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Abstract. The nominal approach to abstract syntax deals with the issues of bound names and
α-equivalence by considering constructions and properties that are invariant with respect to per-
muting names. The use of permutations gives rise to an attractively simple formalization of common,
but often technically incorrect uses of structural recursion and induction for abstract syntax modulo
α-equivalence. At the heart of this approach is the notion of finitely supported mathematical objects.
This article explains the idea in as concrete a way as possible and gives a new derivation within
higher-order classical logic of principles of α-structural recursion and induction for α-equivalence
classes from the ordinary versions of these principles for abstract syntax trees.
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1. Introduction

“They [previous approaches to operational semantics] do not in general
have any great claim to being syntax-directed in the sense of defining
the semantics of compound phrases in terms of the semantics of their
components.”

GD Plotkin, A Structural Approach to Operational Semantics, p. 21
(Aarhus 1981; reprinted as Plotkin [2004, p. 32]).

The above quotation and the title of the work from which it comes indicate the
important role played by structural recursion and structural induction in program-
ming language semantics. These are the forms of recursion and induction that fit
the commonly used “algebraic” treatment of syntax. In this approach one specifies
the syntax of a language at the level of abstract syntax trees (ASTs) by giving an
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algebraic signature. This consists of a collection of sorts s (one for each syntactic
category of the language), and a collection of constructors K (also called “opera-
tors” or “function symbols”). Each such K comes with an arity consisting of a finite
list (s1, . . . , sn) of sorts and with a result-sort s. Then, the ASTs over the signature
can be described by inductively generated terms t : if K has arity (s1, . . . , sn) and
result sort s, and if ti is a term of sort si for i = 1..n, then K(t1, . . . tn) is a term
of sort s. One gets off the ground in this inductive definition with the n = 0 in-
stance of the rule for forming terms, which covers the case of constants, C (and one
usually writes the term C() just as C). Recursive definitions and inductive proofs
about programs following the structure of their ASTs are both clearer and less
prone to error than ones using nonstructural methods. However, this treatment of
syntax does not take into account the fact that most languages that one deals with in
programming semantics involve binding constructors. In the presence of binders,
many syntax-manipulating operations only make sense, or at least only have good
properties, when we operate on syntax at a level of abstraction represented not by
ASTs themselves, but by α-equivalence classes of ASTs.

It is true that this level of abstraction, which identifies terms differing only in the
names of bound entities, can be reconciled with an algebraic treatment of syntax by
using indexes, as in de Bruijn [1972]. The well-known disadvantage of this device
is that it necessitates a calculus of operations on de Bruijn indexes that does not
have much to do with our intuitive view of the structure of syntax. As a result there
can be a big “coding gap” between statements of results involving binding syntax
we would like to make and their de Bruijn versions; and (hence) it is easy to get
things wrong. For this reason, de Bruijn-style representations of syntax may be
more suitable for language implementations than for work on language semantics.

In any case, most of the work on semantics which is produced by humans rather
than by computers sticks with ordinary ASTs involving explicit bound names and
uses an informal approach to α-equivalence classes.1 This approach is signalled
by, a form of words such as “we identify expressions up to α-equivalence” and
means that: (a) occurrences of “t” now really mean its α-equivalence class “[t]α”;
and (b) if the representative t for the class [t]α is later used in some context where
the particular bound names of t clash in some way with those in the context, then
t will be changed to an α-variant whose bound names are fresh (i.e., are ones not
used in the current context). In other words, it is assumed that the “Barendregt
variable convention” [Barendregt 1984, Appendix C] is maintained dynamically.
In the literature, the ability to change bound names “on the fly” is usually justified
by the assertion that final results of constructions involving ASTs are independent
of choice of bound names. A fully formal treatment has to prove such independence
results and in this article we examine ways, arising from the results of Gabbay and
Pitts [2002] and Pitts [2003], to reduce the burden of such proofs.

However, proving that pre-existing functions respect α-equivalence is only part
of the story; in most cases a prior (or simultaneous) problem is to prove the exis-
tence of the required functions in the first place. To see why, consider the familiar
example of capture-avoiding substitution (x := t)t ′ of a λ-term t for all free oc-
currences of a variable x in a λ-term t ′. To bring out the issues with binders more

1 This includes the metatheory of “higher-order abstract syntax” [Pfenning and Elliott 1988], where
the questions we are addressing are pushed up one meta-level to a single binding-form, λ-abstraction.
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clearly, let us consider this operation not for the pure λ-calculus, but for an applied
calculus that also has expressions for local recursive function declarations. Thus,
the terms are either variables (x, f, y, . . . ), applications (t1 t2), function abstractions
(λx .t), or local recursive function declarations of the form letrec f x = t1 in t2. The
leftmost occurrence of the variable f in letrec f x = t1 in t2 binds all free occur-
rences of f in both t1 and t2; whereas the leftmost occurrence of the variable x only
binds free occurrences of x in t1. A systematic way of specifying such patterns of
binding and the associated notion of α-equivalence is given in Section 2.2; for the
moment I assume the reader can supply a suitable definition of α-equivalence for
λ-terms involving such letrec-expressions. How does one define capture-avoiding
substitution for such terms up to α-equivalence? In the vernacular of programming
semantics, one might specify (x := t)(−) by saying it has the following properties,
where fv(t) indicates the finite set of free variables of t .

(x := t)y =
{

t if y = x
y if y �= x

(1)

(x := t)(t1 t2) = (x := t)t1 (x := t)t2 (2)

y /∈ fv(t) ∪ {x} ⇒ (x := t)λy. t1 = λy. (x := t)t1 (3)

y /∈ fv(t2) ∪ { f } & f, y /∈ fv(t) ∪ {x} ⇒
(x := t)letrec f y = t1 in t2 = letrec f y = (x := t)t1 in (x := t)t2. (4)

The condition on Eq. (3) should be familiar enough: there is no need to say what
happens when y occurs free in t or when y = x , since we are working “up to α-
equivalence” and can change λy. t1 to an α-variant satisfying these conditions. The
same goes for the more complicated condition on Eq. (4): Given x and t , we can
change letrec f y = t1 in t2 up to α-equivalence to ensure that f and y are distinct
variables not occurring free in t and not equal to x ; less crucially, we can also
assume that y does not occur free in t2, because that term lies outside the binding
scope of y in the term letrec f y = t1 in t2.

To see what this specification of (x := t)(−) really amounts to, let us restore the
usually invisible notation [t]α for the α-equivalence class of a term t . Writing �
for the set of terms and �/=α for its quotient by α-equivalence =α, then capture-
avoiding substitution of an α-equivalence class e for a variable x is a function ŝx,e ∈
�/=α → �/=α. Every such function corresponds to a function sx,e ∈ � → �/=α

respecting =α, that is, satisfying

t1 =α t2 ⇒ sx,e(t1) = sx,e(t2) (5)

(enabling us to define ŝx,e([t]α) as [sx,e(t)]α). The requirements (1)–(4) mean that
we want sx,e to satisfy:

sx,e(y) =
{

e if y = x
[y]α if y �= x

(6)

sx,e(t1 t2) = [t ′
1 t ′

2]α where sx,e(ti ) = [t ′
i ]α for i = 1, 2

(7)
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y /∈ fv(e) ∪ {x} ⇒
sx,e(λy.t1) = [λy.t ′

1]α where sx,e(t1) = [t ′
1]α (8)

y /∈ fv(t2) ∪ { f } & f, y /∈ fv(e) ∪ {x} ⇒
sx,e(letrec f y = t1 in t2) = [letrec f y = t ′

1 in t ′
2]α

where sx,e(ti ) = [t ′
i ]α for i = 1, 2. (9)

The problem is not one of proving that a certain well-defined function sx,e respects
α-equivalence, but rather of proving that a function exists satisfying (5)–(9). Note
that (6)–(9) do not constitute a definition of sx,e(t) by recursion on the structure of the
AST t : even if we patch up the “where” conditions in clauses (7)–(9) by using some
enumeration of ASTs to make the choices t ′

i definite functions of sx,e(ti ), the fact still
remains that clauses (8) and (9) and only specify what to do for certain pairs (y, t1),
rather than for all such pairs. Of course it is possible to complicate the specification
by saying what to do for λ- and letrec-terms that do not meet the preconditions in (8)
and (9), thereby arriving at a way of constructing sx,e(t) for any t (either by giving
up structural properties and using a less natural recursion on the height of trees; or
by fixing an enumeration of variables and using structural recursion to define a more
general operation of simultaneous substitution [Stoughton 1988]). An alternative
approach, and one that works with the original simple specification, is to construct
functions by giving rule-based inductive definitions of their graphs, with the rules
encoding the required properties of the function. One then has to prove (using rule-
based induction) that the resulting relations are single-valued, total and respect =α.
This is in principle a fully formal and widely applicable approach to constructing
functions like sx,e using tools that in any case are part and parcel of structural
operational semantics; but one that is extremely tedious to carry out. It would be
highly preferable to establish a recursion principle that goes straight from definitions
like (1)–(4) to the existence of the function (x := t)(−) ∈ �/=α → �/=α. We
provide such a principle here for a general class of signatures in which binding
information can be declared. We call it α-structural recursion and it comes with an
associated induction principle, α-structural induction.

These recursion and induction principles for α-equivalence classes of ASTs are
simplifications and generalizations of the ones introduced by Gabbay and Pitts
[2002] as part of a new mathematical model of fresh names and name binding.
That article expresses its results in terms of an axiomatic set theory, based on the
classical Fraenkel-Mostowski permutation model of set theory. In my experience,
this formalism impedes the take up within computer science of the new ideas
contained in that article. There is an essentially equivalent, but more concrete
description of the model as standard sets equipped with some simple extra structure.
These so-called nominal sets are introduced by Pitts [2003], and I will use them here
to express α-structural recursion and induction within “ordinary mathematics”, or
more precisely, within Church’s higher-order classical logic [Church 1940].

1.1. HOW TO READ THIS ARTICLE. Having read the Introduction this far, impa-
tient readers may wish to turn to Theorem 5.4 to see the statement of the α-structural
recursion principle for λ-calculus with letrec-terms and how it is used to define
(x := t)(−) ∈ �/=α → �/=α satisfying (1)–(4). To understand the statement
of this theorem, they must then look up the definitions of “nominal set”, “finite
support” and the freshness relation (−) # (−) in Section 3. This recursion principle
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and the corresponding induction principle are generalised to arbitrary signatures
with binding information in Section 5. The particular way of specifying binding
information that we use (via nominal signatures [Urban et al. 2004]) is explained
in Section 2. Section 4 gives a first, simple version of the α-structural recursion
and induction principles that is derived from ordinary structural recursion/induction
for ASTs by, roughly speaking, taking into account an implicit parameterisation
by name-permutations. The reduction of the practically more useful principles of
Section 5 to the simpler ones of Section 4 is quite involved and is relegated to the
Appendices. Section 6 contains an extended example (on normalization by evalu-
ation for the simply-typed λ-calculus [Berger and Schwichtenberg 1991]) that not
only uses α-structural recursion and induction, but also shows off some of the power
of nominal sets and the notion of freshness of names that they support. The final
Section 7 assesses this article’s “nominal” approach to abstract syntax in the context
of related work, both from a mathematical perspective and from the perspective of
automated theorem proving.

2. Nominal Syntax

The usual principles of structural recursion and induction are parameterised by
an algebraic signature that specifies the allowed constructors for forming abstract
syntax trees (ASTs) of each sort. In order to state principles of recursion and
induction for α-equivalence classes of ASTs, we need to fix a notion of signature
that also specifies the forms of binding that occur in the ASTs. As explained in the
Introduction, we stick with the usual “nominal” approach in which bound entities
are explicitly named. Any generalisation of the notion of algebraic signature to
encompass constructors that bind names needs to specify how bound occurrences
of names in an AST are associated with a binding site further up the syntax tree.
There are a number of such mechanisms in the literature of varying degrees of
generality [Fiore et al. 1999; Griffin 1988; Honsell et al. 2001; Plotkin 1990; Urban
et al. 2004]. Here we will use the notion of nominal signature [Urban et al. 2004]. It
has the advantage of dealing with binding and α-equivalence independently of any
considerations to do with variables, substitution and β-equivalence: bound names in
a nominal signature may be of several different sorts and not just variables that can
be substituted for. In common with the other cited approaches, nominal signatures
only allow for constructors that bind a fixed number of names (and without loss of
much generality, we can take that number to be one). There are certainly forms of
binding occurring “in the wild” that do not fit comfortably into this framework (for
example, in the full version of F<: with records and pattern-matching used in Part
2B of the “POPLmark challenge” [Aydemir et al. 2005]). I believe that the notion
of α-structural recursion given here can be extended to cover more general forms of
statically scoped binding, such as those used by Pottier [2005] in his Cαml library;
but for simplicity’s sake I will stick with constructors binding a fixed number of
names.

2.1. ATOMS. From a logical point of view (as opposed to a pragmatic one
that also encompasses issues of parsing and pretty-printing), the names we use for
making localised bindings in formal languages only need to be atomic, in the sense
that the structure of names (of the same kind) is immaterial compared with the
distinctions between names. Therefore, we will use the term atom for such names.
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Throughout this article, we fix two sets: the set A of all atoms and the set AS of
all atom-sorts. We also fix a function sort ∈ A → AS assigning sorts to atoms and
assume that the sets AS and Aa � {a ∈ A | sort(a) = a} for each a ∈ AS, are all
countably infinite.

2.2. NOMINAL SIGNATURES. A nominal signature � consists of a subset of the
atom-sorts, �A ⊆ AS, a set �D of data-sorts and a set �C of constructors. Each
constructor K ∈ �C comes with an arity σ and a result sort s ∈ �D, and we write
K : σ → s to indicate this information. The arities σ of � are given as follows:

Atom-sorts. Every atom-sort a ∈ �A is an arity.
Data-sorts. Every data-sort s ∈ �D is an arity.
Unit arity. 1 is an arity.
Pair arities. If σ1 and σ2 are arities, then σ1 ∗ σ2 is an arity.
Atom-binding arities. If a ∈ �A and σ is an arity, then �a�σ is an arity.

The terms t over � of each arity are defined as follows, where we write t : σ to
indicate that t has arity σ .2

Atoms. If a ∈ Aa is an atom of sort a, then a : a.
Constructed terms. If K : σ → s is in �C and t : σ , then K t : s.
Unit. 〈〉 : 1 is the unique term of unit arity.
Pairs. If t1 : σ1 and t2 : σn , then 〈t1, t2〉 : σ1 ∗ σ2.
Atom-binding. If a ∈ Aa and t : σ , then �a�t : �a�σ .

We write Ar(�) for the set of all arities over a nominal signature �, T(�) for
the set of all terms over �, and ar ∈ T(�) → Ar(�) for the function assigning to
each term t the unique arity σ such that t : σ holds. For each σ ∈ Ar(�), we write
T(�)σ for the subset {t ∈ T(�) | ar(t) = σ } of terms of arity σ .

