ��M ��� � num��	
��M ����� if ��M ��� � num�n	 and n �� �
� otherwise

���x�M ��� � fun��d � D���M ����x �� d�	

��MM ���� �

�
f���M ����	 if ��M ��� � fun�f	
� otherwise

De�nition � �Minimal invariant property�� Let ����
def
� �Z�����������

An invariant for � is a domain D equipped with an order isomorphism i � D ��
��D�� Such an invariant is minimal if the identity function idD � �D�D� is the
least �xed point of the continuous function 
� � �D�D� �� �D�D� which
maps e � �D�D� to i����e�i� Here ��e� � ��D� �� ��D� is the function
which is the identity on � and integers� and acts on functions by pre� and post�
composing with e� Thus if the isomorphism i is described in terms of functions
num � Z�� D and fun � �D�D� �� D as above� then


��e��d� �

��
�
num�n� if d � num�n�
fun�e � f � e� if d � fun�f�
� if d � �

���

for all e � �D�D� and all d � D�

Theorem� �Computational Adequacy�� If �D� i� is a minimal invariant

for �Z � ���������� then the denotational semantics of L in D is compu�

tationally adequate� i�e� for all P � Prog

�V �P � V �
 

P �� 	� � �

The statement of this theorem appears more general than corresponding re�
sults in the literature� which refer to the computational adequacy of a particular
domain� However it is not really so general� since one can show that



� the minimal invariant property characterizes solutions to domain equations
uniquely up to isomorphism� and

� the solutions to domain equations D �� ��D� �for a wide class of domain
constructors ����� constructed via any of the several methods available in
the literature �such as via colimits of embedding�projection pairs� see 
��
Sect� 
��
�� or via Scott	s �information systems	� see 

�� Chap� 
��� yield
minimal invariants� Indeed� the minimal invariant property amounts to the
fact� familiar from the �local	 characterization of colimits of chains of embed�
dings 

�� Theorem ��� that any element d of a recursively de�ned domain
recX���X� can be expressed as the least upper bound of a chain of projec�
tions of the element�

d �
G
i��

�i�d�� where

�
���d� � �

�i���d� � 
���i��d� �

However� it seems a step forward to have an abstract criterion on solutions of
domain equations that su�ces for computational adequacy� Moreover� the key
construction needed in the new proof of Theorem � which we give in the next
section� relies directly upon the minimal invariant property of D rather than
upon any particular concrete construction of the domain�

The classical method for proving Theorem � is an adaptation by Milne 
��
and Plotkin 

�� 

� of Tait	s use of �computability	 predicates in normalization
proofs� It relies upon the construction of a binary relation between domain ele�
ments and programs with the following properties�

De�nition 	� Let D be a solution to �
�� A formal approximation relation is a
binary relation C � D � Prog satisfying�


� For all d � D and P � Prog� d C P if and only if
either d � ��
or d � num�n� for some n such that P � n�
or d � fun�f� and P � �x�M for some f and �x�M such that for all d�� P ��

if d� C P � then f�d�� CM 
P ��x��
�� If d� v d� v d� v � � � is a chain in D with di C P for all i� then

F
i�� di C P �

Given such a formal approximation relation� for any expressionM � any envi�
ronment 	 whose domain of de�nition dom�	� � fx�� � � � � xng contains the free
variables in M � and any programs P�� � � � � Pn� it is easy to prove by induction
on the structure of M that

	�x�� C P� � � � � � 	�xn� C Pn � 

M ��	 CM 
P��x�� � � � � Pn�xn� �

In particular� in case n � � we obtain for all programs P that



P �� C P �

Hence if 

P �� 	� �� then by the properties of C in part 
 of De�nition �� it follows
that P � V for some V � as required for computational adequacy�

Therefore� to complete the proof of Theorem � we need to demonstrate that
when D is a minimal invariant for �Z� ���������� there exists a relation C
as in De�nition ��



