Computational Adequacy via
‘Mixed’ Inductive Definitions

Andrew M. Pitts*

University of Cambridge Computer Laboratory,
Pembroke Street, Cambridge CB2 3QG, England

Abstract. For programming languages whose denotational semantics
uses fixed points of domain constructors of mixed variance, proofs of
correspondence between operational and denotational semantics (or be-
tween two different denotational semantics) often depend upon the exis-
tence of relations specified as the fixed point of non-monotonic operators.
This paper describes a new approach to constructing such relations which
avoids having to delve into the detailed construction of the recursively
defined domains themselves. The method is introduced by example, by
considering the proof of computational adequacy of a denotational se-
mantics for expression evaluation in a simple, untyped functional pro-
gramming language.

1 Introduction

It is well known that various domain constructors can be extended to act on rela-
tions on domains. For example, given binary relations R and .S on domains D and
E, there is a binary relation R — S on the domain of continuous functions D — FE
given by: (f,g) € (R—S) if and only if for all (z,y) € R, (f(z),9(y)) € S. The
utility of such constructions on relations can be seen in the various applica-
tions of ‘logical relations’ techniques in denotational semantics, pioneered by
Milne [6], Plotkin [10, 11] and Reynolds [12]. For applications to programming
language semantics, undoubtedly the most important domain-construction tech-
nique is that of solving recursive domain equations. In general, the body of a
domain equation may involve not only positive, but also negative occurrences of
the defined domain. Traditionally, the construction of the action on relations of
such a recursively defined domain constructor has involved delving into the quite
heavy technical machinery used to establish the existence of the domain itself.
In [9] the author described a more elementary method of construction, inspired
by Freyd’s recent categorical analysis of recursive types [1, 2, 3]. It makes use of
mixed inductive/co-inductive definitions. Apart from this, only quite straight-
forward domain-theoretic techniques are needed—namely fixed point induction
and the fact that the identity function on a recursively defined domain is the

* Research supported by UK SERC grant GR/G53279, CEC ESPRIT project CLICS-
II and CEC SCIENCE project PL910296



least fixed point of a certain continuous functional canonically associated with
the domain equation.

In this paper, we illustrate the use of this new method of construction of
relations on recursively defined domains by example. We consider a specific ap-
plication where such relations are needed—namely the proof of correspondence
between the denotational and operational semantics of a functional program-
ming language. Recall that a denotational semantics is called ‘computationally
adequate’ for an operationally defined expression evaluator provided any expres-
sion evaluates to canonical form just in case its denotation is not the bottom
element of the corresponding semantic domain. This property is important since,
combined with compositionality of the denotational semantics, it implies that
observational equivalence of programming language expressions may be estab-
lished via equality of denotations. See Meyer [5] for a discussion of this property.
Proofs of computational adequacy are non-trivial when the denotational seman-
tics of the programming language involves solving recursive domain equations
X = ¢(X) in which X occurs negatively (and maybe also positively) in the
domain constructor ¢(X). We consider a very simple example of this — an un-
typed lambda calculus — in order not to obscure the novelty of our approach
with language-related details.

The computational adequacy property is reviewed in Sect. 2, where we recall
how it can be established via the existence of a certain recursively specified
relation of ‘formal approximation’ between domain elements and programs. Our
new method of construction of the formal approximation relation < is given in
Sect. 3. The method involves three steps:

— First, the negative and positive occurrences of < in the body of its recursive
specification <= ¢(<1) are replaced by fresh variables <~ and < respec-
tively. This results in a new operator ¢(<1~, <) which is monotonic in <,
anti-monotonic in <7, and from which the original operator ¢ can be ob-
tained by diagonalizing. (This separation of variables is a key feature of
Freyd’s recent analysis of recursive types.)

— Secondly, the new operator ¢ is used to give simultaneous inductive defini-
tions of positive and negative versions of the formal approximation relation.

— Lastly, these positive and negative versions are proved equal, and so by con-
struction constitute the required relation. The proof of equality is a simple
fixed point induction argument. It makes use of a key property of recur-
sively defined domains, namely that they are ‘minimal invariants’ for their
associated domain constructor: see Definition 2.