Example 2.1 (λ-calculus with letrec). Here is a nominal signature for the un-
typed λ-calculus [Barendregt 1984]. There is a single atom-sort v for variables, and
a single data-sort t for λ-terms.

atom-sorts data-sorts constructors
v t V : v → t

A : t ∗ t → t
L : �v�t → t

To illustrate the intermixing of the arity-formers for pairing and atom-binding that
is allowed in a nominal signature, consider augmenting λ-calculus with the local
recursive function declarations, letrec f x = t1 in t2, that were used in the discussion
of capture-avoiding substitution in the Introduction. Recall that free occurrences of
x in t1 are bound in letrec f x = t1 in t2; and free occurrences of f in either of t1 or
t2 are bound in the term. To get the effect of this, we can add to the above nominal
signature a constructor

Letrec : �v�((�v�t) ∗ t) → t.

2 Compared with Urban et al. [2004, Definition 2.3] we only define ground terms, since we do not
need to consider variables ranging over terms here.



Alpha-Structural Recursion and Induction 465

So, for example, the expression letrec f x = f x in f (λy.y) corresponds to the
nominal term

Letrec� f �〈�x�A〈V f, Vx〉, A〈V f, L�y�Vy〉〉
of arity t over this signature (where f, x, y ∈ Av).

Example 2.2 (π -calculus). Here is a nominal signature for the version of the
Milner–Parrow–Walker π -calculus given by Sangiorgi and Walker [2001, Defini-
tion 1.1.1]. There is an atom-sort chan for channel names and a data-sort proc for
process expressions; but there are also auxiliary data-sorts gsum, for processes that
are guarded sums, and pre, for prefixed processes.

atom-sorts data-sorts constructors
chan proc Gsum : gsum → proc

gsum Par : proc ∗ proc → proc
pre Res : �chan�proc → proc

Rep : proc → proc
Zero : 1 → gsum
Pre : pre → gsum

Plus : gsum ∗ gsum → gsum
Out : (chan ∗ chan) ∗ proc → pre

In : chan ∗ �chan�proc → pre
Tau : proc → pre

Match : (chan ∗ chan) ∗ pre → pre

For example, the π -calculus process expression νx((xu.0 + yv .0)|x(z).zw .0) cor-
responds to the following nominal term of arity proc over this signature (where
x, u, y, v, z, w ∈ Achan):

Res�x�Par〈GsumPlus〈PreOut〈〈x, u〉, GsumZero〈〉〉,
PreOut〈〈y, v〉, GsumZero〈〉〉〉,

GsumPreIn〈x, �z�GsumPreOut〈〈z, w〉, GsumZero〈〉〉〉〉.
2.3. ORDINARY STRUCTURAL RECURSION AND INDUCTION. The terms over a

nominal signature � are just the abstract syntax trees determined by an ordinary
signature associated with � whose sorts are the arities of �, whose constructors
are those of �, plus constructors for unit, pairs and atom-binding, and with atoms
regarded as particular constants. Consequently we can use ordinary structural re-
cursion to define functions on the set T(�) of terms over �; and we can use ordinary
structural induction to prove properties of those terms. The following two theorems
give versions of these principles that we use later. We regard their proofs as standard
and omit them.3

THEOREM 2.3 (STRUCTURAL RECURSION FOR NOMINAL TERMS). Let � be a
nominal signature. Suppose we are given sets Sσ , for each σ ∈ Ar(�), and

3 Each theorem can be used to prove the other; and either of them can be proved using induction for
the natural numbers once one has fixed upon a particular construction of abstract syntax trees.
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elements

ga ∈ Aa → Sa (a ∈ �A)
gK ∈ Sσ → Ss ((K : σ → s) ∈ �C)
g1 ∈ S1

gσ1∗σ2 ∈ Sσ1 × Sσ2 → Sσ1∗σ2 (σ1, σ2 ∈ Ar(�))
g�a�σ ∈ Aa × Sσ → S�a�σ (a ∈ �A, σ ∈ Ar(�))

(We write X × Y for the Cartesian product of two sets X and Y ; and write X → Y
for the set of functions from X to Y .) Then there is a unique family of functions
(ĝσ ∈ T(�)σ → Sσ | σ ∈ Ar(�)) satisfying the following properties

ĝ a = ga(a) (10)
ĝ(K t) = gK(ĝ t) (11)

ĝ〈〉 = g1 (12)
ĝ〈t1, t2〉 = gσ1∗σ2〈ĝ t1, ĝ t2〉 (13)

ĝ �a�t = g�a�σ (a, ĝ t), (14)

where we have abbreviated ĝσ (t) to ĝ t (since σ = ar(t) is determined by t).

THEOREM 2.4 (STRUCTURAL INDUCTION FOR NOMINAL TERMS). Let � be a
nominal signature and S ⊆ T(�) a set of terms over �. To prove that S is the whole
of T(�), it suffices to show

(∀a ∈ �A, a ∈ Aa) a ∈ S (15)
(∀(K : σ → s) ∈ �C, t : σ ) t ∈ S ⇒ K t ∈ S (16)
〈〉 ∈ S (17)
(∀(σi ∈ Ar(�), ti : σi | i = 1, 2)) t1 ∈ S & t2 ∈ S ⇒ 〈t1, t2〉 ∈ S (18)
(∀a ∈ �A, a ∈ Aa, σ ∈ Ar(�), t : σ ) t ∈ S ⇒ �a�t ∈ S. (19)

2.4. α-EQUIVALENCE AND α-TERMS. So far, we have taken no account of the
fact that atom-binding terms �a�t should be identified up to renaming the bound
atom a. Given a nominal signature �, the relation of α-equivalence, t =α t ′ : σ
(where σ ∈ Ar(�) and t, t ′ ∈ T(�)σ ) makes such identifications. It is inductively
defined by the rules in Figure 1. They generalise to terms over a nominal signature
a version of the definition of α-equivalence of λ-terms [Gunter 1992, p. 36] that is
conveniently syntax-directed compared with the classic version [Barendregt 1984,
Definition 2.1.11]. It is easy to see that =α is reflexive, symmetric and respects the
various term-forming constructions for nominal syntax. Less straightforward is the
fact that =α is transitive. This can be proved in a number of ways. My favorite way
makes good use of the techniques we will be using later, based on the action of
atom-permutations on terms; see Pitts [2003, Example 1].

Definition 2.5. For each σ ∈ Ar(�), we write Tα(�)σ for the quotient of T(�)σ
by the equivalence relation (−) =α (−) : σ . Thus, the elements of Tα(�)σ are α-
equivalence classes of terms of arity σ ; we write [t]α for the class of t and refer to
[t]α as an α-term of arity σ over the nominal signature �.
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FIG. 1. α-Equivalence of nominal terms.

3. Finite Support

The crucial ingredient in the formulation of structural recursion and induction for
α-terms over a nominal signature is the notion of finite4 support. It gives a well-
behaved way, phrased in terms of atom-permutations, of expressing the fact that
atoms are fresh for mathematical objects. It turns out to agree with the obvious def-
inition when the objects are finite data such as abstract syntax trees, but allows us to
deal with freshness for the not so obvious case of infinite sets and functions. For ex-
ample, the identity function on A “mentions” every atom in its graph; nevertheless,
it has empty support and any atom is fresh for it.

3.1. NOMINAL SETS. Let Perm denote the set of all (finite, sort-respecting)
atom-permutations; by definition, its elements are bijections π : A ↔ A such that
{a ∈ A | π (a) �= a} is finite5 and sort(π (a)) = sort(a) for all a ∈ A. The operation
of composing bijections gives a binary operation π, π ′ ∈ Perm �→ π ◦ π ′ ∈ Perm

(π ◦ π ′)(a) � π (π ′(a)) (a ∈ A)

that makes Perm into a group; we write ι for the identity atom-permutation and
π−1 for the inverse of π . Among the elements of Perm we single out transpositions
(a a′) given by a pair of atoms of the same sort: (a a′) is the atom-permutation
mapping a to a′, mapping a′ to a and leaving all other atoms fixed. It is a basic
fact of group theory that every π ∈ Perm is equal to a finite composition of such
transpositions.

4 Both Gabbay [2006] and Cheney [2004] develop more general notions of “small” supports. As
Cheney’s work shows, such a generalisation is necessary for some techniques of classical model
theory to be applied; but finite supports suffice here.
5A very similar theory of nominal sets can be developed without this restriction to finite permutations;
but the restriction does ensure that Perm is itself a nominal set (see Example 3.3)—a fact that we
exploit in the proof of the α-structural recursion theorem.
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An action of Perm on a set X is a function Perm × X → X , whose effect on
(π, x) ∈ Perm × X we write as π · x (with X understood), and which is required
to have the properties: ι · x = x and π · (π ′ · x) = (π ◦ π ′) · x , for all x ∈ X and
π, π ′ ∈ Perm. Given such an action and an element x ∈ X , we say that a set A ⊆ A

of atoms supports x if (a a′) · x = x holds for all atoms a and a′ (of the same sort)
that are not in A.

Definition 3.1. A nominal set is by definition a set X equipped with an action
of Perm such that every element x ∈ X is supported by some finite set of atoms.

If X is a nominal set and A1 and A2 are both finite sets of atoms supporting
x ∈ X , then it is the case that A1 ∩ A2 also supports x . To see this, suppose that a
and a′ are atoms of the same sort not in A1 ∩ A2; we have to show (a a′) · x = x .
This is certainly the case if a = a′ (because (a a) = ι); and if a �= a′, picking any
atom a′′ of the same sort as a and a′ not in the finite set A1 ∪ A2 ∪ {a, a′}, then
(a a′) = (a a′′) ◦ (a′ a′′) ◦ (a a′′) is a composition of transpositions each of which
fixes x (since for each of the three pairs of atoms, each element of the pair is either
not in A1, or not in A2), so itself fixes x , as required. It follows immediately from
this intersection property of finite supports that in a nominal set X , each element
x ∈ X possesses a smallest finite support, which we write as suppX (x), or just
supp(x) if X is clear from the context, and call the support of x in X .

Example 3.2

(1) Each set Aa of atoms of a particular sort a is a nominal set once we endow it
with the atom-permutation action given by π · a = π (a); as one might expect,
supp(a) = {a}. It is not hard to see that the disjoint union of nominal sets is
again a nominal set. So since the set of all atoms is the disjoint union of Aa as
a ranges over atom-sorts, A is a nominal set with atom-permutation action and
support sets as for each individual Aa.

(2) Let � be a nominal signature. Using Theorem 2.3, we can define an atom-
permutation action on the sets T(�)σ of terms over � of each arity σ ∈ Ar(�):

π · a � π (a)

π · K t � K(π · t)

π · 〈〉 � 〈〉
π · 〈t1, t2〉 � 〈π · t1, π · t2〉
π · �a�t � �π · a�(π · t).

Using Theorem 2.4, one can prove that this has the properties required of
an atom-permutation action, that a, a′ /∈ atm(t) ⇒ (a a′) · t = t , and that
a ∈ atm(t) & (a a′) · t = t ⇒ a = a′. From these facts, it follows that each
T(�)σ is a nominal set, with supp(t) equal to the finite set atm(t) of atoms
occurring in t .

(3) Turning next to α-terms over � (Section 2.4), first note that the action of
atom-permutations on terms preserves α-equivalence: this is a consequence of
a general property (Theorem 3.6) of rule-based inductive definitions that we
will establish at the end of Section 3.2. Therefore, we get a well-defined action
on α-terms by defining: π · [t]α = [π · t]α. For this action, one finds that Tα(�)σ
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is a nominal set with supp([t]α) equal to the finite set fa(t) of free atoms of any
representative t of the class [t]α, defined (using Theorem 2.3) by:

fa(a) � {a}
fa(K t) � fa(t)

fa(〈〉) � ∅
fa(〈t1, t2〉) � fa(t1) ∪ fa(tn)

fa(�a�t) � fa(t − {a}).
(4) Each set S becomes a nominal set, called the discrete nominal set on S, when

we endow it with the trivial action of atom-permutations, given by π · s = s
for each π ∈ Perm and s ∈ S; in this case the support of each element is empty.
In particular, we will regard the one-element set 1 = {()}, the set of Booleans
B = {true, false} and the set of natural numbers N = {0, 1, 2, . . . } as nominal
sets in this way.

3.2. PRODUCTS, FUNCTIONS AND POWERSETS. If X1 and X2 are nominal sets,
then we get an action of atom-permutations on their Cartesian product X1 × X2
by defining π · (x1, x2) to be (π · x1, π · x2), for each (x1, x2) ∈ X1 × X2. If Ai
supports xi ∈ Xi for i = 1, 2, then it is not hard to see that A1 ∪ A2 supports
(x1, x2) ∈ X1 × X2. Thus, X1 × X2 is also a nominal set. Note that

supp((x1, x2)) = supp(x1) ∪ supp(x2). (20)

since we have already observed that supp(x1) ∪ supp(x2) supports (x1, x2), so that
supp((x1, x2)) ⊆ supp(x1) ∪ supp(x2); and conversely, if A supports (x1, x2), then
it also supports each xi , so that supp(xi ) ⊆ supp((x1, x2)).

Turning next to functions, if X and Y are nominal sets, then we get an action of
atom-permutations on the set X → Y of all functions from X to Y by defining π · f
to be the function mapping each x ∈ X to π · ( f (π−1 · x)) ∈ Y . If you have not
seen this definition before, it may look more complicated than expected; however,
note that it is equivalent to the requirement that function application be respected
by atom-permutations:

π · ( f (x)) = (π · f )(π · x). (21)

More precisely, the definition of the action on functions is forced by the requirement
that X → Y together with the usual application function be the exponential of
X and Y in the Cartesian closed category whose objects are sets equipped with
an atom-permutation action and whose morphisms are functions preserving the
action. Unlike the situation for Cartesian product, not every element f ∈ X → Y
is necessarily finitely supported with respect to this action (see Example 3.4 below).
However, if f is supported by a finite set of atoms A, then π · f is supported by
{π (a) | a ∈ A}. (This follows as in the proof of property (25) below.) Therefore,
the set

X →fs Y � { f ∈ X → Y | (∃ finite A ⊆ A) A supports f }
of finitely supported functions from X to Y is closed under the atom-permutation
action and is a nominal set.

Given a nominal set X , we can use the usual bijection between subsets of X
and functions in X → B (where B = {true, false}) to transfer the action of



470 ANDREW M. PITTS

atom-permutations on X → B to one on subsets of X . From the definition of
the action of atom-permutations on functions and using the fact that the action on
B is trivial (see Example 3.2(4)), one can calculate that this action sends π ∈ Perm
and S ⊆ X to the subset

π · S � {π · x | x ∈ S}.
Note that if S is supported by a set of atoms A with respect to this action, then π · S
is supported by {π (a) | a ∈ A}. So the set

Pfs(X ) � {S ⊆ X | (∃ finite A ⊆ A) A supports S}
of finitely supported subsets of the nominal set X is closed under the atom-
permutation action on all subsets of X and hence is a nominal set.