� A new construction of the relation C

Let us begin by pointing out why the existence of a relation C as in De�nition �
is problematic� One can formulate the problem as one of solving a certain �xed
point equation� Let Rel be the set of all binary relations R � D � Prog which
contain f�g�Prog and which satisfy condition � of De�nition �� In other words
a binary relation R is in Rel if and only if for each P � Prog� fd j �d� P � � Rg
is an admissible subset of the domain D� i�e� chain�complete and containing ��
De�ne an operation � � Rel �� Rel by�

��R�
def
� f�d� P � j d � �� �n�d � num�n� � P � n� �

�f� �x�M�d � fun�f� � P � �x�M �

��d�� P �� � R��f�d���M 
P ��x�� � R�g �

Then a formal approximation relation is precisely an element C � Rel satisfying
C � ��C�� It is easy to see that Rel is closed under taking intersections of
binary relations� and hence it is a complete lattice when ordered by inclusion�
�� However� � is not a monotonic operation for � �since the de�nition of ��R�
contains a negative as well as a positive occurrence of R�� so we cannot appeal
to the familiar Tarski �xed point theorem to construct a �xed point for ��

In the literature� two methods can be found for constructing relations on
recursively de�ned domains with certain non�monotonic �xed point properties�
One method� due to Milne� Plotkin and Reynolds� makes use of Scott	s con�
struction of a recursively de�ned domain D �� ��D� as the colimit of a chain of
embedding�projections D� �� D� �� � � �� where the domain Dn is obtained by
iterating the domain constructor ���� n times� starting with the trivial domain
f�g� Then C can be constructed as an inverse limit of relations Cn � Dn�Prog

built up by iterating an appropriate action of ���� on relations� see 

���

A second method� essentially due to Martin�L�of� applies only to Scott do�
mains �precluding the use of constructors like the Plotkin powerdomain� and
makes use of their presentation in terms of �information systems	 

��� This
method hinges upon the fact that for each program P � fd j d C Pg is in fact a
Scott�closed subset of D� Hence it su�ces to construct the relation C only for
compact elements of D� since d C P holds if and only if a C P holds for all com�
pact a with a v d� Information systems provide a formal language for compact
elements of �recursively de�ned� Scott domains� and a C P �a compact� can be
de�ned by a well�founded induction on the size of �a formal representation of�
a� See 

�� Sect� 
�����

Here we present a third method� which is more abstract than the above two
in that it relies upon the �minimal invariant	 property of De�nition � rather
than either of the techniques for giving concrete constructions of recursively
de�ned domains mentioned above� To begin with� following Freyd	s recent work
on recursive types 

� �� ��� we separate the positive and negative occurrences of
R in the de�nition of ��R�� Thus given two relations R�� R� � Rel� de�ne�



��R�� R��
def
� f�d� P � j d � �� �n�d � num�n� � P � n� �

�f� �x�M�d � fun�f� � P � �x�M �

��d�� P �� � R���f�d���M 
P ��x�� � R��g �

Clearly � determines a monotonic function

� � Relop �Rel �� Rel

where Rel is partially ordered via � and where Relop has the opposite ordering�
Furthermore� � can be recovered from � by diagonalizing�

��R� � ��R�R� � ���

We remarked above that Rel is a complete lattice� with in�ma given by set�
theoretic intersection� Hence Relop�Rel is also a complete lattice� We obtain a
monotonic operator

�x � Relop �Rel �� Relop �Rel

on this complete lattice by �symmetrizing	 ��

�x�R�� R��
def
� ���R�� R��� ��R�� R��� �

Now we can apply Tarski	s �xed point theorem to obtain the least �xed point
of �x� which we will denote by �C��C��� Thus C� and C� are given by simul�
taneous� inductive de�nitions� Using the fact that in�ma in Rel are given by
intersection� together with the de�nition of �x� these relations can be described
explicitly as follows�

C
� def

�
�
fR� � Rel j �R� � Rel�R� � ��R�� R�� � ��R�� R�� � R��g

C
� def

�
�
fS � Rel j �R�� R� � Rel�

�R� � ��R�� R�� � ��R�� R�� � R��R� � S�g �

All we need to know about �C��C�� is that it is the least pre��xed point of
�x� Writing out this least pre��xed point property for �x onRelop�Rel purely in
terms of � and Rel� we obtain the following characteristic properties of C��C�

which have a mixed inductive�co�inductive �avour�

Lemma
� �� C� � ��C��C�� and ��C��C�� � C��

�� For all R�� R� � Rel� if

R� � ��R�� R�� and ��R�� R�� � R�

then

R� � C� and C
� � R� �



Theorem� �Existence of C�� When D is a minimal invariant for the domain

constructor �Z� ���������� the relations C� and C� are equal� and yield a

formal approximation relation as in De�nition ��

Proof� First note that by ��� and part 
 of Lemma �� if C� � C
� then this

relation is a �xed point for the operation � and hence has the properties required
by De�nition ��

We split the equality C� � C� into two inclusions� The inclusion C� � C�

follows immediately from Lemma �� since by clause 
 we may take R� � C
�

and R� � C� in clause �� So it remains to prove that C� � C��
It is only at this point that we need the minimal invariant property of D�

Recall that it says that idD is the least �xed point of the continuous function

� � �D�D� �� �D�D� de�ned in ���� We introduce the following piece of
notation� given R�S � Rel and a continuous function e � �D�D�� write

e � R � S

to mean that for all �d� P � � R� �e�d�� P � � S� From the de�nition of 
�� it is
straightforward to verify that

e � R � S � 
��e� � ��S�R� � ��R�S� �

So taking R � C� and S � C� and using part 
 of Lemma �� we have that 
�
maps the set

fe � D�D j e � C� � C�g ���

into itself� Clearly this subset of D�D is chain�closed and contains �� because
of the admissibility condition elements of Rel satisfy� Hence by the familiar �xed
point induction principle �see 

�� Sect� 
���� for example�� idD � being the least
�xed point of 
�� lies in the subset ���� Thus idD � C� � C�� which is just to
say that C� � C�� ut

� Further development

The method of construction of C we have given in this paper can be used quite
generally to construct recursively speci�ed relations on recursively de�ned do�
mains without having to delve into the details of the construction of the domain�
Moreover� the construction applies to many di�erent notions of �relation	 on a
domain� �Here for example� a relation on D has meant a subset of D � Prog��
The construction can be phrased in terms of an abstract notion of �relational
structure	 on a category of domains and of the �action	 of domain constructors
on relations� due to O	Hearn and Tennent 
��� This general form of the construc�
tion is described in 
�� Sect� ��� That paper treats the case of unary relational
structures� but the method generalizes easily to n�ary relations� For example�
we believe that the recursively speci�ed relation between two recursively de�ned
domains employed by Reynolds to relate a direct and a continuation semantics



of an untyped functional language in 

�� can be constructed by applying our
method to a suitable binary relational structure�

As pointed out in 
��� the method of construction not only provides a simpler
construction of certain relations� but also characterizes these relations uniquely
via a �universal property	� For instance� by virtue of Lemma � �and the fact that
C
��C�C��� the formal approximation relation C is a �mixed	 �xed point in

the sense of the following de�nition�

De�nition � �Mixed �xed point�� Let �R��� be a partially ordered set and
let � � Rop �R �� R be a monotonic function� Then M � R is a mixed �xed

point for � if
M � ��M�M� ���

and
�R�S � R�R � ��S�R� � ��R�S� � S�R �M � S� � ���

Note that the mixed �xed point of � is unique if it exists� Indeed� if R � R
satis�es R � ��R�R�� then ��� implies that R �M � R� i�e� R �M �

It is not hard to see that conditions ��� and ��� are equivalent to saying that
�M�M� is the least pre��xed point of the monotonic operator