Finally in Sect. 4 we indicate an important aspect of the above method of con-
struction, namely that it not only produces a suitable relation, but also charac-
terizes it via a ‘universal property’ (in the category-theoretic sense). It is this
universal property which gives rise to the reasoning principles established in
[8, 9].



2 Computational adequacy

In this section we review the standard approach to proving computational ad-
equacy, using a very simple untyped functional programming language £ to
illustrate what is involved. £ is an untyped version of Plotkin’s call-by-name
PCF [10]. Its expressions are given by:

M=z variables
| n numerals
| suc(M) successor
| pred(M) predecessor
| if M =0 then M else M conditional
| Az.M function abstraction
| MM function application

where x runs over a fixed, infinite set of variables, and n runs over the set of
integers, Z. Function abstraction is the only variable-binding construct (occur-
rences of x in M are bound in A\x.M). We denote by M[M'/x] the result of
substituting an expression M’ for all free occurrences of x in M (subject to the
usual conventions about renaming bound variables if necessary to avoid variable
capture).

Let Prog (‘programs’) denote the collection of closed expressions in L, i.e.
those with no free variables. We denote by Val (‘values’) the subset of Prog
consisting of all canonical forms, which here means all closed expressions that
are either numerals n or function abstractions Az.M. An operational semantics
for £ can be given via an evaluation relation

PV (P € Prog, V € Val)
which is the subset of Prog x Val inductively defined by the rules in Table 1.

The last rule embodies the non-strict, or ‘call-by-name’ scheme for evaluating
function applications.

Table 1. Rules for evaluating programs in L.

Pln Pyn+1
ViV suc(P)Jn+1 pred(P) | n
PO QUV Pln RV
; : (n#0)
(if P =0 then Q else R) } V (if P =0 then Q else R) } V

PlixzM  M[Q/z]|V
PQUV




Denotational semantics for expressions in £ can be given using a solution to
the domain equation

D= (Z+(D—=D)), . (1)

Here we can take ‘domain’ to mean a partially ordered set with a least element L
and possessing least upper bounds |_|i<w d; of all countable chainsdy T d; C - - -.
The domain on the right-hand side of (1) is the lift of the disjoint union of the
set of integers Z (discretely ordered) with the domain of continuous functions
D — D (ordered pointwise). Thus a domain D is a solution to (1) if it comes
equipped with continuous functions

num : 72 — D
fun: (D—D) — D

which combine to give an order isomorphism between the disjoint union Z +
(D—D) and {d € D | d # L}. Given such a D, one can assign to each L-
expression M and each environment p (a finite partial function from the set of
variables to D) whose domain of definition contains the free variables of M, an
element

[Mlpe D .

The definition of [M]p is by induction on the structure of M and is quite stan-
dard; for the record, we give the clauses of the definition in Table 2. The clause
for Az.M uses the notation p[z + d] to indicate the environment mapping = to
d and otherwise acting like p.

If an environment p’ extends p, then [M]p’ = [M]p. In particular for pro-
grams P € Prog, i.e. for closed expressions, [P]p is an element of D which is
independent of p, and which we write simply as [P]. The following property can
be established by induction on the derivation of the evaluation P | V.

Proposition1 (Soundness). If P |V then [P] = [V].

Of course one cannot expect the converse of this soundness property to
hold, since function abstractions are canonical forms whether or not the body
of the abstraction is fully evaluated. For example [Az.suc(0)] = [Az.1], but
Az.suc(0) | Az.1 does not hold. However, if [P] = [V], then since (from Ta-
ble 2) the denotations of canonical forms are non-bottom elements of D, one
at least has that [P] # L. D is called computationally adequate if for all pro-
grams P, [P] # L holds (if and) only if P | V holds for some canonical form
V. The point of this property is that it permits observational equivalence of
L-expressions to be established via equality of denotations: see Meyer [5].

Whilst the soundness property of Proposition 1 holds for any domain D which
is a solution for the domain equation (1), computational adequacy only holds if D
is a suitably minimal solution. One way of expressing this minimality, essentially
due to D. Scott, is as follows.