Example 3.3 Recall that the elements of Perm are bijections from A to itself
that respect sorts and leave fixed all but finitely many atoms. So each π ∈ Perm is in
particular a function A → A. Regarding A as a nominal set, as in Example 3.2(1),
the action of atom-permutations on π qua function turns out to be the operation of
conjugation: π ′ · π = π ′ ◦ π ◦ (π ′)−1. Hence, the action of atom-permutations on
A → A restricts to an action on Perm. One can prove that the finite set {a ∈ A |
π (a) �= a} supports π with respect to this action (and is in fact the smallest such
set); so Perm is a nominal set.

Example 3.4 Not every function between nominal sets is finitely supported.
For example, since the set A of atoms is countable, there are surjective functions
from N to A; but it is not hard to see that any f ∈ N →fs A must have a finite
image (which is in fact the support of f ). A more subtle example of a non-finitely-
supported function is any choice function6 for the set A of atoms, that is, any function
choose ∈ (A →fs B) → A (where B = {true, false}) satisfying f (a) = true ⇒
f (choose( f )) = true, for all f ∈ A →fs B and a ∈ A. To see this, we suppose
that choose is supported by some finite set A ⊆ A and derive a contradiction. Let
f ∈ A → B be the function mapping a ∈ A to true if a /∈ A and to false if
a ∈ A. It is not hard to see that A supports f ; in particular, f ∈ A →fs B and
we can apply choose to obtain an atom a0 � choose( f ). Let a = sort(a0). Since
Aa is infinite and A ∪ {a0} is finite, there is some atom a1 ∈ Aa with a1 �= a0
and a1 /∈ A. Since a1 /∈ A, f (a1) = true by definition of f ; and so, since choose
is a choice function, we also have f (choose( f )) = true. By definition of f and
a0, this means that a0 = choose( f ) /∈ A. Since a0, a1 /∈ A and A supports both
choose and f , we have (a0 a1) · choose = choose and (a0 a1) · f = f . Thus by
(21), a1 = (a0 a1) · a0 = (a0 a1) · choose( f ) = ((a0 a1) · choose)((a0 a1) · f ) =
choose( f ) = a0, contradicting the fact that we picked a1 to be different from a0
and completing the proof.

For nominal sets X and Y , the operation of function application

appX,Y ( f, x) � f x

6 It was the lack of finite support for choice functions that motivated the original construction of the
permutation model of set theory by Fraenkel and Mostowski (see Jech [1977]).
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is an element of (X →fs Y ) × X →fs Y ; indeed, if follows from (21) that appX,Y is
supported by the empty set of atoms. Similarly, it is not hard to see that currying,

curX,Y,Z ( f ) � λx ∈ X.λy ∈ Y. f (x, y)

determines an element curX,Y,Z ∈ ((X × Y →fs Y ) →fs (X →fs (Y →fs Z ))) with
empty support. The constantly true function and the equality function

trueX (x) � true

eqX (x, x ′) � if x = x ′, then true else false

also determine elements trueX ∈ (X →fs B) and eqX ∈ (X × X →fs B) with empty
support. It is for these reasons that the following general principle holds good.

THEOREM 3.5 (FINITE SUPPORT PRINCIPLE). Any function or relation that is
defined from finitely supported functions and relations using higher-order, classical
logic without choice principles, is itself finitely supported.

Because of this, the collection of finitely supported functions and subsets of
nominal sets forms a very rich collection that is closed under the usual constructions
of informal, classical mathematics.7 If we remain within pure higher-order, classical
logic over ground types for numbers and Booleans, then we only get elements
with empty support. However, if we add a ground type for the set A of atoms,
a constant for the function sort ∈ A → AS (taking AS to be a copy of N) and
constants for each atom, then the terms and formulas of higher-order logic describe
functions and subsets that may have nonempty, finite support. Such a “higher-order
logic with atoms” has been developed by Gabbay [2002]. In this article, we stick
with ordinary higher-order, classical logic: By considering all functions and subsets
rather than just finitely supported ones, one sometimes gets more information about
a construction. A good example of this is provided by a cornerstone of programming
language semantics, namely rule-based inductive definitions. Given a nominal set
X , let R be a finitely supported set of rules for defining a subset of X ; more precisely,
let R be an element of the nominal set Pfs(Pfs(X ) × X ). As usual, a subset S ⊆ X
is closed under the rules in R if

(∀(H, c) ∈ R) H ⊆ S ⇒ c ∈ S

and the smallest such subset, ind(R), is given by the intersection of all such closed
subsets. If we worked systematically in “FM-HOL” [Gabbay 2002], rather than
using arbitrary subsets of X , we would only consider finitely supported subsets that
are closed under the rules, and would replace ind(R) by

⋂{S ∈ Pfs(X ) | (∀(H, c) ∈
R) H ⊆ S ⇒ c ∈ S}. However, these two subsets coincide, as the following
theorem shows.

THEOREM 3.6 (FINITELY SUPPORTED INDUCTIVE DEFINITIONS). Let X be a
nominal set. For any set of rules R ∈ Pfs(Pfs(X ) × X ), the subset ind(R) ⊆ X
inductively defined by R is a finitely supported subset of X; indeed, supp(ind(R)) ⊆
supp(R).

7 The only exception being that the finite support property is not conserved by all uses of choice: see
Example 3.4. The extent to which a useful theory of finite support can be developed in constructive
rather than classical mathematics is a very interesting question that is not pursued here.
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PROOF. Suppose a, a′ are atoms of the same sort that are not in the support of
R. We have to show that (a a′) · ind(R) = ind(R). It suffices to just show ind(R) ⊆
(a a′) · ind(R). (For applying (a a′) to both sides, then gives the reverse inclusion.)
For this, it suffices to show that (a a′) · ind(R) is closed under the rules in R, since
ind(R) is the smallest such subset. But if (H, c) ∈ R, then ((a a′) · H, (a a′) · c) is
also a rule in R, because (a a′) · (H, c) ∈ (a a′) · R = R since a, a′ /∈ supp(R).
So if H ⊆ (a a′) · ind(R), then (a a′) · H ⊆ (a a′) · (a a′) · ind(R) = ind(R), so
(a a′) · c ∈ ind(R) since ind(R) is closed under the rule ((a a′) · H, (a a′) · c); and
hence c = (a a′) · (a a′) · c ∈ (a a′) · ind(R).

In this article we will confine ourselves to finitely supported finitary rules, that
is, those R only containing (hypothesis, conclusion)-pairs (H, c) for which H is
a finite subset of X . Every finite subset of a nominal set is in particular a finitely
supported subset: clearly, {x1, . . . , xn} is supported by supp(x1) ∪ · · · ∪ supp(xn).
Furthermore, the action of atom-permutations on subsets of X clearly sends finite
subsets to finite subsets. So the finite powerset Pfin(X ) is a nominal set when X
is. For finitary rules, we just have to check that R is a finitely supported subset of
the nominal set Pfin(X ) × X to conclude from the above theorem that the subset
ind(R) it inductively defines is again finitely supported. For example, it is not hard
to see that the rule set given schematically in Figure 1 is a subset of Pfin(T(�) ×
T(�)) × (T(�) × T(�)) that is supported by the empty set of atoms. Therefore,
by the theorem, the relation =α of α-equivalence is supported by the empty set.
So =α is preserved by all atom-transpositions and hence also by any π ∈ Perm
(since each π is a composition of transpositions):

t =α t ′ : σ ⇒ π · t =α π · t ′ : σ. (22)

We used this property in Example 3.2(3) when discussing the nominal set structure
of Tα(�).

3.3. NOMINAL SUBSETS AND QUOTIENTS. If X is a nominal set and S ∈ Pfs(X )
is a finitely supported subset of it, then S is not necessarily itself a nominal set,
because for any x ∈ S and π ∈ Perm we have no guarantee that π · x again lies in
S. But if supp(S) = ∅, then (a a′) · S = S for all atoms a, a′ of the same sort; and
since each π ∈ Perm is the composition of transpositions, in this case, it follows
that π · S = S. From this, it is not hard to see that the condition supp(S) = ∅ is
equivalent to

(∀π ∈ Perm, x ∈ X ) x ∈ S ⇒ π · x ∈ S. (23)

So when (23) holds, the action of atom-permutations on elements of X restricts to
an action on S; and furthermore, the support of each x ∈ S is the same as its support
as an element of X . Therefore, S is a nominal set. We call such an S a nominal
subset of X . (The term, equivariant subset, is also commonly used for this.)

Another useful way of forming nominal sets is by taking quotients. If ∼ is an
equivalence relation on a nominal set X , then so long as ∼ is a nominal subset
of X × X , the usual set X/∼ of equivalence classes inherits a well-defined atom-
permutation action, given by π · [x] = [π · x]. Furthermore, an equivalence class
is supported by any set of atoms that supports a representative of the class. So
X/∼ is a nominal set. The construction of the nominal set Tα(�)σ of α-terms (of
arity σ over a nominal signature �) from the nominal set T(�)σ is an example of
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this construction, since we saw in (22) that α-equivalence is a nominal subset of
T(�)σ × T(�)σ .

3.4. FRESHNESS. Given an element of a nominal set, most of the time we are
interested not so much in its support as in the (infinite) set of atoms that are not in
its support. More generally, if x ∈ X and y ∈ Y are elements of nominal sets, we
write x # y when suppX (x) ∩ suppY (y) = ∅ and say that x is fresh for y.

LEMMA 3.7. Let X, Y and Z be nominal sets. For any x ∈ X, y ∈ Y , f ∈
Y →fs Z, π ∈ Perm and atoms a, a′ ∈ A of the same sort,

π · ((a a′) · x) = (π (a) π (a′)) · (π · x) (24)
x # y ⇒ π · x # π · y. (25)

x # f & x # y ⇒ x # ( f y). (26)

PROOF. Equation (24) follows immediately from the fact that the atom-
permutations π ◦ (a a′) and (π (a) π (a′)) ◦ π are always equal.

Given a set of atoms A, recall from the previous section that we write π · A
for the set {π (a) | a ∈ A}. Note that since each permutation is in particular a
bijection, it is the case that π · (A ∩ A′) = π · A ∩ π · A′. Therefore, to prove (25),
it suffices to show that π · supp(x) = supp(π · x). But if A supports x , then, for any
atoms a, a′ /∈ π · A (of the same sort), we have π−1(a), π−1(a′) /∈ A and hence
(π−1(a) π−1(a′)) · x = x . Applying π · (−) to both sides of this equation and using
(24), we get (a a′) · (π · x) = π · x . Thus, π · A supports π · x when A supports x .
So

(∀π ∈ Perm)(∀x ∈ X ) supp(π · x) ⊆ π · supp(x).

Hence, supp(x) = supp(π−1 · π · x) ⊆ π−1 · supp(π · x) and thus, we also have
π · supp(x) ⊆ supp(π · x). So we do indeed have π · supp(x) = supp(π · x) and
hence also (25).

Finally, for property (26), note that for all atoms a, a′ of the same sort, if a, a′ /∈
supp( f ) ∪ supp(y) then (a a′) · f = f and (a a′) · y = y; so by (21) (a a′) · f y =
((a a′) · f )((a a′) · y) = f y. Thus, supp( f ) ∪ supp(y) supports f y and hence
supp( f y) is contained in this finite set. Therefore, if supp(x) is disjoint from both
supp( f ) and supp(y), then it is also disjoint from supp( f y).

Recall that the set of atoms A is a nominal set as in Example 3.2(1). The follow-
ing simple property of finitely supported sets of atoms is extremely useful when
dealing with properties of fresh atoms; it subsumes Gabbay and Pitts [2002, Propo-
sition 4.10] and Pitts [2003, Proposition 4].

THEOREM 3.8 (SOME/ANY THEOREM). Let S ∈ Pfs(A) be a set of atoms sup-
ported by some finite set of atoms A. For each atom-sort a ∈ AS, the following are
equivalent:

(∀a ∈ Aa) a /∈ A ⇒ a ∈ S (27)
(∃a ∈ Aa) a /∈ A & a ∈ S. (28)

PROOF. Since Aa − A is infinite, it is in particular nonempty; thus, (27) implies
(28). Conversely, suppose a ∈ Aa − A satisfies a ∈ S. Given any other a′ ∈ Aa − A,
we have to show a′ ∈ S; but (a a′) · S = S (since a, a′ /∈ A ⊇ supp(S)) and hence
a′ = (a a′) · a ∈ (a a′) · S = S.
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Example 3.9 Recall from Example 3.2(ii) that, in the nominal set T(�)σ of
terms of arity σ over a nominal signature �, the support of a term t is just the
finite set atm(t) of atoms that occur in t . Furthermore, if a′ /∈ atm(t), then the terms
t{a′/a} (replace a by a′ throughout t) and (a a′) · t (swap a and a′ throughout t) are
the same. Therefore, the crucial rule (=α −5) in the definition of α-equivalence of
nominal terms can be rewritten as:

a ∈ �A a, a′, a′′ ∈ Aa a′′ # (a, t, a′, t ′) (a′′ a) · t =α (a′′ a′) · t ′ : σ

�a�t =α �a′�t ′ : �a�σ

In particular, we have

�a�t =α �a′�t ′ : �a�σ ⇔
(∃a′′ ∈ Aa) a′′ # (a, t, a′, t ′) & (a a′′) · t =α (a′ a′′) · t ′ : σ. (29)

Applying Theorem 3.8 to the set of atoms S = {a′′ ∈ Aa | (a a′′) · t =α (a′ a′′) · t ′ :
σ }, which (by Lemma 3.7) is supported by A = supp(a, t, a′, t ′), we get from (29)
a useful property of α-equivalence of atom-binding terms:

�a�t =α �a′�t ′ : �a�σ ⇔
(∀a′′ ∈ Aa) a′′ # (a, t, a′, t ′) ⇒ (a a′′) · t =α (a′ a′′) · t ′ : σ. (30)

The next result provides a very general criterion for when a construction that
“picks a fresh atom” is independent of which fresh atom is chosen.

THEOREM 3.10 (FRESHNESS THEOREM). Given an atom-sort a ∈ AS and a
nominal set X, if a finitely supported function h ∈ Aa →fs X satisfies

(∃a ∈ Aa) a # h & a # h(a), (31)

then there is a unique element fresh(h) ∈ X satisfying

(∀a ∈ Aa) a # h ⇒ h(a) = fresh(h). (32)

Furthermore, supp(fresh(h)) ⊆ supp(h).

PROOF. Given (31) we have to prove that h is constant on the nonempty set
Aa − supp(h). First, note that, by Theorem 3.8 (with S � {a ∈ Aa | a # h(a)} and
A � supp(h) ⊇ supp(S)), if (31) holds, then

(∀a ∈ Aa) a # h ⇒ a # h(a). (33)

Suppose a, a′ ∈ Aa − supp(h). To see that h(a) = h(a′), without loss of generality
we may assume a �= a′. By (26), a # h(a′) (since a # h and a # a′); and a′ # h(a′)
holds by (33). Hence,

h(a′) = (a a′) · h(a′) since (a, a′) # h(a′)
= ((a a′) · h)((a a′) · a′) by (21)

= h((a a′) · a′) since (a, a′) # h
= h(a).

