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Introduction 

This is the first of two papers describing how properties of open continuous maps 
between locales (which are the lattice-theoretic generalisation of topological spaces) 
can be used to give very straight-forward, constructive proofs of certain properties 
of first-order intuitionistic theories. The properties we have in mind are those of 
stability of a conservative interpretation of theories under pushout, and appropriate 
categorical formulations of Craig’s Interpolation Theorem and the Beth 
Definability Theorem. It is thus the methods of proof rather than the results 
themselves that are novel, and we present them in the spirit of a demonstration of 
the usefulness of a category-theoretic approach to constructive logic. 

In this paper we will consider only propositional intuitionistic theories and their 
lattice-theoretic counterpart, Hfzyting algebras. At this level the Interpolation 
Theorem becomes a statement about free Heyting algebras: 

Theorem. Given a set X, let F(X) denote the free Heyting algebra on X. If 
@SF(X), WEF(Y)and#=@nF(XUY), then thereisikF(XnY) with@r6in 
F(X) and &u/ in F(Y). cl 

The theorem asserts that the pushout square 

F(X) = F(XU Y) 

in the category of Heyting algebras and morphisms, has the “interpolation 
property”, which we may define in general as follows: 
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Definition. Let 

A.M. Pitts 

g 
A - c 

be a commutative square of partially ordered sets and order-preserving maps. We 
say Ithat it has the interpolation property iff for all b E B a.nd c E C, if h(b) s k(c), 
then there is awl with bsf(a) and g(a)lc. 

Remark. In the case that jf and k have left adjoints f! and k! respectively, then the 
com:mutative square h,as the interpolation property iff it satisfies a “Beck-Chevalley 
condiition”, namely 

k!oh=goJ. 

We shall prove below 

Theolrem IB. Every pushout square in Ha has the interpolation property. 

Now it is known (cf. [4]) that there is an intimate connection between the 
Interpolation Theorem and the anwlganzation property, which in this context says 
that if f: A >-*B and g : A >-,C are nonomorphisms in Ha, then there is a Heyting 
algebra D and monomorphisms h : B>-,D and k: C-D with hof= keg. More 
generally, u.sing properties of open maps of locales and some simple considerations 
on filters and ideals, we prove 

Theorem A. Monomorphism are stable under pushout in Ha, i.e. if 

is il pushout squure in a and f is a monornorphism, so is k. 

Then Theorem B follows from Theorem A together with elementary properties 
of quotients of Heyting algebras. In the final section of the paper we make some 

~arkc; concerning the analogues of these theorems for the coherent fragment of 
itionistic propostional logic (distributive lattices) and for geometric proposi- 



Amalgamation and interpolation 157 

The lattice-theoretic methods used in this paper are all constructively valid. Apart 
from any intrinsic value this approach may have, it becomes essential in the sequel 
[S], where for example the proofs require the application of properties of open. maps 
of locales defined in toposes other than the base topos of (possibly classical) sets. 
In particular, no use is made of the Prime Ideal Theorem, and we deal with lattices 
of ideals rather than spaces of prime ideals. 

We adopt the convention that a partially ordered set is a lattice if it has ati’ finite 
meets and joins including the e,mpty ones, i.e. lattices will always have to/p and 
bottom elements, denoted T and I respectively. 

1. Frames, locales and open maps 

A frame is a complete lattice A in which binary meets distribute over arbitrary 
joins: 

aAVS=V{aAslsES} for all ~EA,S~A. 

A morphism of frames is a map preserving finite meets and arbitrz ry joins; let Frm 
denote the category of frames and frame morphisms. Then the category Lot of 
locales is just the opposite category, FrmoP. A morphism f : A -0 in Lot is called 
a continuous map of locales; the corresponding frame morphism is conventionally 
denoted by f * : B-Q and its right adjoint by f* : A-GL An in1 reduction to the 
theory of locales and its relation to general topology may be found in [l], whilst the 
reader should refer to [2] for a full exposition of I he particular notion we need, 
namely that of an open continuous map between locales. (Warning: the terminology 
of [2] is non-standard; frames are lhere called locales and locales called spaces.) 

Definitions. Suppose f: B-d is a morphism of meet semilattices with a left adjoint 
f, : A-M. The adjoint is said to satisfy Frobenius reciprocity iff for all a in A and . 

b in B 

fi(ar\f(b)) =A(a)l\b. 

We then define a continuous map f: A-4 of locales to be open iff f *: B-+A has 
a left acljoint f! : A-+B satisfying Frobenius reciprocity. 