Table 2. Denotations of L-expressions.

[2]p = p(x)
[2]p = num(n)

[suc(M)]p = { Iium(n +1) gtl[l]e\ﬂgs: num(n)

[pred(M)]p = { mum(n—1) it [M]p = mim(r)

otherwise

{ Mo if [M]p = num(0)
[if M =0 then M’ else M"]p = < [M"]p if [M]p = num(n) and n # 0

1 otherwise

[Ae.M]p = fun(Ad € D.[M]p[z — d])

1 otherwise

MM = { J(IMTp) if [M]p = fun(f)

Definition 2 (Minimal invariant property). Let &(—) = (Z+(—)—=(—))L.

An invariant for @ is a domain D equipped with an order isomorphism i : D &
@(D). Such an invariant is minimal if the identity function idp € (D — D) is the
least fixed point of the continuous function dg : (D — D) — (D — D) which
maps e € (D — D) to i '®(e)i. Here ®(e) : #(D) — &(D) is the function
which is the identity on L and integers, and acts on functions by pre- and post-
composing with e. Thus if the isomorphism ¢ is described in terms of functions
num : Z — D and fun : (D — D) — D as above, then

num(n) if d = num(n)
dgp(e)(d) = < fun(eo foe) if d = fun(f) (2)
1 ifd=1

foralle € (D— D) and all d € D.

Theorem 3 (Computational Adequacy). If (D,i) is a minimal invariant
for (Z + (=) —(—))L, then the denotational semantics of L in D is compu-
tationally adequate, i.e. for all P € Prog

WPYV) e [Pl #L .

The statement of this theorem appears more general than corresponding re-
sults in the literature, which refer to the computational adequacy of a particular
domain. However it is not really so general, since one can show that



— the minimal invariant property characterizes solutions to domain equations
uniquely up to isomorphism; and

— the solutions to domain equations D = &(D) (for a wide class of domain
constructors ¢(—)) constructed via any of the several methods available in

the literature (such as via colimits of embedding-projection pairs: see [4,

Sect. 10.1]; or via Scott’s ‘information systems’: see [15, Chap. 12]) yield

minimal invariants. Indeed, the minimal invariant property amounts to the

fact, familiar from the ‘local’ characterization of colimits of chains of embed-

dings [14, Theorem 2], that any element d of a recursively defined domain

recX.®(X) can be expressed as the least upper bound of a chain of projec-

tions of the element:

_ mo(d) = L
d= JZ!, mi(d), where {mﬂ(d) = So(m)(d) .

However, it seems a step forward to have an abstract criterion on solutions of
domain equations that suffices for computational adequacy. Moreover, the key
construction needed in the new proof of Theorem 3 which we give in the next
section, relies directly upon the minimal invariant property of D rather than
upon any particular concrete construction of the domain.

The classical method for proving Theorem 3 is an adaptation by Milne [6]
and Plotkin [10, 11] of Tait’s use of ‘computability’ predicates in normalization
proofs. It relies upon the construction of a binary relation between domain ele-
ments and programs with the following properties.

Definition 4. Let D be a solution to (1). A formal approzimation relation is a
binary relation <« C D x Prog satisfying:

1. For alld € D and P € Prog, d < P if and only if
either d = 1,
or d =num(n) for some n such that P | n,
or d = fun(f) and P || Ax.M for some f and Ax.M such that for all d’, P,
if d < P’ then f(d') < M[P'/x].

2. Ifdp Cdy Edy C ---isachain in D with d; < P for all ¢, then | | d; < P.

<w

Given such a formal approximation relation, for any expression M, any envi-
ronment p whose domain of definition dom(p) = {z1,...,z,} contains the free
variables in M, and any programs Pi,..., P,, it is easy to prove by induction
on the structure of M that

pler) APLA--Ap(xy) QP = [M]p < M[Py/x1,...,Py/x,] .
In particular, in case n = 0 we obtain for all programs P that
[Pl< P .