So there is a unique element fresh(h) ∈ X satisfying (32). To see that it is supported
by supp(h), if a, a′ are atoms (of the same sort) satisfying (a, a′) # h, choosing any
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a′′ in the infinite set Aa − supp(h, a, a′), we have (a a′) · fresh(h) = (a a′) ·h(a′′) =
((a a′) · h)((a a′) · a′′) = h(a′′) = fresh(h). Thus, supp(h) supports fresh(h).

4. Recursion and Induction Principles for α-Terms

Recall from Definition 2.5 that Tα(�)σ denotes the set of α-terms of arity σ over
a nominal signature �; by definition these are α-equivalence classes [t]α of terms
t : σ . Elementary properties of the relation =α of α-equivalence yield the following
structural properties of α-terms; at the same time, we introduce some concrete syn-
tax for α-terms mirroring the informal notation for α-equivalence classes mentioned
in the Introduction.

Atoms. If a ∈ �A and e ∈ Tα(�)a, then there is a unique a ∈ Aa such that
e = [a]α. In this case, we write e just as a.

Constructed α-terms. If s ∈ �D and e ∈ Tα(�)s, then there are unique (K : σ →
s) ∈ �C and e′ ∈ Tα(�)σ such that there exists t ′ with e′ = [t ′]α and e = [K t ′]α.
In this case, we write e as K e′.

Unit. Tα(�)1 contains a unique equivalence class, [〈〉]α, which we write as ().
Pairs. If σ1, σ2 ∈ Ar(�) and e ∈ Tα(�)σ1∗σ2 , then there are unique ei ∈ Tα(�)σi

for i = 1, 2 such that there exist ti with ei = [ti ]α (i = 1, 2) and e = [〈t1, t2〉]α. In
this case, we write e as (e1, e2).

Atom-binding. If a ∈ �A, σ ∈ Ar(�) and e ∈ Tα(�)�a�σ , then for each a ∈ Aa

with a # e (i.e., with a not a free atom of e–cf. Example 3.2(iii)), there is a unique
e′ ∈ Tα(�)σ such that there exists t ′ with e′ = [t ′]α and e = [�a�t ′]α. In this
case, we write e as a. e′.

Using this notation, we now give a first version of structural recursion for α-terms
over a nominal signature. Compared with Theorem 2.3, the principle uses nominal
sets rather than ordinary sets, and requires a common finite support for the collection
of functions in its hypothesis. Furthermore, the function supplied for each atom-
binding arity must satisfy a freshness condition for binders (FCB) saying, roughly,
that for some sufficiently fresh choice of the atom being bound, the result of the
function can never contain that atom in its support. These conditions ensure that
there is a unique (finitely supported) arity-indexed family of functions that is well
defined on α-equivalence classes and satisfies the required recursion equations—for
all sufficiently fresh bound atoms, in the case of the recursion equation for binders.

THEOREM 4.1 (FIRST α-STRUCTURAL RECURSION THEOREM). Let � be a
nominal signature. Suppose we are given an arity-indexed family of nominal sets
(Xσ | σ ∈ Ar(�)) and elements

fa ∈ Aa →fs Xa (a ∈ �A)
fK ∈ Xσ →fs Xs ((K : σ →fs s) ∈ �C)
f1 ∈ X1

fσ1∗σ2 ∈ Xσ1 × Xσ2 →fs Xσ1∗σ2 (σ1, σ2 ∈ Ar(�))
f�a�σ ∈ Aa × Xσ →fs X�a�σ (a ∈ �A, σ ∈ Ar(�))

all of which are supported by a finite set of atoms A and satisfy the freshness
condition for binders (FCB): for each atom-binding arity �a�σ ∈ Ar(�), the
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function f�a�σ satisfies

(∃a′ ∈ Aa) a′ /∈ A & (∀x ∈ Xσ ) a′ # f�a�σ (a′, x). (FCB)

Then there is a unique family of finitely supported functions ( f̂ σ ∈ Tα(�)σ →fs

Xσ | σ ∈ Ar(�)) with supp( f̂ σ ) ⊆ A and satisfying the following properties for
all a, e, e1, . . . , en of appropriate arity:

f̂ a = fa(a) (34)

f̂ (K e) = fK( f̂ e) (35)

f̂ () = f1 (36)

f̂ (e1, e2) = fσ1∗σ2 ( f̂ e1, f̂ e2) (37)

a /∈ A ⇒ f̂ (a. e) = f�a�σ (a, f̂ e) (38)

where we have abbreviated f̂ σ (e) to f̂ e and used the notation for α-terms intro-
duced above.

PROOF. We can reduce the proof of the theorem to an application of Theo-
rem 2.3, taking advantage of the fact that we are working (informally) in higher-
order logic.8 From the Ar(�)-indexed family of nominal sets Xσ we define an-
other such family: Sσ � Perm →fs Xσ (regarding Perm as a nominal set as in
Example 3.3 and using the →fs construct from Section 3.2). Now define elements
ga, gK, g1, gσ1∗σ2 and g�a�σ as in the statement of Theorem 2.3, as follows.

ga a � λπ ∈ Perm. fa(π (a))

gK s � λπ ∈ Perm. fK(s(π ))

g1 � λπ ∈ Perm. f1

gσ1∗σ2 (s1, s2) � λπ ∈ Perm. fσ1∗σ2 (s1(π ), s2(π ))

g�a�σ (a, s) � λπ ∈ Perm. fresh(λa′ ∈ Aa. f�a�σ (a′, s(π ◦ (a a′)))).

The crucial clause in this definition is the last one, where we are using the fresh func-
tional from Theorem 3.10 applied to the function h � λa′ ∈ Aa. f�a�σ (a′, s(π ◦
(a a′))). For this to make sense, it has to be the case that h is finitely sup-
ported and satisfies condition (31) of that lemma, let us see why this is so. Since
supp( f�a�σ ) ⊆ A by assumption, it follows that h is supported by the finite
set A ∪ supp(s, π, a). To see that (31) holds of h, let a′ be the atom whose
existence is asserted by (FCB); thus, a′ /∈ A and a′ # f�a�σ (a′, x) for any
x ∈ Xσ . For any other a′′ ∈ Aa − A, we have (a′ a′′) · f�a�σ = f�a�σ

(since a′, a′′ /∈ supp( f�a�σ )); hence, applying (a′ a′′) to a′ # f�a�σ (a′, x), from
Lemma 3.7, we get a′′ # f�a�σ (a′′, (a′ a′′) · x) for any x ∈ Xσ . Choosing a′′ to
be in the infinite set Aa − (A ∪ supp(s, π, a)) and x = (a′ a′′) · s(π ◦ (a a′′)),
we conclude that a′′ # h and a′′ # f�a�σ (a′′, s(π ◦ (a a′′))) = h(a′′), as required
for (31).

8 In other words, the theorem is reducible to primitive recursion at higher types.
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Applying Theorem 2.3 with this data, we get a family of functions

ĝσ ∈ T(�)σ → (Perm →fs Xσ )

satisfying the recursion equations (10)–(14) of that theorem. Next one proves that
these functions respect α-equivalence:

t1 =α t2 : σ ⇒ ĝσ t1 = ĝσ t2. (39)

This is done by induction over the derivation of t1 =α t2 : σ from the rules in
Figure 1; the induction step for rule (=α −5) uses the following property of ĝ,
which follows by induction on the structure of t , that is, using Theorem 2.4:

(∀σ ∈ Ar(�), t : σ )(∀π, π ′ ∈ Perm) ĝσ t (π ◦ π ′) = ĝσ (π ′ · t) π. (40)

In view of (39), the functions ĝσ induce functions f̂ σ ∈ Tα(�)σ → Xσ given by
f̂ σ [t]α � ĝσ t ι for any t : σ (recalling that ι stands for the identity permutation).
One proves that these functions f̂ σ are all supported by A by first proving that
the functions ĝσ are so supported; the latter follows from the uniqueness part of
Theorem 2.3: if a, a′ are atoms of the same sort not in A, then one can show that
(a a′) · ĝσ satisfies the same recursion equations as ĝσ and hence is equal to that
function. The fact that the f̂ σ satisfy the required recursion equations (34)–(38)
follows from the recursion equations (10)–(14) satisfied by the ĝσ . That concludes
the existence part of the proof of Theorem 4.1.

For the uniqueness part, suppose functions f ′
σ ∈ Tα(�)σ →fs Xσ are all

supported by A and satisfy the recursion equations (34)–(38) for f̂ σ . Define
g′

σ ∈ T(�)σ → Sσ by g′
σ t π � f ′

σ [π · t]α (σ ∈ Ar(�), t : σ, π ∈ Perm). One can
show that the g′

σ satisfy the same recursion equations (10)–(14) from Theorem 2.3
as the functions ĝσ ; so by the uniqueness part of that theorem, g′

σ = ĝσ . Therefore,
for all t : σ , f ′

σ [t]α = f ′
σ [ι · t]α � g′

σ t ι = ĝσ t ι � f̂ σ [t]α; hence, f ′
σ = f̂ σ .

Example 4.2 (Length of an α-Term). Gordon and Melham [1996, Section 3.3]
give the usual recursion scheme for defining the length of a λ-term, remark that it
is not a direct instance of the scheme developed in that article (their Axiom 4) and
embark on a detour via simultaneous substitutions to define the length function. This
difficulty is analyzed by Norrish [2004, Sec. 3] on the way to his improved version
of Gordon and Melham’s recursion scheme (discussed further in Example 5.6 and
Section 7). Pleasingly, the usual recursive definition of the length of a λ-term, or
more generally of an α-term over any nominal signature, is a very simple application
of the First α-Structural Recursion Theorem.9 Thus, in Theorem 4.1, we take Xσ

9 The same goes for Norrish’s stripc function, used to illustrate the limitations of Gordon and
Melham’s [1996] workaround for the length function [Norrish 2004, p. 247].
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to be the discrete nominal set N of natural numbers and

fa � λa ∈ Aa. 1

fK � λk ∈ N. k + 1

f1 � 0

fσ1∗σ2 � λ(k1, k2) ∈ N × N. k1 + k2

f�a�σ � λ(a, k) ∈ Aa × N. k + 1.

These functions are all supported by A = ∅ and (FCB) holds trivially, because
a # k holds for any a ∈ A and k ∈ N. So the theorem gives us functions f̂ σ ∈
Tα(�)σ →fs N. Writing length e for f̂ σ e, we have the expected properties of a
length function on α-terms:

length a = 1
length(K e) = length e + 1

length() = 0
length(e1, e2) = length e1 + length e2

length(a. e) = length e + 1.

Note that the last clause holds for all a, because in (38) the condition “a /∈ A” is
vacuously true (since A = ∅).

Remark 4.3 In Theorem 4.1, we gave (FCB) as an existential statement. It is
in fact equivalent to the universal statement

(∀a′ ∈ Aa) a′ /∈ A ⇒ (∀x ∈ Xσ ) a′ # f�a�σ (a′, x).

This follows from the “some/any” Theorem 3.8 by taking S to be {a′ ∈ Aa | (∀x ∈
Xσ ) a′ # f�a�σ (a′, x)} and checking that A supports S.

Remark 4.4 (Primitive Recursion). Theorem 4.1 gives a simple “iterative”
form of structural recursion for α-terms, rather than a more complicated “prim-
itive recursive” form with recursion equations

f̂ a = fa(a)

f̂ (K e) = fK(e, f̂ e)

f̂ () = f1

f̂ (e1, e2) = fσ1∗σ2 (e1, e2, f̂ e1, f̂ e2)

a /∈ A ⇒ f̂ (a. e) = f�a�σ (a, e, f̂ e).

In fact, this more general form can be deduced from the simple one given in the
theorem by adapting to our nominal setting a similar result for ordinary structural



Alpha-Structural Recursion and Induction 479

recursion: Defining X ′
σ � Tα(�)σ × Xσ and functions

f ′
a(a) � (a, fa(a))

f ′
K(e, x) � (K e, fK(e, x))

f ′
1 � ((), f1)

f ′
σ1∗σ2

((e1, x1), (e2, x2)) � ((e1, e2), fσ1∗σ2 (e1, e2, x1, x2))

f ′
�a�σ (a, e, x) � (a. e, f�a�σ (a, e, x)),

we first apply Theorem 4.1 to get functions f̂ ′
σ ∈ Tα(�)σ →fs Tα(�)σ × Xσ . The

uniqueness part of the theorem allows us to deduce that the first components of these
functions are all identity functions; it follows from this that the second component
of f̂ ′

σ is a function f̂ σ ∈ Tα(�)σ →fs Xσ satisfying the above scheme of primitive
recursion (and is the unique such).

The next theorem gives a version of structural induction for α-terms. Just as
Theorem 4.1 was derived from ordinary structural recursion (Theorem 2.3), we
prove this theorem as a corollary of ordinary structural induction (Theorem 2.4).

THEOREM 4.5 (FIRST α-STRUCTURAL INDUCTION THEOREM). Let � be a
nominal signature. Suppose we are given a finitely supported set S ∈ Pfs(Tα(�)) of
α-terms over �. To prove that S is the whole of Tα(�), it suffices to show

(∀a ∈ �A, a ∈ Aa) a ∈ S (41)
(∀(K : σ → s) ∈ �C, e ∈ Tα(�)σ ) e ∈ S ⇒ K e ∈ S (42)
() ∈ S (43)
(∀(σi ∈ Ar(�), ei ∈ Tα(�)σi | i = 1, 2)) e1 ∈ S & e2 ∈ S ⇒ (e1, e2) ∈ S (44)
(∀a ∈ �A, σ ∈ Ar(�))(∃a ∈ Aa) a # S & (∀e ∈ Tα(�)σ ) e ∈ S ⇒ a. e ∈ S.

(45)

PROOF. Let S be the set of nominal terms over � whose α-equivalence classes
lie in S no matter how we permute the atoms occurring in the term:

S � {t ∈ T(�) | (∀π ∈ Perm) [π · t]α ∈ S}.
Clearly, S = Tα(�) if S = T(�); and to prove the latter, it suffices to check
that S satisfies conditions (15)–(19) of Theorem 2.4. The first four of these follow
immediately from (41)–(44) respectively. So it just remains to show that (45) implies
that S satisfies condition (19). First note that by Theorem 3.8 applied to the set of
atoms {a ∈ Aa | (∀e ∈ Tα(�)σ ) e ∈ S ⇒ a. e ∈ S}, which is supported by
supp(S), (45) is equivalent to

(∀a ∈ �A, σ ∈ Ar(�))(∀a ∈ Aa) a # S ⇒
(∀e ∈ Tα(�)σ ) e ∈ S ⇒ a. e ∈ S. (46)

Given a ∈ Aa and t ∈ S, we have to prove that �a�t ∈ S, that is, that
[π · �a�t]α ∈ S for any π ∈ Perm. Choosing any atom a′ in the infinite set
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Aa − supp(S, π, a, t), we have

π · �a�t = �π (a)�(π · t)

=α �a′�((π · t){a′/π (a)}) by definition of =α (Section 2.4)

= �a′�((π (a) a′) · (π · t)) since a′ /∈ atm(π · t)

= �a′�(π ′ · t) where π ′ � (π (a) a′) ◦ π .

