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Introduction

This is the first of two papers describing how properties of open continuous maps
between locales (which are the lattice-theoretic generalisation of topological spaces)
can be used to give very straight-forward, constructive proofs of certain properties
of first-order intuitionistic theories. The properties we have in mind are those of
stability of a conservative interpretation of theories under pushout, and appropriate
categorical formulations of Craig’s Interpolation Theorem and the Beth
Definability Theorem. It is thus the methods of proof rather than the results
themselves that are novel, and we present them in the spirit of a demonstration of
the usefulness of a category-theoretic approach to constructive logic.

In this paper we will consider only propositional intuitionistic theories and their
lattice-theoretic counterpart, Heyting algebras. At this level the Interpolation
Theorem becomes a statemenrt about frec Heyting algebras:

Theorem. Given a set X, let F(X) denote the free Heyting algebra on X. If
@peF(X), wveF(Y)and 9w in F(XUY), then there is e F(XNY) with <06 in
F(X)and 0<y in F(Y). U

The theorem asserts that the pushout square

F(X) “———FXUY)

F(XNY)&——— FY)

in the category Ha of Heyting algebras and morphisms, has the ‘‘interpolation
property”’, which we may define in general as foliows:
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Definition. Let
B D
{f L
A

C

be a commutative square of partially ordered sets and order-preserving maps. We
say that it has the interpolation property iff for all be B and ce C, if h(b) < k(c),
then there is ae A with b<f(a) and g(@)<c.

Remark. In the case that f and k have left adjoints f, and &, respectively, then the
commutative square has the interpolation property iff it satisfies a ‘‘Beck-Chevalley
condition’’, namely

kg oh= g O_fg .
We shall prove below
Theorem B. Every pushout square in Ha has the interpolation property.

Now it is known (cf. [4]) that there is an intimate connection between the
Interpolation Theorem and the amalgamation property, which in this context says
that if f: A—B and g: A C are monomorphisms in Ha, then there is a Heyting
algebra D and monomorphisms 4 :B>D and k:C>D with ho f=kog. More

generally, using properties of open maps of locales and some simple considerations
on filters and ideals, we prove

Theorem A. Monomorphisms are stable under puishout in Ha, i.e. if

B

D

4

is a pushout square in Ha and f is a monomorphism, so is k.

Then Theorem B follows from Theorem A together with elementary properties
of quotients of Heyting algebras. In the final section of the paper we make some
remarks concerning the analogues of these theorems for the coherent fragment of

intuitionistic propostional logic (distributive lattices) and for geometric proposi-
tional logic (frames).
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The lattice-theoretic methods used in this paper are all constructively valid. Apart
from any intrinsic value this approach may have, it becomes essential in the sequel
[51, where for example the proofs require the application of properties of open maps
of locales defined in toposes other than the base topos of (possibly classical) sets.
In particular, no use is made of the Prime Ideal Theorem, and we deal with lattices
of ideals rather than spaces of prime ideals.

We adopt the convention that a partially ordered set is a lattice if it has a// finite
meets and joins including the empty ones, i.e. lattices will always have top and
bottom clements, denoted T and L1 respectively.

1. Frames, locales and open maps

A frame is a complete lattice A in which binary meets distribute over arbitrary
joins:
anVS=V{aAs|seS} for all aeA,ScA.

A morphism of frames is a map preserving finite meets and arbitr: ry joins; let Frm
denote the category of frames and frame morphisms. Then the category Loc of
locales is just the opposite category, Frm°". A morphism f: A—F in Loc is called
a continuous map of locales; the corresponding frame morphism s conventionally
denoted by f*:B—A and its right adjoint by fi«: A—B. An in‘roduction to the
theory of locales and its relation to general topology may be found in [1], whilst the
reader should refer to [2] for a full exposition of the particular notion we need,
namely that of an open continuous niap between locales. (Warning: the terminoclogy
of [2] is non-standard; frames are there called locales and locales called spaces.)

Definitions. Suppose f: B— A is a morphism of meet semilattices with a left adjoint
Jfi: A—B. The adjoint is said to satisfy Frobenius reciprocity iff for all a in A and
bin B

S@nf(b))=fi(a)Ab.

We then define a continuous map f: A— B of locales to be open iff f*:B—A has
a left adjoint f,: A— B satisfying Frobenius reciprocity.