�R�S� 
� ���S�R�� ��R�S��

on Rop � R� or to saying that �M�M� is the greatest post��xed point of that
operator� In fact De�nition � is the special case for monotonic functions of the
condition on functors of mixed variance formulated by Freyd in his work on
�algebraically compact	 categories 
�� ��� One can summarize the results in 
��
Sect� �� as establishing that the algebraic compactness property of the category
of domains and strict continuous functions is inherited by categories of �domains
equipped with relations	 �for a very general notion of relation�� As the rest of
that paper demonstrates� from the mixed �xed point property of recursively de�
�ned relations it is possible to derive a number of induction and co�induction 
��
principles for reasoning about the properties of recursively de�ned domains�

References

�
 P
 J
 Freyd
 Recursive Types Reduced to Inductive Types
 In Proc� �th Annual

Symp� on Logic in Computer Science� Philadelphia� ���� �IEEE Computer Society
Press� Washington� ����	� pp �������


�
 P
 J
 Freyd
 Algebraically Complete Categories
 In A
 Carboni et al �eds	� Proc�
���� Como Category Theory Conference� Lecture Notes in Math
 Vol
 ����
�Springer�Verlag� Berlin� ����	� pp ������


�
 P
 J
 Freyd
 Remarks on algebraically compact categories
 In M
 P
 Fourman�
P
 T
 Johnstone and A
 M
 Pitts �eds	� Applications of Categories in Computer

Science� L
M
S
 Lecture Note Series �

 �Cambridge University Press� ����	�
pp ������


�
 C
 A
 Gunter
 Semantics of Programming Languages� Structures and Techniques�

�MIT Press� ����
	



�
 A
 R
 Meyer
 Semantical Paradigms� Notes for an Invited Lecture
 In Proc� �rd

Annual Symp� on Logic in Computer Science� Edinburgh� ��		 �IEEE Computer
Society Press� Washington� ����	� pp �������


�
 R
 E
 Milne
 The formal semantics of computer languages and their implementa


tions� Ph
D
 Thesis� Univ
 Cambridge� ��
�



 P
 W
 O�Hearn and R
 D
 Tennent
 Relational Parametricity and Local Variables


In Conf� Record ��th Symp� on Principles of Programming Languages� Charleston�

���� �ACM� New York� ����	� pp �
�����

�
 A
 M
 Pitts
 A Co�induction Principle for Recursively De�ned Domains� Theo


retical Computer Science� to appear
 �Available as Univ
 Cambridge Computer
Laboratory Tech
 Rept
 No
 ���� April ����
	

�
 A
 M
 Pitts
 Relational Properties of Recursively De�ned Domains
 In� Proc� 	th
Annual Symp� on Logic in Computer Science� Montr�eal� ���� �IEEE Computer
Soc
 Press� Washington� ����	� pp ����



��
 G
 D
 Plotkin
 LCF Considered as a Programming Language� Theoretical Com


puter Science ����

	 �������

��
 G
 D
 Plotkin
 Lectures on Predomains and Partial Functions
 Notes for a course

at CSLI� Stanford University� ����

��
 J
 C
 Reynolds
 On the Relation between Direct and Continuation Semantics
 In

J
 Loeckx �ed
	� �nd Int� Colloq� on Automata� Languages and Programming� Lec�
ture Notes in Computer Science� Vol
 �� �Springer�Verlag� Berlin� ��
�	� pp ����
���


��
 D
 S
 Scott
 Domains for Denotational Semantics
 In M
 Nielsen and E
 M
 Schmidt
�eds	� Proc� �th Int� Coll� on Automata� Languages and Programming� Lecture
Notes in Computer Science� Vol
 ��� �Springer� Berlin� ����	� pp �

����


��
 M
 B
 Smyth and G
 D
 Plotkin
 The Category�Theoretic Solution of Recursive
Domain Equations� SIAM J� Computing �������	 
���
��


��
 G
 Winskel
 The Formal Semantics of Programming Languages� An Introduction�

�MIT Press� ����
	

This article was processed using the LaTEX macro package with LLNCS style