Since a frame is in particular a Heyting algebra, and 

f! 
A-B 

(-Mf *b 1 1 (-hb 

f! 
A-B 
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commutes iff the corresponding square of right adjoints 

A-B 

commutes, wt see that f: ,4-+B is open iff f * preserves arbitrary meets and Heyting 
implication. There is thus a contravariant forgetful functor from thle category OLoc 
of locales and open continuous maps to the category Ha of Heyting algebras, send- 
ing f : A + B to f * : B+A. Finally, recall that a continuous map f : A+ B of locales 
is a surjection iff ids= $*o f *, or equivalently iff f * is a monomorphism (of 
frames). Kate that if f is open, it is also a surjection iff f!( T ) = T . 

The property of open map’; we need is the following: 

I. I. Theorem. Suppose that 

is a pullhaL k square in the category Lot with f open. Then q is also open. If ,,further- 
more _f is L’ swjection, then so is q. 

Proof. We shall sketch the proof; full details may be found in Chapter k’ of [2]. 
Working in the category Frm, the pushout of J* : A-+B along g* : A---C may be 

constructec.I as a tensor product, P= B@,, C. As a complete lattice this is generated 
by elements b@c (b E B, CE C) subject to the relations 

and 

(VR)@C=V(r@clrd?} (R c B), 

b@(VS)=V{b@sjsd) (XC) 

(bn_,f*a)@c = b@(g*al\c) (ad,bEB,cd’). 

Then p*: I’3-4@, C and q*: C-+B@,, C are thie maps 

b-b@T and c++T@c 

If _f * has a left adjoint J satisfying Frobenius reciprocity, then we get a well- 
det*intxI map qI : Bc@, C--T defined c?n generators by 
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Furthermore q! is left adjoint to q* and satisfies Frobenius reciprocity. Thus q is 
open when f is. 

If we also have that f is surjective, i.e. jA( T) = T, then 

q!(T)=q!(T@T)=g*(f!T)AT =g*(T)= T, 

so that q is also surjective. Cl 

2. The locale of ideals of filters 

If D is a distributive lattice, let 3(D) denote the set of ideals of D partia 
by inclusion and R(D) denote the set of filters of D partially ordered by reverse 
inclusion. (Thus 9(D) = (J(Dop))op.) Y(D) and 3(D) are both complete, distribu- 
tive lattices and indeed Y(D) is a frame, although Y(D) is not in general. (J(D) is 
the typical coherent locale: cf. [l].) There are order-preserving, injective maps 

1, : D-+.*(D) and 7, : D-+ 3(D) 

assigning principal ideals and filters respectively. 1, preserves arbitrary meets and 
finite joins; dually 7, preserves finite meets and arbitrary joins. 

In a meet semilattice A, the Heyting implication of two elements al, a?, if it 
exists is the unique element al -+a2 satisfying 

ana, (a2 H acal-,a2 for all aeA. 

We then say that a morphism f: A+B of meet semilattices preserves implications 
iff whenver a1 --+a2 exists in A, f(a,) -${a2) exists in B and equals f(al +a2). We 
then have: 

2.1. Lemma. If D is a distributive lattice, 1, : D-G(D) tind tD : D+ Y(D) both 
preserve implications. •1 

We can extend the assignments 

Dw J(D) and D- Y(D) 

to functors on the category of distributive lattices and order-preserving maps to 
itself, as follows. Given f : D-+D’ define 

.p’( f) : *q(D) --G(D’) 

by sending an ideal Is D to .gf(I) = {d’E D’ 1 Zd E I d’<f(d)}, the ideal generated 
by the image of I under f. Similarly define: 

T(f) : .F(D)-+ <F(D’) 

by sending a filter 6 c D to cFf(S) = {dk D’ I2d E 6 f(d) sd’}. In fact J’ and .J are 
2-functors, since if f <g : D-D’, then Yf 5 Jg and 3f 1. Y$ With these definitions, 
1, : D++(D) and TD : D+T(D) are natural in D. 
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Now if f: D-G’ is a morphism of distributive lattices then so are Sf and Xfi 
and taking inverse images under f gives maps 

which are right and left adjoints to .Yf and Yf respectively. Thus in particular Jf 
is a morphism of frames. The following result, whilst easily proved, provides the 
key that unlocks the door between Heyting algebras and open maps of locales: 

2.2. Proposition. (i) If f : A-+ B is a morphism of Heyttng algebras, then the left 
adjoint f -’ of . Ff satisfies Frobenius reciprocity. 