So [π · �a�t]α = a′. [π ′ · t]α ∈ S by (46), since a′ # S (by choice of a′) and
[π ′ · t]α ∈ S, because t ∈ S. So it is indeed the case that �a�t ∈ S when a ∈ Aa

and t ∈ S.

5. Second α-Structural Recursion & Induction Theorems

Theorem 4.1 is an “arity-directed” recursion principle for α-terms: one has to spec-
ify nominal sets Xσ for each arity σ , and give functions f( ) for atom-sorts, unit, pair
and atom-binding arities in addition to ones for constructors. Although this gives
flexibility over how to treat atom, unit, pair and atom-binding α-terms when giving
an α-structurally recursive definition of some functions, this flexibility is often more
of a hindrance than a help. In most cases, one is primarily interested in defining
functions only on α-terms whose arities are data-sorts s ∈ �D, with α-terms of other
kinds of arity (atom-sorts, unit, pair and atom-binding arities) playing an auxiliary
role. For example, when � is the nominal signature for λ-terms with local recur-
sive function declarations (Example 2.1), to define the capture-avoiding substitution
function ŝx,e ∈ Tα(�)t →fs Tα(�)t discussed in the Introduction, we should only
have to specify finitely supported functions corresponding to the right-hand sides
of the defining Eqs. (6)–(9), that is, one function for each of the signature’s four
constructors V, A, L and Letrec. But as it stands, to define ŝx,e using Theorem 4.1 we
have to work out suitable choices for Xσ and for the functions fv, f1, fσ1∗σ2, f�v�σ

for any σ, σ1, σ2 ∈ Ar(�).
So we will develop a second, “sort-directed” version of α-structural recursion in

which one only has to give Xσ when σ = s is a data-sort, and only has to give the
functions f( ) for constructors. Here is the statement of the new form of the recursion
principle; the notations used in it are defined in Figure 2 and discussed below.

THEOREM 5.1 (SECOND α-STRUCTURAL RECURSION THEOREM). Let � be a
nominal signature. Suppose we are given a family of nominal sets X = (Xs | s ∈
�D) indexed by the data-sorts of �, a finite set A of atoms, and functions

fK ∈ X (σ ) →fs X (s) ((K : σ → s) ∈ �C)

all of which are supported by A and satisfy

(∃ā ∈ A
σ ) ā # A & (∀x̄ ∈ X |σ |) ā �σ x̄ ⇒ ā # fK(ā, x̄)σ . (FCBK)

Then there is a unique family of finitely supported functions ( f̂ s ∈ Tα(�)s →fs

Xs | s ∈ �D) with supp( f̂ s) ⊆ A and satisfying

(∀ā ∈ A
σ ) ā # A ⇒ (∀ē ∈ Tα(�)|σ |) ā �σ ē ⇒ f̂ s(K ā. ē) = fK(ā, f̂ |σ | ē)σ

(47)

for each (K : σ → s) ∈ �C.
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FIG. 2. Definitions used in Theorem 5.1.

In this theorem, we start with a family of nominal sets X = (Xs | s ∈ �D)
indexed by the data-sorts of the signature � and with a family of finitely supported
functions ( fK | K ∈ �C) indexed by the constructors of �. The domain X (σ ) of fK is
obtained from the arity σ of K by interpreting each atom-sort as the corresponding
nominal set of atoms (Example 3.2(i)), each data-sort as given by X , the unit arity as
the one-element discrete nominal set (Example 3.2(iv)), pair arities using products
of nominal sets (Section 3.2), and atom-binding arities just using product with
nominal sets of atoms. The aim is to use this data to specify some functions f̂ s

mapping α-terms e : s to elements f̂ s e ∈ Xs by giving recursion equations as in
(47), with one (conditional) equation for each way of forming α-terms of data-sort,
that is, for each constructor K : σ → s in �. The conditional equation for K
specifies the effect of f̂ s not for arbitrary α-terms constructed with K, but rather
just for those of the form K ā. ē where ā # A and ā �σ ē hold. Here ā ∈ A

σ is
a nested tuple of distinct atoms matching the binding occurrences of atom-sorts
in the arity σ ; ē ∈ Tα(�)|σ | is a nested tuple of α-terms matching the nonbinding
occurrences of atom-sorts and the occurrences of data-sorts in σ ; and the operation
ā, ē �→ ā. ē assembles these two nested tuples into an α-term of arity σ , to which
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FIG. 3. Definitions used in Theorem 5.2.

K can be applied to get a constructed α-term K ā. ē : s. The equation in (47) is
restricted by two conditions:

—the first, ā # A, just requires that the atoms in ā do not occur in the common
finite support of the functions fK;

—the second, ā �σ ē, ensures that in addition to the atoms in ā being mutually dis-
tinct (by virtue of the definition of A

σ ), they avoid the support of the constituents
of ē in an appropriate way (the precise definition of “appropriate” being given
in Figure 2).

The theorem guarantees the unique existence of such functions on α-terms provided
the functions fK satisfy the freshness condition on binders given by (FCBK). This
asserts the existence of a nested tuple ā of distinct atoms that can appear in binding
positions in elements of X (σ ) (i.e., ā ∈ A

σ ) such that:

—the atoms are distinct from A, that is, ā # A (they are also mutually distinct by
definition of A

σ );
—whenever x̄ is a nested tuple of atoms and X -elements that can appear in non-

binding positions in elements of X (σ ) (i.e., x̄ ∈ X |σ |) for which ā is suitably
fresh, that is, satisfying ā �σ x̄ ,10 then assembling ā and x̄ into an element
(ā, x̄)σ ∈ X (σ ), fK maps this element to one in X (s) = Xs whose support does
not contain any of the atoms in ā (i.e., ā # fK(ā, x̄)σ ).

The easiest way I know of proving Theorem 5.1 is to derive it from the following
“sort-directed” version of α-structural induction, which uses notations that are
defined in Figures 2 and 3, and which are discussed below.

THEOREM 5.2 (SECOND α-STRUCTURAL INDUCTION THEOREM). Let � be a
nominal signature. Suppose we are given a family of finitely supported subsets
(Ss ∈ Pfs(Tα(�)s) | s ∈ �D) indexed by the data-sorts of � and all supported by a
finite set of atoms A. Then, to prove that Ss is the whole of Tα(�)s for all s ∈ �D,
it suffices to show for each constructor (K : σ → s) ∈ �C that

(∃ā ∈ A
σ ) ā # A & (∀ē ∈ Tα(�)|σ |) ā �σ ē & ē ∈ S|σ | ⇒ K ā. ē ∈ Ss. (IHK)

In this theorem, we start with a family of subsets Ss ⊆ Tα(�)s of α-terms whose
arities are data-sorts and that are all supported by some finite set of atoms A. We
wish to prove that every t : s is in Ss (for all s ∈ �D). The theorem guarantees this
provided each constructor (K : σ → s) ∈ �C satisfies the induction hypothesis
given by (IHK). This asserts the existence of a nested tuple ā of distinct atoms that

10 This relation �σ , defined in Figure 2, is a subtlety of the freshness condition on binders that is not
apparent in the simpler First α-Structural Recursion Theorem.
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can appear in binding positions in α-terms of arity σ (i.e., ā ∈ A
σ ) such that:

—the atoms are distinct from A, that is, ā # A (they are also mutually distinct by
definition of A

σ );
—whenever ē is a nested tuple of α-terms that can appear in nonbinding positions

in an α-term of arity σ (i.e., ē ∈ Tα(�)|σ |) for which ā is suitably fresh, that
is, satisfying ā �σ ē, then assembling ā and ē into the α-term ā. ē : σ , the
constructed α-term K ā. ē must lie in the subset Ss.

The proof of Theorem 5.2 is given in Appendix A and the proof of Theorem 5.1
in Appendix B. In Sections 5.1 and 5.2, we explore what these principles look like
for particular nominal signatures, using the examples from Section 2.2.

Remark 5.3 (Atom-Abstraction and the Initial Algebra Property). For each
atom-sort a ∈ AS and each nominal set X , let [Aa]X denote the set of equivalence
classes of pairs (a, x) ∈ Aa × X for the equivalence relation (a, x) ∼ (a′, x ′) given
by

(∃a′′ ∈ Aa) a′′ # (a, x, a′, x ′) & (a a′′) · x = (a′ a′′) · x ′. (48)

The relation ∼ is evidently reflexive and symmetric; to see that it is also transitive,
one first applies Theorem 3.8 with S = {a′′ ∈ Aa | (a a′′) · x = (a′ a′′) · x ′} and
A = supp(a, x, a′, x ′) to show that (a, x) ∼ (a′, x ′) holds if and only if

(∀a′′ ∈ Aa) a′′ # (a, x, a, x ′) ⇒ (a a′′) · x = (a′ a′′) · x ′. (49)

We write [a]x for the ∼-equivalence class of the pair (a, x) and call it an atom-
abstraction. It follows from Lemma 3.7 that ∼ is a nominal subset of Aa × X . So
the quotient [Aa]X is a nominal set as in Section 3.3. One can calculate that the
support of each element [a]x of [Aa]X is supp(x) − {a}.

Using these atom-abstraction nominal sets, it is possible to give an initial algebra
characterisation of (Tα(�)s | s ∈ �D) that is equivalent to Theorem 5.1. Consider
the category whose objects are families of nominal sets X = (Xs | s ∈ �D) indexed
by the data-sorts of �, and whose morphisms f : X → X ′ are indexed families
f = ( fs ∈ Xs →fs X ′

s | s ∈ �D) of functions with empty support (i.e., functions
that respect the action of all atom-permutations). The constructors of � determine
a functor F� from this category to itself, defined in Figure 4. An F�-algebra is
simply an object I equipped with a morphism i : F� I → I . Such an algebra is
initial if for any other such algebra f : F� X → X , there is a unique morphism
f̂ : I → X so that

(50)

commutes, that is, satisfying

(∀s ∈ �D)(∀(K : σ → s) ∈ �C)
(∀x ∈ I [σ ]) f̂ s(is(K, x)) = fs

(
K, f̂ [σ ] x

)
.

Standard category-theoretic results give that i is an isomorphism and that the initial
algebra (I, i) is unique up to isomorphism. Theorem 5.1 can be used to prove that
(Tα(�)s | s ∈ �D) is the (object part of) an initial F�-algebra. Conversely, one
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FIG. 4. Functor F� associated with a nominal signature �.

can give a direct inductive construction of an initial F�-algebra and use the initial
algebra property (50) to deduce Theorem 5.1: see Gabbay and Pitts [2002, Sect. 6].

5.1. EXAMPLE: λ-CALCULUS (WITH letrec). Let � be the nominal signature
from Example 2.1. Thus, T(�)t is the set � of abstract syntax trees for λ-calculus
with letrec; and Tα(�)t is the quotient �/=α of that set by the usual notion of α-
equivalence—in other words Tα(�)t is what is normally meant by the set of all (open
or closed) untyped λ-terms with local recursive function declarations. Suppose we
are given a nominal set X and functions

fV ∈ Av →fs X (51)
fA ∈ X × X →fs X (52)
fL ∈ Av × X →fs X (53)

fLetrec ∈ Av × ((Av × X ) × X ) →fs X (54)

all supported by a finite set of atoms A. Applying the definitions in Figure 2, one
finds that the conditions (FCBK) for K = V, A are equivalent to true, that (FCBL)
is equivalent to

(∃a ∈ Av) a /∈ A & (∀x ∈ X ) a # fL(a, x) (55)

and that (FCBLetrec) is equivalent to

(∃a, a′ ∈ Av) a �= a′ & a, a′ /∈ A & (∀x, x ′ ∈ X ) a′ # x ⇒
(a, a′) # fLetrec(a, ((a′, x ′), x)). (56)

So for this nominal signature, Theorem 5.1 gives us the following recursion prin-
ciple. We state it using the usual concrete syntax for λ-calculus and using the fact
(noted in Example 3.2(iii)) that the support of a term e ∈ �/=α is its finite set fv(e)
of free variable

THEOREM 5.4. Let �/=α be the nominal set of α-equivalence classes of
λ-terms with local recursive function declarations:

e ::= x | e e | λx .e | letrec x x = e in e
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where the variables x are drawn from the nominal set Av of atoms of some fixed
sort v. Given any nominal set X and functions as in (51)–(54) all supported by
some finite set of atoms A and with fL and fLetrec satisfying (55) and (56), then there
is a unique function f̂ ∈ (�/=α →fs X ) supported by A and satisfying

f̂ (x) = fV(x) (57)

f̂ (e1 e2) = fA( f̂ e1, f̂ e2) (58)

x /∈ A ⇒ f̂ (λx .e) = fL(x, f̂ e) (59)

x, y /∈ A & x /∈ fv(e2) ∪ {y} ⇒
f̂ (letrec y x = e1 in e2) = fLetrec(y, ((x, f̂ e1), f̂ e2)). (60)

Turning to the induction principle for this signature, if S ⊆ �/=α is a set of
terms supported by a finite set of atoms A, then (IHV), (IHA), (IHL) and (IHLetrec)
are equivalent to

(∀x ∈ Av) x ∈ S (61)

(∀e1, e2 ∈ S) e1 e2 ∈ S (62)

(∃x ∈ Av) x /∈ A & (∀e ∈ S) λx . e ∈ S (63)

(∃x, y ∈ Av) x �= y & x, y /∈ A &
(∀e1, e2 ∈ S) x /∈ fv(e2) ⇒ letrec y x = e1 in e2 ∈ S (64)

respectively. So for this signature Theorem 5.2 says that S contains all terms if it
satisfies (61)–(64).

Example 5.5 (Capture-Avoiding Substitution). The example mentioned in the
Introduction of capture-avoiding substitution of λ-terms, ŝx,e ∈ �/=α → �/=α,
is obtained from the above theorem by taking X to be the nominal set �/=α. Given
x ∈ Av and e ∈ X , then ŝx,e is given by f̂ where

fV(y) �
{

e if y = x
y if y �= x

fA(e1, e2) � e1 e2

fL(y, e1) � λy. e1

fLetrec(z, ((y, e1), e2)) � letrec z y = e1 in e2

A � fv(e) ∪ {x}.
Condition (55) is satisfied because, as noted in Example 3.2(iii), for each e1 ∈ X =
�/=α, supp(e1) is the finite set fv(e1) of free variables of e1; in particular, we have
y # fL(y, e1) = λy. e1 simply because y /∈ fv(λy. e1) = fv(e1) − {y}. Similarly,
condition (56) is satisfied because

fv(letrec z y = e1 in e2) = (fv(e1) − {y, z}) ∪ (fv(e2) − {z})
so that (y, z) # fLetrec(z, ((y, e1), e2)) = letrec z y = e1 in e2 provided y /∈ fv(e2).
Note that fA, fL and fLetrec are all supported by the empty set of atoms, whereas fV

is supported by fv(e)∪{x}; so this is what we take for the common support A. Thus,
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the conditions on the recursion equations in (59) and (60) correspond precisely to
the conditions in (8) and (9).