Since a frame is in particular a Heyting algebra, and

(=)Af*b (-)Ab

A
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commutes iff the corresponding square of right adjoints

ft

A<—B

S (=) b=(-)

e
A —

B

commutes, we see that f:.4— Bis open iff f* preserves arbitrary meets and Heyting
implicatior.. There is thus a contravariant forgetful functor from the category OLoc
of locales and open continuous maps to the category Ha of Heyting algebras, send-
ing f: A= Bto f*: B— A. Finally, recall that a continuous map f: A— B of locales
is a surjection iff idg=fy°f* or equivalently iff f* is a monomorphism (of
frames). Note that if f is open, it is also a surjection iff f,(T)=T.

The property of open maps we need is the following:

1.1. Theorem. Suppose that

p_4

&

r 4

l
B A

is a pullback square in the category Loc with f open. Then q is also open. If further-
more fis « surjection, then so is q.

Proof. We shall sketch the proof; full details may be found in Chapter V of [2].

Working in the category Frm, the pushout of f*: A—B along g*: A—C may be
constructed as a tensor product, P=B®, C. As a complete lattice this is generated
by elements b&®c (b e B,ce C) subject to the relations

(VRY®C=V{r®c|reR} (RCB),
bR(VS)=V{b®s|seS} (ScC)

and
(OAS*)Rc=bR(g*aNc) (aeA,beB,ce(C).
Then p*: B—-BX,C and g*: C—»B&, C are the maps
b—~b®T and c~TXRcC
respectively.
If f* has a left adjoint f; satisfying Frobenius reciprocity, then we get a well-
detined map q,: B®, C—C defined ca generators by

bXc—g*(fib)Ac.
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Furthermore g, is left adjoint to g* and satisfies Frobenius reciprocity. Thus q is
open when f is.
If we also have that f is surjective, i.e. fi( T)= T, then
@(T)=q(TOT)=g*(NTIAT =g¥%(T)=T,

so that g is also surjective. [J

2. The locale of ideals of filters

If D is a distributive lattice, let .#(D) denote the set of ideals of D partially ordered
by inclusion and #(D) denote the set of filters of D partially ordered by reverse
inclusion. (Thus #(D)=(#(D°?))®.) #(D) and #(D) are both complete, distribu-
tive lattices and indeed .#(D) is a frame, although .#(D) is not in general. (#(D) is
the typical coherent locale: cf. [1].) There are order-preserving, injective maps

lp:D—~#(D) and 1,:D- H#D)

assigning principal ideals and filters respectively. |, preserves arbitrary meets and
finite joins; dually T, preserves finite meets and arbitrary joins.

In a meet semilattice A, the Heyting implication of two elements a,,a,, if it
exists is the unique element a;, —a, satisfying

aha,<a, ® a<a,—a, forall aeA.

We then say that a morphism f: A—B of meet semilattices preserves implications
iff whenver a, —a, exists in A, f(a;)—,%a,) exists in B and equais f(a,—a,). We
then have:

2.1. Lemma. If D is a distributive lattice, 1 : D—.9(D) und 1 : D— #(D) both
preserve implications. [
We can extend the assignments
D~ 4(D) and D~ .#(D)

to functors on the category of distributive lattices and order-preserving maps to
itself, as follows. Given f:D—D’ define

I(f): #(D)~#(D")

by sending an ideal /C D to Sf(I)={d’'=s D’[H’del d’<=f(d)}, the ideal generated
by the image of I under f. Similarly define
Af): AD)> AD")

by sending a filter  C D to ff(d)z{a”eD'I dded f(d)<d'}. In fact # and 7 are
2-functors, since if f<g:D—D’, then $f<./g and #f< .7g. With these definitions,
lp:D—#(D) and Tp: D- #(D) are natural in D.
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Now if f:D— D’ is a morphism of distributive lattices then so are #f and 7f;
and taking inverse images under f gives maps

fLaD)~AD) and [f': AD)- AD)

which are right and left adjoints to #f and #f respectively. Thus in particular 4f
is a morphism of frames. The following result, whilst easily proved, provides the
key that unlocks the door between Heyting algebras and open maps of locales:

2.2. Proposition. (i) If f: A—B is a morphism of Heyting algebras, then the left
adjoint f~' of .7f satisfies Frobenius reciprocity.