(ii) Suppose that f : D-W is an order-preserving map between distributive 
lattices which has a left adjoint f! satisfying Frobenius reciprocity. Then tf(f!) is 
left adjoint to .Pf and also satisfies Frobenius reciprocity. (Simikdj for X(fi).) 

IProof. (i) Suppose that arc Y(A) and ,&E X(B). Since f-' is left adjoint to *Ff, we 
always have f -‘(~A.~f(cr))~f-‘(P)Aa. We have to show conversely that 

f - '(PA r 17(a)) G f -‘(p)Aa. 

The mel:t of two filters CT], a2 in .F(A) is tY,Aa,= {all\azIaiEai). SO if 
aE,r-‘@h.~f(a)), then there are b@ am’. aka with bAf(a’)<f(a). Hence 
f(a”+a)rbE/I, so ahat a’-+aEf-l(P). T!leri 

crl(a'-+a)Aa'Ef-'(P)Aa 

and thus) a&(p)Aa9 as required. 
(ii) Since .f is a 2-functor, it is automatic that .8(J) is left adjoint ~1 .?f. Given 

k .W) and h.f(D’), suppose that ck$(l’)Al. Since the meet of tv,c, ideals in 
40) is given by their intersection, we have that de ,Yf!(I’) :ind de I. sz there is 

d’EI’ w th dsf!(d’), and therefore 

d =_f!(d’)Ad = f!(d’l\fd) 

since ff fjatisfies Frobenius reciprocity. But d’Afd e I’A*ff(T), so d E .qfi(r'AYf(l)). 
Thus &‘i(!‘)/\& .qf!(l'A.ff(I)) and since PJ’!l A left adjoint to ,+f, the reverse 
inclusion is immediate. 3 

If A is a Heyting algebra, I F(A) is a distributive lattice and .+(.#A) is a frame: 
regarding it as an object in Lot, let us write @(A) for this locale of ideals of filters 
of A. 

2.3. Th~~~orem. Taking the locale of ideals of’filters gives a contravariant functor 
oc from the category of Heyting algebras to the category of locales 

Y 9 continuous maps. This functor takes monomorphisms in 8 to surjections 

t?v&r for each Heytirrg algebra A there is a monomolrphism iA : A w@(A) in 
a whic*h is natural in A. 
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Proof. Given f: A -+B in Ha, Yf: F(A)+ F(B) is a morphism of distributive lat- 
tices and so Y(Y$) : 4(3A)-+Y(FB) is a morphism of frames. By Proposition 2.2(i), 
Tf has a left adjoint f -’ satisfying Frobenius reciprocity; hence by Proposition 
2.2(ii), .fl(~‘-‘) is left adjoint to Y(Tf) and also satisfies Frobenius reciprocity. 
Therefore we have an open continuous map of locales @f: @B+#A with 

(4f )! = j(f -l h (@f)*=4TI+f) and (Qifh=Mf)_'. 

Since 9 2nd 9 are functorial, so is @ Also 9 and 9 preserve monomorphisms of 
distributive lattices; so if f is a monomorphism in Ha, Sf and hence (Qif )* = 4( :Ff) 
are monomcrphisms, and thus Qlf is a surjective map of locales. 

Given a Hsyting algebra A, define iA . l A*@A to be the composition of 
?A : A )-, X(A) vlith i,FA : 3(A)>-) 4( S’A) = @A. Then not only is iA a monomor- 
phism of distributive lattices but also by Lemma 2.1 it preserves implications, so 
that it is a morphism of Heyting algebras (despite the fact that S(Aj is not a Heyting 
algebra). Since 1 and t are natural, given f : A-+ B in Ha we have 

(@f)*O& =iBOJ Cl 

Remark. Every elemei\t 1 of @A is c:xpressible as a join or meets of elements from 
A, viz. 

I= V A iA( 
uEI aezu 

However given f : A +B in Ha with B a locale, we cannot necessarily extend f along 
iA to the invel-se image part of an open continuous map of locales 7: B-*@A. For 
example taking f = idB, $*: qbB+B would have to be given by 

But since arbitrary meets do not generally distribute over joins in B, this formula 
does not give a join-preserving map. In particular @ is not right adjoint to the forget- 
ful functor OLoc -+ HaoP. 

nterpolation for Heyting algebras 

Theorem A. Monomorphisms are stable under pushout in 

roof. Suppose we have f : A+B and g : A *C in a- Applying the functor @ of 
Theorem 2.3, let 
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be a pullback square in Lot. By Theorem 1.1, p and q are both open since $$ and 
@g are. Hence there is a square of morphism:: in Ha 

iB P* 
B+------+$IB- P 
* 

I B* 

f 4Jc 

A- 
l! 