Hence if [P] # L, then by the properties of <1 in part 1 of Definition 4, it follows
that P || V for some V', as required for computational adequacy.

Therefore, to complete the proof of Theorem 3 we need to demonstrate that
when D is a minimal invariant for (Z + (=) —(—)) 1, there exists a relation <
as in Definition 4.



3 A new construction of the relation «

Let us begin by pointing out why the existence of a relation <1 as in Definition 4
is problematic. One can formulate the problem as one of solving a certain fixed
point equation. Let Rel be the set of all binary relations R C D x Prog which
contain { L} X Prog and which satisfy condition 2 of Definition 4. In other words
a binary relation R is in Rel if and only if for each P € Prog, {d | (d, P) € R}
is an admissible subset of the domain D, i.e. chain-complete and containing L.
Define an operation ¢ : Rel — Rel by:

S(R) € {(d,P) |d= 1LV In(d=numn) AP §n)V
Af, \e.M(d = fun(f) AP Y A\e. M A
V(d',P') € R.(f(d"), M[P'/z]) € R)} .

Then a formal approximation relation is precisely an element <1 € Rel satisfying
<4 = ¢(<). It is easy to see that Rel is closed under taking intersections of
binary relations, and hence it is a complete lattice when ordered by inclusion,
C. However, ¢ is not a monotonic operation for C (since the definition of ¢(R)
contains a negative as well as a positive occurrence of R), so we cannot appeal
to the familiar Tarski fixed point theorem to construct a fixed point for ¢.

In the literature, two methods can be found for constructing relations on
recursively defined domains with certain non-monotonic fixed point properties.
One method, due to Milne, Plotkin and Reynolds, makes use of Scott’s con-
struction of a recursively defined domain D = (D) as the colimit of a chain of
embedding-projections Dy — D; — - - -, where the domain D, is obtained by
iterating the domain constructor ¢(—) n times, starting with the trivial domain
{1}. Then < can be constructed as an inverse limit of relations <,, C D,, X Prog
built up by iterating an appropriate action of $(—) on relations; see [12].

A second method, essentially due to Martin-Lof, applies only to Scott do-
mains (precluding the use of constructors like the Plotkin powerdomain) and
makes use of their presentation in terms of ‘information systems’[13]. This
method hinges upon the fact that for each program P, {d | d < P} is in fact a
Scott-closed subset of D. Hence it suffices to construct the relation <1 only for
compact elements of D, since d <1 P holds if and only if ¢ <t P holds for all com-
pact a with a C d. Information systems provide a formal language for compact
elements of (recursively defined) Scott domains, and ¢ << P (¢ compact) can be
defined by a well-founded induction on the size of (a formal representation of)
a. See [15, Sect. 13.4].

Here we present a third method, which is more abstract than the above two
in that it relies upon the ‘minimal invariant’ property of Definition 2 rather
than either of the techniques for giving concrete constructions of recursively
defined domains mentioned above. To begin with, following Freyd’s recent work
on recursive types [1, 2, 3], we separate the positive and negative occurrences of
R in the definition of ¢(R). Thus given two relations R~, Rt € Rel, define:



$(R™,RY) ™ {(d,P) | d =LV In(d=num(n) AP n)V
Af, \e.M(d =tfun(f) AP § \e. M A
V(d,P') € R—.(f(d), M[P'/«]) € R")} .

Clearly ¢ determines a monotonic function
1 : Rel’” x Rel — Rel

where Rel is partially ordered via C and where Rel°? has the opposite ordering.
Furthermore, ¢ can be recovered from ¢ by diagonalizing:

o(R) =¢(R,R) . (3)

We remarked above that Rel is a complete lattice, with infima given by set-
theoretic intersection. Hence Rel°? x Rel is also a complete lattice. We obtain a
monotonic operator

% Rel’? x Rel — Rel’F x Rel
on this complete lattice by ‘symmetrizing’ :
VS (R™,RT) € (W(R*,R™),$(R™,RY)) .