(i) Suppose that f:D—D' is an order-preserving map between distributive
lattices which has a left adjoint f, satisfying Frobenius reciprocity. Then $(f,) is
left adjoint to Jf and also satisfies Frobenius reciprocity. (Similarly for #(f).)

Proef. (i) Suppose that @€ .#(4) and B¢ #(B). Since f~! is left adjoint to ./f, we
always have f'(BA.7f(@))<f '(B)Aa. We have to show conversely that

S B ey e f (BAa.

The mest of two filters aj, @ in A(A) is aAay={a;Aa,|a;eq;}. So if
aef YA 7f(a)), then there are bef anc a’ea with bAf(a’)<f(a). Hence
fla—a)=bep, so that a’—aecf'(B). Thex

az(a’~a)ha'ef (BAa

and thus aef '(B)Aa, as required.

(i1) Since .7 is a 2-functor, it is automatic that .#(f,) is left adjoint ¢t~ .#f. Given
Ie /(D) and I’ .#(D"), suppose that d e #f,(I')Al. Since the meet of tv.n ideals in
#(D) is given by their intersection, we have that de Jf,(I') and del. Sc there is
d'el’ wth d<f,(d’), and therefore

d=f,(d")Nd=f,(d' Nfd)

since f, satisfies Frobenius reciprocity. But d'Afd e I'A $f(I), so d e S£,(I'AFf(I)).
Thus 2 \(IANIC 2fi(I'ASf(I)) and since # 7} .s left adjoint to .#f, the reverse
inclusion is immediate. O]

If A is a Heyting algebra, .#(A4) is a distributive lattice and .#(.#4) is a frame:
regarding it as an object in Loc, let us write ¢(A) for this locale of ideals of filters
of A.

2.3. Theorem. Taking the locale of ideals of filters gives a contravariant functor
@ : Ha" »0OLoc from the category of Heyting algebras to the category of locales
and open continuous maps. This functor takes monomorphisms in Ha to surjections
in Loc.

Mcreover for each Heyting algebra A there is a monomorphism i, : A @(A) in
Ha which is natural in A.
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Proof. Given f: A—B in Ha, 7f: #(A)— #(B) is a morphism of distributive lat-
tices and so A(Ff) : /(FA)— #(FB) is a morphism of frames. By Proposition 2.2(i),
Zf has a left adjoint f~! satisfying Frobenius reciprocity; hence by Proposition
2.2(ii), .7(f ) is left adjoint to #(Ff) and also satisfies Frobenius reciprocity.
Therefore we have an open continuous map of locales ¢f: pB—¢A with

@N=2"),  (@N*=A(Ff) and (@N)s=(H)""

Since # and ¥ are functorial, so is ¢. Also # and ¥ preserve monomorphisms of
distributive lattices; so if f is a monomorphism in Ha, #f and hence (¢f)* = S(.#f)
are monomcrphisms, and thus ¢f is a surjective map of locales.

Given a Heyting algebra A, define iy: A—>¢A to be the composition of
T4: A #(A) vith { ;4 F(A)— #(FA)=0pA. Then not only is iy a monomor-
phism of distributive lattices but also by Lemma 2.1 it preserves implications, so
that it is a morphism of Heyting algebras (despite the fact that .#(A4) is not a Heyting
algebra). Since | and T are natural, given f: A—B in Ha we have

@f)*oi,=igef. O

Remark. Every element 7 of @A is expressible as a join ot meets of elements from
A, viz.

I=V N iya).

ael aea

However given f: A—Bin Ha with B a locale, we cannoi necessarily extend f along
i 4 to the inverse image part of an open continuous map of locales f: B—@¢A. For
example taking f=idg, F*:@B— B would have to be given by

FHh=V{\B|Bel}.

But since arbitrary meets do not generally distribute over joins in B, this formula
does not give a join-preserving map. In particular ¢ is not right zdjoint to the forget-
ful functor OLoc—Ha®P.

3. Interpolation for Heyting algebras

Theorem A. Monomorphisms are stable under pushout in Ha.