b 

1 ic 

C 

which commutes since i is natural. Now if f is a monomorphism, @f is a surjection 
and then by Theorem 1.1, so is q; therefore q * oi, is a monomorphism. But the 
pushout sf f along g factors through q*Q, so that pushou.t is also a 
monomorphism. El 

Recall that congruences on a Heyting algebra A are in correspondence with filters 
on A: giv:n CY E . +I), we get a congruence b:q defining 

Let A -+A /cy denote the quotient of A by (zr. We need some simple facts about image 
factorizatiions and pushouts of quotients in Ha. 

3.1. Lemma. Suppose that f : A -+B is a morphism of Heyting algebras. 
(i) If /j: E . y-(B), then the factorization of A f, B ----+ B/b through A-+A/f-‘p 

is a monomorphism: 

f 
A-B 

(ii) If u f i(A), then the pushout along f of the quotient of A by CT is the quotient 
of B b_v if ((r), i.e. there is a pushout square 

A 
f 

-----------)B 
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Theorem B. Every pushout square ir,p Ha has the interpolation property (cf. the 
Introduction). 

Proof. Let 

h 
B-P 

I T 

f k 

A --g-C 

be t pushout square in Ha. It follows from Lemma 3.1 I 
C--+P--+ PMh(p) factors as 

E 
C - C/ Sg( f - ‘p) + P/3-h(p) 

and that 

B./p - P/‘Yh(p) 

Irr I 

R 

A/f-‘p 2 CLfg( f - ‘p) 

is also a pushout square. But since 7 is a monomorphism! 
hence k-‘(#h(P)) = Yjjfl~). 

Now if b E B, CE C and h(b) s k(c), taking /?= f,(b), 
.3-h@), so that c~k-‘(Xh(P))= .“/g(f-*/I). Hence there is 
g(a) s c, as required. Cl 

that for any /?E X(B), 

by Theorem A so is R: 

we have km t,(hb) = 
a E A with b <f(a) and 

Remark. The first part of the proof of Theorem B is really just the (dual of the) 
proof, familiar in the context of regular categories, that stability of image factoriza- 
tions under pullback implies the Beck-Chevalley condition for existential quan- 
tification (cf. 3.2.1 of [3]). The last prrt of the proof is thus a particular instance 
of the fact remarked upon in the Introduction, that under suitable circumstances the 
interpolation property is equivalent to a Beck-Chevalley condition. 

4. The situP+! AI for distributive lattices rwd frames 

In ranclusion, we makt some remzrks about the analogues of Theorems A and 
B frr the category 1 of d, 31 ibutive lattices and the category of frames. 

(2) Nob every pushout squ ,re in 1 has the interpola;ion property. For example, 
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let d E D ibe an element of a distributive lattice which does not have a complement 
in D. Let f: D+ f,(d) and g : D-&(d) be the morphisms defined by 

f(x) = d vx and g(x) = d/ix. 

Then the pushout of f ,along g in DI is the trivial lattice 1 (in which I = T): 

Now h( T)L k( I) in 1, but if there were an XE D with T of and g(x)5 _I., we 
should have T = dvx, dnx= I, i.e. d would be complemented, contrary to 
assumption. 

(b) Applying the functor ,Fr (which is left adjoint to the forgetful functor 
Ftm-+Dl) to the square in (a), we obtain a pushout square in Frm for which the 
interpolation property fails. (There are many others.) 

(c) Monomorphisms are stable under pushout in Dl. One way of proving this 
(constructively) is to use Theorem A together with the fact that the left adjoint of 
the inclusion of the full subcategory of Boolean algebras into Dl preserves 
monomorphisms and the unit of the adjunction is a monomorphism. 

(d) As is well known, surjections are not stable under pullback in Lot, so that 
the analogue of Theorem A fails for Frm. Indeed Frm fails to have the amaigama- 
thon property. For example’, let X = N U (00) with topo 

UC X is open e U=0 or X\U is a finite subset of hl. 

Putting the discrete topology on N, let i : N c*X denote the inclusion regarded as 
a continuous map. The corresponding frame morphism i* : R(X)+P(N) between 
the lattices of open sets is actually a monomorphism. But the pushout of i* along 
the monomorphism Q(X)+P(X) is 

id 
PPJ) - PUN 

and i * : P(X)-+ P(N) is not a monomorphism. 

’ I am gra:eful to P.T. Johnstone for suggesting this example. 
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