Example 5.6 (Recursion with Varying Parameters). Norrish [2004, p. 245]
considers a variant of capture-avoiding substitution whose definition involves re-
cursion with varying parameters; it motivates the parametrized recursion principle
that he presents in that article. The α-structural recursion principles we have given
here do not involve extra parameters, let alone varying ones; nevertheless it is pos-
sible to derive parameterized versions from them. In the case of ordinary structural
recursion, one can derive a parameterized version from an unparameterized one
by currying parameters and defining maps into function sets using Theorem 2.3.
In the presence of binders, one has to do something slightly more complicated,
involving the Freshness Theorem 3.10, to derive a parameterized (FCB) from the
unparameterized version of the condition.

Let us see how this works for Norrish’s example, using the nominal signature for
the pure λ-calculus obtained from Example 2.1 by deleting the Letrec constructor.
Fixing on a pair of atoms x1, x2 ∈ Av, we seek a function s ∈ (�/=α) →fs
(�/=α) →fs (�/=α) satisfying for all y, e, e1, e2:

s(y)(e) =
{

e if y = x1

y if y �= x1
(65)

s(e1 e2)(e) = (s(e1)(e)) (s(e2)(e)) (66)
y /∈ fv(e) ∪ {x1, x2} ⇒ s(λy. e1)(e) = λy. s(e1)(x2 e) (67)

Thus, the same parameter e appears in each clause defining s(e1)(e) by recursion on
the structure of e1 except for clause (67), where the application term x2 e appears
instead. Such a function s can be obtained from Theorem 5.4 (restricted to pure
λ-terms) as s = f̂ if we take X to be the nominal set (�/=α) →fs (�/=α) and use
the functions

fV � λy ∈ Av.λe ∈ (�/=α). if y = x1, then e else y

fA � λ(ξ1, ξ2) ∈ X × X. λe ∈ (�/=α). (ξ1 e) (ξ2 e)

fL � λ(y, ξ1) ∈ Av × X.λe ∈ (�/=α). fresh(h(y, ξ1, e))

where the last clause uses Theorem 3.10 applied to the finitely supported function
h(y, ξ1, e) ∈ Av →fs (�/=α) that maps each y′ ∈ Av to

h(y, ξ1, e)(y′) � λy′. ((y y′) · ξ1)(x2 e).

This function is easily seen to satisfy the property (31) needed to apply the theo-
rem. All the above functions are supported by A � {x1, x2}. Properties (57) and
(58) of f̂ give (65) and (66) respectively. When y �= x1, x2, property (59) gives
us f̂ (λy. e1) = fL(y, f̂ e1) = fresh(h(y, f̂ e1, e)). So if y # (x1, x2, e), picking
any y′ # (x1, x2, e, e1, h), then by Theorem 3.10 we have fresh(h(y, f̂ e1, e)) =
h(y, f̂ e1, e)(y′) � λy′. ((y y′) · ( f̂ e1))(x2 e) = λy′. (y y′) · ( f̂ e1 (x2 e)). Hence by
definition of =α, f̂ (λy. e1) = λy. f̂ e1 (x2 e), as required for (67).

5.2. EXAMPLE: π -CALCULUS. Let � be the nominal signature from Exam-
ple 2.2. Suppose we are given nominal sets Xproc, Xgsum, Xpre and functions
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fGsum ∈ Xgsum →fs Xproc

fPar ∈ Xproc × Xproc →fs Xproc

fRes ∈ Achan × Xproc →fs Xproc

fRep ∈ Xproc →fs Xproc

fZero ∈ 1 →fs Xgsum

fPre ∈ Xpre →fs Xgsum

fPlus ∈ Xgsum × Xgsum →fs Xgsum

fOut ∈ (Achan × Achan) × Xproc →fs Xpre

fIn ∈ Achan × (Achan × Xproc) →fs Xpre

fTau ∈ 1 →fs Xpre

fMatch ∈ (Achan × Achan) × Xpre →fs Xpre

all supported by a finite set of atoms A. The conditions (FCBRes) and (FCBIn) are
equivalent to

(∃a ∈ Achan) a /∈ A & (∀x ∈ Xproc) a # fRes(a, x) (68)
(∃a ∈ Achan) a /∈ A &

(∀a′ ∈ Achan)(∀x ∈ Xproc) a �= a′ ⇒ a # fIn(a′, (a, x)) (69)

respectively; and conditions (FCBK) for K �= Res, In are all equivalent to true. So
if fRes and fIn satisfy (68) and (69), then by Theorem 5.1, there are unique finitely
supported functions f̂ s ∈ Tα(�)s →fs Xs (for s = proc, gsum, pre) all supported
by A and satisfying for all e, e1, e2, a1, a2, a, a′ of suitable arity

f̂ (K e) = fK( f̂ e) (K = Gsum, Rep, Pre) (70)

f̂ (K(e1, e2)) = fK( f̂ e1, f̂ e2) (K = Par, Plus) (71)

f̂ (K()) = fK() (K = Zero, Tau) (72)

f̂ (K((a1, a2), e)) = fK((a1, a2), f̂ e) (K = Out, Match) (73)

a /∈ A ⇒ f̂ (Res a. e) = fRes(a, f̂ e) (74)

a /∈ A & a �= a′ ⇒ f̂ (In(a′, a. e)) = fIn(a′, (a, f̂ e)) (75)

where we have abbreviated f̂ s(e) to f̂ e.
We leave the reader to work out what induction principle Theorem 5.2 gives for

this signature.

6. Extended Example: Normalization by Evaluation

One of the most important aspects of nominal sets is that they provide, via
the notion of finite support, a notion of freshness of names with respect
to mathematical structures. This notion generalizes the usual “not a free vari-
able of” relation from finite syntactical structures to infinite objects (sets, func-
tions, . . . ) where there is no obvious notion of free name. The theory comes into
its own in situations where syntax and semantics have to be considered together
and yet one still needs a workable notion of fresh name. We give an example
in this section by treating normalization by evaluation (NBE) for simply typed
λ-calculus [Berger and Schwichtenberg 1991; Berger et al. 2003]. This produces
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so-called “βη-long” normal forms for typed λ-terms by first taking their denota-
tional semantics in the standard, extensional functions model of the calculus over
a ground type of syntax trees and then composing with a reification function that
turns elements of the denotational model back into syntax (in normal form). When
reifying an extensional function into a λ-abstraction one wants to choose a fresh
name v for the λ-bound variable; but as the survey by Dybjer and Filinski [2002,
p. 157] eloquently puts it when discussing an informal version of the reification
function

“The problem is the “v fresh” condition; what exactly does it mean?
Unlike such conditions as “x does not occur free in E”, it is not even
locally checkable whether a variable is fresh; freshness is a global prop-
erty, defined with respect to a term that may not even be fully constructed
yet.”

As a result, treatments of NBE in the literature adopt some device for making
the current finite context of used names explicit and threading it through all the
mathematical definitions involved in the denotational and reification functions used
for NBE: see Berger et al. [2003, sect. 2.5], Dybjer and Filinski [2002, sect. 3.3] and
Fiore [2002], for example. This tends to obscure the simple, but informal idea behind
reification. Dybjer and Filinski [2002] go on to mention after the above quote that
“freshness” can be characterised rigorously in the framework of Gabbay and Pitts
[2002]. The details are presented here for the first time, using nominal sets rather
than the FM-set theory of loc. cit. The point is not just that this setting provides a
rigorous explanation of “freshness” (since the formal approaches mentioned above
also do that), but that it allows us to retain the essential simplicity of an informal
account such as in Dybjer and Filinski [2002, sect. 3.2].

6.1. TYPED λ-TERMS AND THEIR βη-LONG NORMAL FORMS. We assume the
reader is familiar with simply typed λ-calculus; if not, see Barendregt [1992] for
example. Rather than give a signature for raw λ-terms and then cut down to the well-
typed ones using typing contexts, we make do with a simpler, but less extensible
treatment using explicitly typed variables.11 Let

Ty � {τ ::= ι | τ
.→ τ } (76)

be the set of simple type symbols over a single ground type ι. We assume given
an injective function τ ∈ Ty �→ vτ ∈ AS that codes the simple type symbols as
atom-sorts. We use atoms of sort vτ to stand for variables of type τ in the simply
typed λ-calculus. Note that when τ and τ ′ are different simple type symbols, vτ and
vτ ′ are different atom-sorts; so recalling the assumptions we made in Section 2.1,
the sets of atoms Avτ

and Avτ ′ are disjoint.

11 Such an approach is fine for simply typed terms, but becomes unworkable for calculi with type
variables or dependent types.
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Consider the nominal signature �STL with

atom-sorts data-sorts constructors
vτ tτ Vrτ : vτ → tτ

Apτ,τ ′ : tτ .→τ ′ ∗ tτ → tτ ′

Lmτ,τ ′ : �vτ�tτ ′ → tτ .→τ ′

as τ and τ ′ range over Ty. Thus the (nominal) set

�(τ ) � Tα(�STL)tτ (77)

of α-terms of arity tτ over �STL is precisely the usual set of α-equivalence classes
of abstract syntax trees for λ-terms of simple type τ ∈ Ty, using variables that are
explicitly tagged with types.

Next we give a nominal signature for βη-long normal forms. In the system we
are considering, the general form of a type is τ1

.→ (τ2
.→ · · · (τk

.→ ι) · · · ) for
some k ≥ 0; using conventional notation for typed λ-terms, a term of this type is
in βη-long normal form if it takes the form

λx1 : τ1.λx2 : τ2 · · · λxk : τk . x n1 · · · nk

where x is a variable and n1, . . . , nk are βη-long normal forms. Accordingly, we
can use the nominal signature �LNF with

atom-sorts data-sorts constructors
vτ nτ Vτ : vτ → uτ

uτ Aτ,τ ′ : uτ
.→τ ′ ∗ nτ → uτ ′

Lτ,τ ′ : �vτ�nτ ′ → nτ
.→τ ′

I : uι → nι

where τ and τ ′ range over Ty. The (nominal) set

N (τ ) � Tα(�LNF)nτ
(78)

corresponds to the set of α-equivalence classes of abstract syntax trees for simply-
typed λ-terms of type τ in βη-long normal form, whereas

U (τ ) � Tα(�LNF)uτ
(79)

corresponds to the set of α-equivalence classes of neutral (or atomic) terms of type
τ ; see Dybjer and Filinski [2002, p. 155], for example.

Notation 6.1. From now on we will use the following concrete, overloaded, but
hopefully more familiar notations for α-terms over the signatures �STL and �LNF.

—Typical elements of Avτ
, �(τ ), N (τ ) and U (τ ) will be written x , e, n and u

respectively.
—Vrτ x will be written just as x , Apτ,τ ′(e1, e2) as e1 e2, and Lmτ,τ ′ x . e as λx : τ. e.
—Vτ x will be written just as x , Aτ,τ ′(u, n) as u n, Lτ,τ ′ x . n as λx : τ. n and I u just

as u.

Every βη-long normal form and every neutral term can be regarded as a λ-term of
the corresponding type; indeed a very simple application of the second α-structural
recursion theorem for the nominal signature �LNF tells us that there are functions

iτ ∈ N (τ ) →fs �(τ ) jτ ∈ U (τ ) →fs �(τ ) (80)
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supported by the empty set of atoms and satisfying for all τ, τ ′ ∈ Ty and x, u, n of
suitable arity

jτ x = x
jτ ′(u n) = ( jτ .→τ ′ u)(iτ n)

iτ .→τ ′(λx : τ. n) = λx : τ. iτ ′ n
iι u = jι u.

We aim to use the technique of NBE [Berger and Schwichtenberg 1991] to define
the normalization function

normτ ∈ �(τ ) →fs N (τ ) (81)

with the following properties:

(∀τ ∈ Ty, e1, e2 ∈ �(τ )) e1 =βη e2 ⇒ normτ e1 = normτ e2 (82)
(∀τ ∈ Ty, n ∈ N (τ )) normτ (iτ n) = n (83)
(∀τ ∈ Ty, e ∈ �(τ )) iτ (normτ e) =βη e. (84)

Here =βη ⊆ �(τ ) × �(τ ) is the usual relation of βη-conversion between
(α-equivalence classes of) λ-terms of the same simple type τ . It is by definition the
smallest congruence relation satisfying

(∀τ, τ ′ ∈ Ty, x ∈ Avτ
, e1 ∈ �(τ ′), e2 ∈ �(τ )) (λx : τ. e1)e2 =βη e1[x := e2]

(85)

(∀τ, τ ′ ∈ Ty, e ∈ �(τ
.→ τ ′), x ∈ Avτ

) x # e ⇒ e =βη λx : τ. e x . (86)

Here e1[x := e2] indicates the capture-avoiding substitution of e2 for all free occur-
rences of x in e1. It can be defined using the second α-structural recursion theorem
for the nominal signature �STL much as in Example 5.5; instead, we will regard it as
a special case of the simultaneous substitution functions defined in the next section.

Once (82)–(84) are proved, then it follows that for every e ∈ �(τ ) there is a unique
n ∈ N (τ ) with e =βη iτ n; and, modulo some considerations about computability,
deciding βη-conversion is reduced to the decidable relation of α-equivalence on
T(�LNF)nτ

by applying the normτ function. We aim to show how to use α-structural
recursion to define normτ ; and how to prove (82)–(84) using, among other things,
α-structural induction.

6.2. SUBSTITUTION. A (simultaneous) substitution σ is a function that maps
atoms in Avτ

to α-terms in �(τ ) (for any τ ∈ Ty) and that has the property that its
domain

dom(σ ) �
{

x ∈ ⋃
τ∈Ty Avτ

| σ x �= x
}

is a finite set. We let atom-permutations π ∈ Perm act on such functions in the
usual way (Section 3.2): the substitution π · σ maps x ∈ Avτ

to π · (ρ(π−1(x)) and
(therefore) has domain dom(π · σ ) = π · dom(σ ) = {π (x) | x ∈ dom(σ )}. It is
not hard to see that with respect to this action, each substitution σ is supported by
the finite set of atoms dom(σ ) ∪ ⋃

x∈dom(σ ) supp(σ x). Therefore, the collection of
substitutions forms a nominal set that we write as Sub.

Given τ ∈ Ty, e ∈ �(τ ) and σ ∈ Sub, we let [e]σ ∈ �(τ ) denote the result of
carrying out on e the simultaneous, capture-avoiding substitution given by σ . This
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FIG. 5. Substitution and denotation.

is specified by the recursion Eq. (87)–(88) in Figure 5. For each σ ∈ Sub, we can use
the second α-structural recursion theorem for �STL to define the functions ([−]σ ∈
�(τ ) →fs �(τ ) | τ ∈ Ty) satisfying these equations, much as in Example 5.5, but
using supp(σ ) as the common finite support A. (In particular, in Theorem 5.1 the
only nontrivial freshness condition on binders, (FCBLmτ,τ ′ ), is easily verified.)