Proof. Suppose we have f: A—B and g: A—C in Ha. Applying the functor ¢ of
Theorem 2.3, let

oC
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be a pullback square in Loc. By Theorem 1.1, p and g are both open since ¢/ and
¢g are. Hence there is a square of morphism: in Ha

i p*
B—— ¢B > P
'y 1}

qt
f oC
iC
A g » C

which commutes since 7 is natural. Now if f is a menomorphism, ¢f is a surjection
and then by Theorem 1.1, so is g; therefore ¢*°i, is a monomorphism. But the
pushout of f along g factors through g*ci-, so that pushout is also a
monomorphism. ]

Recall that congruences on a Heyting algebra A are in correspondence with filters
on A: given a € .#/(A), we get a congruence by defining
a~a & ava'ea.
Let A = A/a denote the quotient of A by a. We need some simple facts about image

factorizations and pushouts of quotients in Ha.

3.1. Lemma. Suppose that f: A= B is a morphism of Heyting algebras.
(i) If f e .#(B), then the factorization of A -i»B——*B/ﬁ through A~ A/f'p
Is @ monomorphism:

A

7
A/f '\pr———B/f
(i) Ifu= 7(A), then the pushout along f of the quotient of A by a is the quotient

of B by “f(a), i.e. there is a pushout square

S

A——— B

"

’*«
A/a - B/ #f(a). _
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Theorem B. Every pushout square ir Ha has the interpolrtion property (cf. the
Introduction).

Proof. Let
B———— P
¥ k
A SN C

be Ell‘_ pushout square in Ha. It follows from Lemma 3.1 that for any fe .#(B),
C— P— P/ Fh{p) factors as

C—C/#g(f7'B) LR P/ 7h(B)

and that
A _
B/ —————— P/ Fh(B)
7 k

~

g

A/f'B C/7(f7'B)
is also a pushout square. But since f is a monomorphism, by Theorem A so is k:
hence k~'(Fh(B)) = #2(f~' B).

Now if beB, ceC and h(b)<k(c), taking B8=Tz(b), we have kceTp(hb)=
Fh(B), so that ce k™' (Fh(B)) = Fa(f~'B). Hence there is ae A with b<f(a) and
gla)<c, as required. [

Remark. The first part of the proof of Theorem B is really just the (dual of the)
proof, familiar in the context of regular categories, that stability of image factoriza-
tions under pullback implies the Beck-Chevalley condition for existential quan-
tification (cf. 3.2.1 of [3]). The last part of the proof is thus a particular instance
of the fact remarked upon in the Iniroduction, that under suitable circumstances the
interpolation property is equivalent to a Beck-Chevalley condition.

4. The situat’,a for distributive lattices and frames

In ronclusion, we make some remaziks about the analogues of Theorems A and
B fcr the category DI of d. - ibutive lattices and the category Frm of frames.

(1) Not every pushout squ re in DI has the interpolaiion property. For example,
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let de D be an element of a distributive lattice which does not have a complement
in D. Let f: D—1p(d) and g:D—!(d) be the morphisms defined by

f(x)=dvx and g(x)=dAx.

Then the pushout of f along g in DI is the trivial lattice 1 (in which L = T):
h
Tpd) — 1
f k

D g

Ip(d)

Now A(T)<k(1) in 1, but if there were an xe D with T <f(x) and g(x)< L, we
should have T =dVx, dAx=1, i.e. d would be complemented, contrary to
assumption.

(b) Applying the functor s (which is left adjoint to the forgetful functor
Frm—DI) to the square in (a), we obtain a pushout square in Frm for which the
interpolation property fails. (There are many others.)

(c) Monomorphisms are stable under pushout in Dl. One way of proving this
(constructively) is to use Theorem A together with the fact that the left adjoint of
the inclusion of the full subcategory of Boolean algebras into DI preserves
monomorphisms and the unit of the adjunction is a monomorphism.

(d) As is well known, surjections are not stable under pullback in Loc, so that
the analogue of Theorem A fails for Frm. Indeed Frm fails to have the amalgama-
tion property. For example!, let X=NU {o} with topology:

UcX isopen & U=0or X\U is a finite subset of N.

Putting the discrete topology on N, let i : N& X denote the inclusion regarded as
a continuous map. The corresponding frame morphism i*: Q(X)— P(N) between
the lattices of open sets is actually a monomorphism. But the pushout of i* along
the monomorphism (X)) P(X) is

P(N) P(N)
In il
QX) & P(X)
and i ': P(X)—P(N) is not a monomorphism.

"I am grateful to P.T. Johnstone for suggesting this example.
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