Now we can apply Tarski’s fixed point theorem to obtain the least fixed point
of 1%, which we will denote by (<—,<T). Thus <<~ and <t are given by simul-
taneous, inductive definitions. Using the fact that infima in Rel are given by
intersection, together with the definition of /%, these relations can be described
explicitly as follows:

<t € ({R* € Rel| 3R~ € Rel(R~ C w(R*,R™) Av(R™, R*) C R*)}
<= € ({5 eRel|YR™,R" € Rel.
(R~ CY(RT",RT)AY(R™,RT) CR" =R CS)} .

All we need to know about (<1~, <m) is that it is the least pre-fized point of
Y. Writing out this least pre-fixed point property for ¢»8 on Rel’? x Rel purely in
terms of ¢ and Rel, we obtain the following characteristic properties of <, <%
which have a mixed inductive/co-inductive flavour.

Lemmab. 1. <~ =9(<at,<7) and (<, <at) = <.
2. For all R—,R* € Rel, if

R™C¢(R",R™)  and  ¢(R™,R*)CR'

then
R C«a™ and 4T CRT .



Theorem 6 (Existence of <). When D is a minimal invariant for the domain
constructor (Z + (=) —(=))L, the relations A~ and <* are equal, and yield a
formal approzimation relation as in Definition 4.

Proof. First note that by (3) and part 1 of Lemma 5, if <~ = <% then this
relation is a fixed point for the operation ¢ and hence has the properties required
by Definition 4.

We split the equality <~ = <™ into two inclusions. The inclusion < C <1~
follows immediately from Lemma 5, since by clause 1 we may take R~ = <t
and R, = <~ in clause 2. So it remains to prove that <~ C <t.

It is only at this point that we need the minimal invariant property of D.
Recall that it says that idp is the least fixed point of the continuous function
0 : (D— D) — (D — D) defined in (2). We introduce the following piece of
notation: given R, S € Rel and a continuous function e € (D — D), write

e:RCS

to mean that for all (d,P) € R, (e(d),P) € S. From the definition of dg, it is
straightforward to verify that

e:RC S =ds(e):¢(S,R) CyY(R,S) .

So taking R = <1~ and S = <t and using part 1 of Lemma 5, we have that Js
maps the set

{feeD—=Dle:<x” Cc<at} (4)

into itself. Clearly this subset of D — D is chain-closed and contains L, because
of the admissibility condition elements of R el satisfy. Hence by the familiar fixed
point induction principle (see [15, Sect. 10.2] for example), idp, being the least
fixed point of dg, lies in the subset (4). Thus idp : <~ C <, which is just to
say that <~ C <. |

4 Further development

The method of construction of <1 we have given in this paper can be used quite
generally to construct recursively specified relations on recursively defined do-
mains without having to delve into the details of the construction of the domain.
Moreover, the construction applies to many different notions of ‘relation’ on a
domain. (Here for example, a relation on D has meant a subset of D X Prog.)
The construction can be phrased in terms of an abstract notion of ‘relational
structure’ on a category of domains and of the ‘action’ of domain constructors
on relations, due to O’Hearn and Tennent [7]. This general form of the construc-
tion is described in [9, Sect. 5]. That paper treats the case of unary relational
structures, but the method generalizes easily to n-ary relations. For example,
we believe that the recursively specified relation between two recursively defined
domains employed by Reynolds to relate a direct and a continuation semantics



of an untyped functional language in [12] can be constructed by applying our
method to a suitable binary relational structure.

As pointed out in [9], the method of construction not only provides a simpler
construction of certain relations, but also characterizes these relations uniquely
via a ‘universal property’. For instance, by virtue of Lemma 5 (and the fact that
<~ =<=<"), the formal approximation relation < is a ‘mixed’ fixed point in
the sense of the following definition.

Definition 7 (Mixed fixed point). Let (R, <) be a partially ordered set and
let ¢ : R°P x R — R be a monotonic function. Then M € R is a mized fized
point for ¢ if

M = (M, M) (5)

and
VR,S € RIR<Y(S,R)AP(R,S) < S=R<M<LS) . (6)

Note that the mixed fixed point of ¢ is unique if it exists. Indeed, if R € R
satisfies R = ¢(R, R), then (6) implies that R< M < R,i.e. R= M.