The identity substitution σ0 ∈ Sub maps each x ∈ Avτ
to x ∈ �(τ ). The

composition σ1; σ2 of σ1, σ2 ∈ Sub is the element of Sub that maps each x ∈ Avτ

to [σ1 x]σ2. These operations satisfy:

[e]σ0 = e (93)
[e](σ1; σ2) = [[e]σ1]σ2. (94)

Both properties can be proved easily by applying the second α-structural induction
principle (Theorem 5.2) for the nominal signature �STL. For example, to prove (94),
for each σ1, σ2 ∈ Sub we take Stτ to be {e ∈ �(τ ) | [e](σ1; σ2) = [[e]σ1]σ2}, which
is supported by A = supp(σ1, σ2); then (IHVrτ ) and (IHApτ,τ ′ ) are easy to verify,
using (87) and (88) respectively; for (IHLmτ,τ ′ ), which is the statement

(∃x ∈ Avτ
) x /∈ A & (∀e ∈ Stτ ′ ) λx : τ. e ∈ Stτ .→τ ′ ,

we can choose any x in the infinite set Avτ
− A (so that x # (σ1, σ2)): if e ∈ Stτ ′ ,

then

[λx : τ. e](σ1; σ2)
= [[λx : τ. e]σ1]σ2 by definition of σ1; σ2

= [λx : τ. [e]σ1]σ2 by (89), since x # σ1

= λx : τ. [[e]σ1]σ2 by (89), since x # σ2

= λx : τ. [e](σ1; σ2) since e ∈ Stτ ′

= [λx : τ. e](σ1; σ2) by (89), since x # (σ1; σ2) (because σ1; σ2 is
supported by supp(σ1) ∪ supp(σ2) ⊆ A)

and hence λx : τ. e ∈ Stτ .→τ ′ .
The single-variable substitution used in the definition of =βη in the previous

section can be defined as:

e1[x := e2] � [e1](σ0{x �→ e2}), (95)

where in general the updated substitution σ {x �→e} ∈ Sub maps x ∈ Avτ
to e ∈ �(τ )

and otherwise acts like σ ∈ Sub.
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6.3. DENOTATION. We interpret each simple type τ ∈ Ty as a nominal set D(τ )
as follows:

D(ι) � N (ι) (96)

D(τ
.→ τ ′) � D(τ ) →fs D(τ ′). (97)

An environment ρ is a function that, for any τ ∈ Ty, maps the atoms in Avτ
to

elements of D(τ ). We let atom-permutations π ∈ Perm act on such functions in the
usual way (Section 3.2): the environment π · ρ maps x ∈ Avτ

to π · (ρ(π−1(x)).
Let Env be the nominal set of environments that are finitely supported with respect
to this action.

Given τ ∈ Ty, e ∈ �(τ ) and ρ ∈ Env, we wish to define the denotation
[[e]]ρ ∈ D(τ ), satisfying Eq. (90)–(92) in Figure 5. It is clear from the form of
these equations that we should try to define [[e]]ρ by α-structural recursion for
�STL for all ρ simultaneously, because of the use of an updated environment in
(92): ρ{x �→ d} is by definition the function mapping x to d and otherwise act-
ing like ρ (and is finitely supported by supp(ρ) ∪ {x} ∪ supp(d)). So in The-
orem 5.1 it seems that we should take X tτ to be Env →fs D(τ ) and use the
functions

fVrτ � λx ∈ Avτ
.λρ ∈ Env. ρ x (98)

fApτ,τ ′ � λ(ξ, ξ ′) ∈ X tτ .→τ ′ × X tτ .λρ ∈ Env. ξ ρ (ξ ′ρ) (99)

fLmτ,τ ′ � λ(x, ξ ′) ∈ Avτ
× X tτ ′ .λρ ∈ Env.λd ∈ D(τ ). ξ ′(ρ{x �→ d}). (100)

These functions are all supported by A = ∅ and the only nontrivial freshness
condition on binders is (FCBLmτ,τ ′ ), which in view of Theorem 3.8 (the “some/any”
theorem) is the requirement that for all x ∈ Avτ

and ξ ∈ Env →fs D(τ ′)

x # λρ ∈ Env.λd ∈ D(τ ). ξ (ρ{x �→ d}). (101)

If we could prove that, then the theorem gives us functions f̂ tτ ∈ �(τ ) →fs

(Env →fs D(τ )) satisfying (47)—from which it follows that [[e]]ρ � f̂ tτ e ρ
satisfies (90)–(92). The problem is that (101) is not true for all elements ξ of
Env →fs D(τ ′)! We have to strengthen the “recursion hypothesis” by suitably
restricting the class of functions ξ that we consider.

This is the first time in this article we have encountered a really nontrivial
“freshness condition on binders”. Eq. (90)–(92) are typical of many such defi-
nitions in denotational semantics; but why is it the case that the right-hand side
of Eq. (92) is independent of the choice of bound variable x on the left-hand
side? Compared with the similar question for Eq. (89) a few lines above it,
there seems no quick answer to this question. However, the freshness of x for
λρ ∈ Env.λd ∈ D(τ ). [[e]](ρ{x �→ d}) does follow from two expected properties of
denotations:

(1) The denotation of e with respect to an environment ρ only depends on the value
of ρ at the free variables of e.

(2) The denotation of a permuted version π · e of e with respect to an environment
ρ is the denotation of e with respect to the composition ρ ◦ π .
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It is possible to take account of these facts in advance when applying Theorem 5.1
to construct denotations.12 To do so, we cut down to the following nominal subset
of Env →fs D(τ ):

X tτ � {ξ ∈ Env →fs D(τ ) | �1(ξ ) & �2(ξ )}, (102)

where

�1(ξ ) � (∃A ∈ Pfin(A))(∀τ ∈ Ty, x ∈ Avτ
, d ∈ D(τ ), ρ ∈ Env)

x /∈ A ⇒ ξ (ρ{x �→ d}) = ξ ρ
(103)

�2(ξ ) � (∀π ∈ Perm, ρ ∈ Env) (π · ξ ) ρ = ξ (ρ ◦ π ). (104)

The slightly elaborate form of �1 compared with property 1 above is needed to
show that the functions defined in (98)–(100) satisfy

�1( fVrτ x)

�1(ξ ) & �1(ξ ′) ⇒ �1( fApτ,τ ′ (ξ, ξ ′))
�1(ξ ′) ⇒ �1( fLmτ,τ ′ (x, ξ ′)).

Similar properties hold for �2. Therefore, fVrτ ∈ Avτ
→fs X tτ , fApτ,τ ′ ∈ X tτ .→τ ′ ×

X tτ →fs X tτ ′ and fLmτ,τ ′ ∈ Avτ
× X tτ ′ →fs X tτ .→τ ′ . Furthermore, it is now the case

that if x ∈ Avτ
and ξ ′ ∈ X tτ ′ , then (101) holds. To see this, first note that since

�1(ξ ′) holds, there is a finite set of atoms A such that

(∀τ ∈ Ty, x ′ ∈ Avτ
, d ′ ∈ D(τ ), ρ ′ ∈ Env) x ′ /∈ A ⇒ ξ ′(ρ ′{x ′ �→ d ′}) = ξ ′ρ ′.

(105)

Choose any x ′ in the infinite set Avτ
− supp(x, ξ ′, A). Hence, x ′ # λρ ∈ Env.λd ∈

D(τ ). ξ ′(ρ{x �→ d}); and so applying the transposition (x x ′) to this we get

x = (x x ′) · x ′

# (x x ′) · λρ ∈ Env.λd ∈ D(τ ).ξ ′(ρ{x �→ d})
= λρ ∈ Env.λd ∈ D(τ ).((x x ′) · ξ ′)(ρ{x ′ �→ d})
= λρ ∈ Env.λd ∈ D(τ ).ξ ′(ρ{x ′ �→ d} ◦ (x x ′)) because �2(ξ ′) holds

= λρ ∈ Env.λd ∈ D(τ ).ξ ′(ρ{x �→ d}{x ′ �→ ρ x}) because x ′ �= x

= λρ ∈ Env.λd ∈ D(τ ).ξ ′(ρ{x �→ d}) by (105), since x ′ /∈ A.

So (101) does indeed hold. Therefore, we can apply Theorem 5.1 to these nominal
sets and functions to obtain f̂ tτ ∈ X tτ satisfying (47). Defining [[e]]ρ � f̂ tτ e ρ, we
get the required properties (90)–(92).

Denotations respect βη-conversion:

e1 =βη e2 ⇒ [[e1]] = [[e2]]. (106)

To see this, it suffices to show that [[−]] = [[−]] is a congruence relation equating
β-convertible (85) and η-convertible (86) terms. Congruence is immediate from

12 We are in effect carrying out a simultaneous inductive-recursive definition: see Dybjer [2000].
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the defining properties (90)–(92) of [[−]]. To see that [[−]] respects β-conversion,
one has to show

[[e′[x := e]]]ρ = [[e′]](ρ{x �→ [[e]]ρ}) (107)

and for η-conversion one has to show

x /∈ fv(e) ⇒ [[e]](ρ{x �→ d}) = [[e]]ρ. (108)

These properties can be proved using the second α-structural induction principle
(Theorem 5.2) for �STL, with the second one used in the proof of the first.13 For
(108), one can use the subsets

Stτ � {e ∈ �(τ ) |
(∀x ∈ Avτ

, ρ ∈ Env, d ∈ D(τ )) x # e ⇒ [[e]](ρ{x �→ d}) = [[e]]ρ}
which are all supported by the empty set. Properties (90)–(92) of [[−]] allow one
to show that these subsets satisfy the induction hypotheses (IHVrτ ), (IHApτ,τ ′ ) and
(IHLmτ,t y′ ); hence, by Theorem 5.2, each Stτ is the whole of �(τ ) and (108) holds.

For (107), for each x ∈ Avτ
and e ∈ �(τ ), we apply Theorem 5.2 to the subsets

S′
tτ

� {e′ ∈ �(τ ) | (∀ρ ∈ Env) [[e′[x := e]]]ρ = [[e′]](ρ{x �→ [[e]]ρ})},
which are all supported by A � {x} ∪ supp(e). To conclude that S′

tτ
= �(τ ), we

have to prove the these subsets S′
tτ

satisfy the induction hypotheses (IHVrτ ), (IHApτ,τ ′ )
and (IHLmτ,t y′ ). The first two follow easily from (90) and (91). For (IHLmτ,t y′ ), we have
to show (∃x ′ ∈ Avτ

) x ′ # (x, e) & (∀e′ ∈ Stτ ) λx ′ : τ. e′ ∈ Stτ ; but choosing
any x ′ in the infinite set Avτ

− supp(x, e), for each e′ ∈ S′
tτ

and ρ ∈ Env we
have:

[[(λx ′ : τ. e′)[x := e]]]ρ

= [[λx ′ : τ. (e′[x := e])]]ρ since x ′ /∈ fv(x, e)

= λd ∈ D(τ ). [[e′[x := e]]](ρ{x ′ �→ d}) by (92)

= λd ∈ D(τ ). [[e′]](ρ{x ′ �→ d}{x �→ [[e]](ρ{x ′ �→ d})}) since e′ ∈ Stτ

= λd ∈ D(τ ). [[e′]](ρ{x ′ �→ d}{x �→ [[e]]ρ}) by (108), since x ′ /∈ fv(e)

= λd ∈ D(τ ). [[e′]](ρ{x �→ [[e]]ρ}{x ′ �→ d} since x ′ �= x

= [[λx ′ : τ. e′]](ρ{x �→ [[e]]ρ}) by (92)

so that λx ′ : τ. e′ ∈ Stτ , as required.

6.4. REIFICATION, REFLECTION AND NORMALIZATION. The reification function
↓τ ∈ D(τ ) →fs N (τ ) turns elements of the denotational model into βη-long
normal forms, whereas the reflection function ↑τ ∈ U (τ ) →fs D(τ ) turns neutral
terms into denotational elements. Both functions are defined simultaneously by
ordinary structural recursion for simple type symbols τ ∈ Ty in Figure 6, where for
clarity we have written α-terms over the signature �LNF without the conventions

13 It might seem that (108) is a consequence of the property (103) that we built in to the construction
of [[−]]; but unfortunately that property only tells us that [[e]](ρ{x �→ d}) and [[e]]ρ are equal when x
avoids some finite set of atoms, rather than the particular finite set supp(e).
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FIG. 6. Reification (↓τ ) and reflection (↑τ ).

introduced by Notation 6.1. The interesting part of the definition in this figure is
clause (110), where we make use of the fresh construct from Theorem 3.10. To do
so, we have to check that the conditions of that theorem are satisfied; but in this
case that is easy: given f ∈ D(τ

.→ τ ′), choosing any atom x in the infinite set
Avτ

− supp(↓τ ′, ↑τ , f ),14 then the element

h � λx ∈ Avτ
. Lτ,τ ′ x . ↓τ ′( f (↑τ (Vτ x)))

of Avτ
→fs N (τ ′) satisfies x # h (by choice of x) and x # h(x) (because x /∈

fv(Lτ,τ ′ x . n) for any n ∈ N (τ ′)); so we can form fresh(h) as in the theorem.

Definition 6.2 The initial environment ρ0 maps each x ∈ Avτ
to ↑τ (Vτ x) ∈

D(τ ), for all τ ∈ Ty. This has empty support (because the ↑τ functions do) and
hence in particular it is an element of the nominal set Env of finitely supported
environments. Using it, we define the normalization function normτ ∈ �(τ ) →fs
N (τ ) by:

normτ (e) � ↓τ ([[e]]ρ0). (113)

Recall that we wish to show that normτ has the properties (82)–(84). Property
(82) follows immediately from (106). Property (83) is the first half of the following
result.

LEMMA 6.3. For all τ ∈ Ty, n ∈ N (τ ) and u ∈ U (τ )

↓τ ([[iτ n]]ρ0) = n (114)
[[ jτ u]]ρ0 = ↑τ (u). (115)

PROOF. These properties can be proved by using the second α-structural in-
duction principle (Theorem 5.2) for �LNF to show that the subsets

Snτ
� {n ∈ N (τ ) | ↓τ ([[iτ n]]ρ0) = n}

Suτ
� {u ∈ U (τ ) | [[ jτ u]]ρ0 = ↑τ (u)}

14 In fact, supp(↓τ ′ , ↑τ , f ) = supp( f ) because the reification and reflection functions turn out to have
empty support.
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FIG. 7. Logical relation.

are equal to N (τ ) and U (τ ) respectively (for all τ ∈ Ty). Since these subsets are
supported by the empty set of atoms one can take A = ∅ in the theorem and prove

(∀x ∈ Avτ
) Vτ x ∈ Suτ

(IHVτ
)

(∀u ∈ Suτ
.→τ ′ , n ∈ Snτ

) Aτ,τ ′(u, n) ∈ Suτ ′ (IHAτ,τ ′ )

(∃x ∈ Avτ
)(∀n ∈ Snτ ′ ) Lτ,τ ′ x . n ∈ Snτ

.→τ ′ (IHLτ,τ ′ )

(∀u ∈ Suι
) I u ∈ Suι

. (IHI)

These nearly all follow directly from the definitions of iτ , jτ , ↓τ , ↑τ , [[−]] and ρ0.
The only tricky case is for (IHLτ,τ ′ ), because of the use of fresh in ↓τ

.→τ ′ . Picking
any atom x in Avτ

, suppose n ∈ Snτ ′ . We wish to prove that Lτ,τ ′ x . n ∈ Snτ
.→τ ′ .