It is not hard to see that conditions (5) and (6) are equivalent to saying that
(M, M) is the least pre-fixed point of the monotonic operator

(R, S) = (¥(S, R), ¥ (R, S))

on R°P x R; or to saying that (M, M) is the greatest post-fixed point of that
operator. In fact Definition 7 is the special case for monotonic functions of the
condition on functors of mixed variance formulated by Freyd in his work on
‘algebraically compact’ categories [2, 3]. One can summarize the results in [9,
Sect. 5] as establishing that the algebraic compactness property of the category
of domains and strict continuous functions is inherited by categories of ‘domains
equipped with relations’ (for a very general notion of relation). As the rest of
that paper demonstrates, from the mixed fixed point property of recursively de-
fined relations it is possible to derive a number of induction and co-induction [8]
principles for reasoning about the properties of recursively defined domains.

References

1. P. J. Freyd. Recursive Types Reduced to Inductive Types. In Proc. 5th Annual
Symp. on Logic in Computer Science, Philadelphia, 1990 (IEEE Computer Society
Press, Washington, 1990), pp 498-508.

2. P. J. Freyd. Algebraically Complete Categories. In A. Carboni et al (eds), Proc.
1990 Como Category Theory Conference, Lecture Notes in Math. Vol. 1488
(Springer-Verlag, Berlin, 1991), pp 95-104.

3. P. J. Freyd. Remarks on algebraically compact categories. In M. P. Fourman,
P. T. Johnstone and A. M. Pitts (eds), Applications of Categories in Computer
Science, L.M.S. Lecture Note Series 177 (Cambridge University Press, 1992),
pp 95-106.

4. C. A. Gunter. Semantics of Programming Languages. Structures and Techniques.

(MIT Press, 1992.)



10.

11.

12.

13.

14.

15.

A. R. Meyer. Semantical Paradigms: Notes for an Invited Lecture. In Proc. 3rd
Annual Symp. on Logic in Computer Science, Edinburgh, 1988 (IEEE Computer
Society Press, Washington, 1988), pp 236—255.

R. E. Milne. The formal semantics of computer languages and their implementa-
tions, Ph.D. Thesis, Univ. Cambridge, 1973.

P. W. O’Hearn and R. D. Tennent. Relational Parametricity and Local Variables.
In Conf. Record 20th Symp. on Principles of Programming Languages, Charleston,
19938 (ACM, New York, 1993), pp 171-184.

A. M. Pitts. A Co-induction Principle for Recursively Defined Domains, Theo-
retical Computer Science, to appear. (Available as Univ. Cambridge Computer
Laboratory Tech. Rept. No. 252, April 1992.)

A. M. Pitts. Relational Properties of Recursively Defined Domains. In: Proc. 8th
Annual Symp. on Logic in Computer Science, Montréal, 1993 (IEEE Computer
Soc. Press, Washington, 1993), pp 86-97.

G. D. Plotkin. LCF Considered as a Programming Language, Theoretical Com-
puter Science 5(1977) 223-255.

G. D. Plotkin. Lectures on Predomains and Partial Functions. Notes for a course
at CSLI, Stanford University, 1985.

J. C. Reynolds. On the Relation between Direct and Continuation Semantics. In
J. Loeckx (ed.), 2nd Int. Collog. on Automata, Languages and Programming, Lec-
ture Notes in Computer Science, Vol. 14 (Springer-Verlag, Berlin, 1974), pp 141—
156.

D. S. Scott. Domains for Denotational Semantics. In M. Nielsen and E. M. Schmidt
(eds), Proc. 9th Int. Coll. on Automata, Languages and Programming, Lecture
Notes in Computer Science, Vol. 140 (Springer, Berlin, 1982), pp 577-613.

M. B. Smyth and G. D. Plotkin. The Category-Theoretic Solution of Recursive
Domain Equations, SIAM J. Computing 11(1982) 761-783.

G. Winskel. The Formal Semantics of Programming Languages. An Introduction.
(MIT Press, 1993.)

This article was processed using the IATEX macro package with LLNCS style