Note that x # Lτ,τ ′ x . n; so since [[−]], iτ .→τ ′ and ρ0 have empty support, it is the
case that x # [[iτ .→τ ′(Lτ,τ ′ x . n)]]ρ0 = [[λx : τ. iτ ′ n]]ρ0 = f , where f � λd ∈
D(τ ). [[iτ ′ n]](ρ0{x �→ d}). Hence

x # (λx ′ ∈ Avτ
. Lτ,τ ′ x ′. ↓τ ′( f (↑τ (Vτ x ′))))

and therefore by definition of fresh in Theorem 3.10

↓τ
.→τ ′([[iτ .→τ ′(Lτ,τ ′ x . n)]]ρ0)

= fresh(λx ′ ∈ Avτ
. Lτ,τ ′ x ′. ↓τ ′( f (↑τ (Vτ x ′))))

= Lτ,τ ′ x . ↓τ ′( f (↑τ (Vτ x)))
= Lτ,τ ′ x . ↓τ ′([[iτ ′ n]](ρ0{x �→ ↑τ (Vτ x)}))
= Lτ,τ ′ x . ↓τ ′([[iτ ′ n]]ρ0) by definition of ρ0

= Lτ,τ ′ x . n since n ∈ Snτ ′

so that Lτ,τ ′ x . n is indeed an element of Snτ
.→τ ′ .

It just remains to prove that normτ has the property (84). For this we use a
logical relation ∼τ ⊆ D(τ )×�(τ ) between elements of the denotational model and
terms. It is defined by ordinary structural recursion for simple type symbols τ ∈ Ty
in Figure 7, which also extends the relation to one between (finitely supported)
environments and substitutions.

LEMMA 6.4 (FUNDAMENTAL PROPERTY OF ∼). For all τ ∈ Ty, e ∈ �(τ ), ρ ∈
Env and σ ∈ Sub

ρ ∼ σ ⇒ [[e]]ρ ∼τ [e]σ. (116)



Alpha-Structural Recursion and Induction 497

PROOF. This can be proved by applying the second α-structural induction the-
orem for the nominal signature �STL to show that the subsets

Sτ � {e ∈ �(τ ) | (∀ρ ∈ Env, σ ∈ Sub) ρ ∼ σ ⇒ [[e]]ρ ∼τ [e]σ }
are equal to �(τ ), for all τ ∈ Ty. Proving the induction hypotheses (IHVrτ ) and
(IHApτ,τ ′ ) is straightforward; and for (IHLmτ,τ ′ ), one first proves

d ∼τ e & e =βη e′ ⇒ d ∼τ e′ (117)

([λx . e]σ ) e′ =βη [e](σ {x �→ e′}) (118)

where σ {x �→ e′} indicates an updated substitution mapping x to e′ and otherwise
acting like σ .

One can prove by ordinary structural induction for types τ ∈ Ty that

(∀τ ∈ Ty, u ∈ U (τ )) ↑τ (u) ∼τ jτ u (119)
(∀τ ∈ Ty, d ∈ D(τ ), e ∈ �(τ )) d ∼τ e ⇒ iτ (↓τ (d)) =βη e. (120)

(Both properties are proved simultaneously, and one needs to make use of (117).)
Because of (119), the identity substitution σ0 ∈ Sub satisfies ρ0 ∼ σ0 . So by
Lemma 6.4 and (93) we have [[e]]ρ0 ∼τ [e]σ0 = e, for all e ∈ �(τ ). Thus, (120)
gives iτ (↓τ ([[e]]ρ0)) =βη e, that is, iτ (normτ (e)) =βη e, as required for (84).

7. Assessment

7.1. MATHEMATICAL PERSPECTIVE. The results of this article are directly in-
spired by my joint work with Gabbay on “FM-set” theory [Gabbay and Pitts 2002]
and by his PhD thesis [Gabbay 2000]. In particular, those works contain structural
recursion and induction principles for an inductively defined FM-set isomorphic
to λ-terms modulo α-equivalence. Here I have taken an approach that is both a bit
more general and more concrete: more general, because the particular signature for
λ-terms has been replaced by an arbitrary nominal signature (a notion which comes
from joint work with Urban et al. [2004] and is developed further in Cheney’s
thesis [Cheney 2004]); and more concrete in two respects. First, the key notion of
(finite) support has been developed using nominal sets within the framework of
ordinary higher-order classical logic, rather than being axiomatised within FM-set
theory; see Cheney [2004, Chap. 3] for a more leisurely and generalized account
of the theory of nominal sets. Second, the recursion and induction principles de-
veloped here refer directly to α-terms, that is, standard α-equivalence classes of
abstract syntax trees, rather than using an initial algebra that is merely isomorphic
to the set of α-terms; see Remark 5.3. This is also the approach taken by Norrish
[2004], building on Gordon and Melham’s five axioms for α-equivalence [Gordon
and Melham 1996]; and also by Urban and Tasson [2005]. Norrish’s recursion prin-
ciple [Norrish 2004, Figure 1] has side-conditions requiring that the function being
defined be well-behaved with respect to variable-permutations and with respect to
generation of fresh variables. In effect, these side-conditions build in just enough of
the theory of nominal sets to yield a well-defined and total function, while only hav-
ing to specify how binders with fresh variables are mapped by the function. Along
with Urban and Tasson [2005], I prefer to develop the theory of nominal sets in its
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own right and then give a simple-looking15 recursion principle within that theory.
One advantage of such an approach is that it makes it easier to identify and use
properties of name freshness, such as Theorem 3.10, independently of the recursion
principle. We used Theorem 3.10 in the reduction of Theorem 4.1 to Theorem 2.3,
in the reduction of “varying parameters” to “no parameters” (Example 5.6) and
in the definition of the reification functions in the extended example in Section 6;
another good example of its use occurs (implicitly) in the denotational semantics
of FreshML’s fresh expression [Shinwell and Pitts 2005, Sect. 3].

How easy is it to apply these principles of α-structural recursion and induction?
Just as for the work of Gordon and Melham [1996], Norrish [2004] and Urban and
Tasson [2005], to use them one does not have to change to an unfamiliar logic (we
remain in higher-order classical logic), or a new way of representing syntax (we use
the familiar notion of α-equivalence classes of abstract syntax trees). One does have
to get used to thinking in terms of permutations and finite support; and the latter
is undoubtedly a subtle concept at higher types. However, the relativisation from
arbitrary mathematical objects to finitely supported ones called for by this approach
is made easier by the fact (Theorem 3.5) that the finite support property is conserved
by all the usual constructs of higher-order logic except for uses of the axiom of
choice. Thus, if some language of interest has been specified as the α-terms for a
particular nominal signature and one wishes to define a function on those α-terms
specified by an instance of the recursion scheme (47) in Theorem 5.1 (for suitable
functions fK), then there are three tasks involved in applying the theorem to this
data:

(I) Show that the sets Xs that one is mapping into have the structure of nominal
sets.

(II) Show that the functions fK are all supported by a single finite set of atoms A.

(III) Show that each function fK satisfies the “freshness condition on binders”
(FCBK).

Task (I) is usually carried out by showing how the Xs are built up from some stan-
dard nominal sets (such as those in Example 3.2) using the constructions described
in Sections 3.2 and 3.3. Task (II) might seem quite difficult, but in fact the Finite
Support Principle (Theorem 3.5) usually reduces it to seeing how the fK are con-
structed within higher-order logic. So really the main difficulty is task (III). In some
cases, such as the capture-avoiding substitution function in Example 5.5, (FCBK)
is very easily checked. In other cases, such as in the definition of the denotation
functions [[−]] in the extended example of Section 6, one has to work hard to verify
the freshness condition on binders.

Applying the α-structural induction principles is somewhat easier. For example,
for the second α-structural induction principle (Theorem 5.2) one still has the
analogues of the easy tasks (I) and (II); and then one just has to verify the induction
hypothesis (IHK) for each constructor K, which is in fact a more restricted property
than the corresponding induction hypothesis in an ordinary structural induction for
terms rather than α-terms.

15 Once one gets used to the distinctive concepts of nominal sets, I believe that principles such as
Theorems 4.1, 5.1 and 5.4 are quite simple.



Alpha-Structural Recursion and Induction 499

7.2. AUTOMATED THEOREM PROVING PERSPECTIVE. Based on experience with
other formalisms, I claim that the use of permutations and finitely supported objects
advocated here is a simple, effective and yet rigorous way of dealing with binders
and α-equivalence in “article-and-pencil” proofs in programming language seman-
tics. But how easy is it to provide computer support for reasoning with α-structural
recursion and induction? Of the three types (I–III) of task involved in applying
these principles in any particular case that were mentioned above, task (III) will
require human-intervention; but in view of Theorem 3.5, there is the possibility
of automating tasks (I) and (II). One way of attempting that is to develop a new
higher-order logic in which types only denote nominal sets and that axiomatises
properties of permutations and finite support; this is the route taken by Gabbay,
with his FM-HOL [2002]. The disadvantage of such a “new logic” approach is
that one does not have easy access to the legacy of already-proved results in sys-
tems such as HOL4 and Isabelle/HOL. To what extent tasks (I) and (II) can be
automated within these “legacy” mechanised logics remains to be seen. The work
of Norrish [2004] provides a starting point within the HOL4 system. For the Is-
abelle system, Urban and Tasson [2005] developed a theory equivalent to nominal
sets within Isabelle/HOL up to and including an induction principle (but not a re-
cursion principle) for the particular nominal signature for λ-terms.16 Building upon
that foundation, Urban and Berghofer are developing a Nominal Datatype Package
for Isabelle/HOL that allows its users to declare nominal signatures and then have
principles of α-structural recursion and induction for those signatures proved and
ready to be applied: see http://isabelle.in.tum.de/nominal/.

HOL4 and Isabelle/HOL are theorem-proving systems for higher-order classical
logic. Can support for α-structural recursion and induction be provided in proof-
assistants based on constructive metatheory, such as the Coq [pauillac.inria.fr/coq/]
and Twelf [www.cs.cmu.edu/twelf/] systems? Answering this question involves
investigating a topic we have not addressed here: the constructive content of the
theory of nominal sets and (hence) the integration of atoms, atom-permutations and
finite support with the metalogical frameworks underlying Coq and Twelf. First
steps towards this have been taken by Schöpp [2006], Schöpp and Stark [2004],
and by Cheney (personal communication, 2006).

Appendix

A. Proof of Second α-Structural Induction Theorem

Given a nominal signature �, we prove the second α-structural induction principle
(Theorem 5.2) as a corollary of the first one, Theorem 4.5. To do so, we must first
develop some properties of the operation ā ∈ A

σ , ē ∈ Tα(�)|σ | �→ ā. ē ∈ Tα(�)σ
and the relation �σ ⊆ A

σ × Tα(�)|σ | defined in Figure 2.

LEMMA A.1. If ā ∈ A
σ , ē ∈ Tα(�)|σ | and ā �σ ē, then supp(ā. ē) = supp(ē) −

supp(ā).

16 Their proof of validity of the induction principle follows a different route from the one used here to
prove the α-structural recursion and induction principles.
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PROOF. This can be proved by ordinary structural recursion for arities. The
induction step for pair arities uses the fact (20) that the support of a pair is the union
of the supports of its two components. The induction step for atom-binding arities
uses the fact, noted in Example 3.2(3), that the support of an α-term is its finite set
of free atoms (so that in particular supp(a. e) = supp(e) − {a}).

LEMMA A.2. Let (Ss ∈ Pfs(Tα(�)s) | s ∈ �D) be a family of finitely supported
subsets of α-terms indexed by the data-sorts of �. Extend this to arity-indexed
families

(Sσ ∈ Pfs(Tα(�)σ ) | σ ∈ Ar(�))

(S|σ | ∈ Pfs(Tα(�)|σ |) | σ ∈ Ar(�))

as in Figure 3. Then for any finite set A of atoms, each element of Sσ is of the form
ā. ē for some ā ∈ A

σ and ē ∈ S|σ | satisfying ā # A and ā �σ ē.

PROOF. This can be proved by ordinary structural induction for arities, for all
A simultaneously. The induction steps when σ = a ∈ �A, σ = s ∈ �D and σ = 1
are trivial.

Case σ = σ1∗σ2. By definition of Sσ , each e ∈ Sσ is of the form e = (e1, e2) with
ei ∈ Sσi for i = 1, 2. Given A, by induction hypothesis for σ1 applied to the finite
set of atoms A ∪ supp(e2), we can find ā1 ∈ A

σ1 and ē1 ∈ S|σ1| with e1 = ā1. ē1,
ā1 # (A, e2) and ā1 �σ1 ē1. Then, by induction hypothesis for σ2, we can find
ā2 ∈ A

σ2 and ē2 ∈ S|σ2| with e2 = ā2. ē2, ā2 # (A, ā1, ē1) and ā2 �σ2 ē2. Since
ā1 # ā2, we have (ā1, ā2) ∈ A

σ1 ⊗ A
σ2 = A

σ . So e = (e1, e2) = (ā1, ā2). (ē1, ē2)
with (ā1, ā2) # A and (ē1, ē2) ∈ S|σ1| × S|σ2| = S|σ |. So it just remains to show
(ā1, ā2) �σ (ē1, ē2). For this, since āi �σi ēi (i = 1, 2) and ā2 # ē1 hold by
construction, we just need to prove that ā1 # ē2. We chose ā1 to have its support
disjoint from supp(e2), which by Lemma A.1 is supp(ē2)−supp(ā2); since supp(ā1)
is also disjoint from supp(ā2), it follows that supp(ā1)∩supp(ē2) = ∅, that is, ā1 # ē2,
as required.

Case σ = �a�σ1. By definition of Sσ , each e ∈ Sσ is of the form e = a. e1 with
a ∈ Aa − supp(Sσ1 ) and e1 ∈ Sσ1 . Given A, choosing any atom a′ in the infinite set
Aa − supp(A, a, e1), it follows from the characterization of α-equivalence in (29)
that e = a′. e′

1 where e′
1 � (a a′) · e1 ∈ (a a′) · Sσ1 = Sσ1 , since a, a′ # Sσ1 . Then by

induction hypothesis for σ1 applied to the finite set of atoms A ∪ {a′}, we can find
ā1 ∈ A

σ1 and ē1 ∈ S|σ1| with e′
1 = ā1. ē1, ā1 # (A, a′) and ā1 �σ1 ē1. since a′ # ā1,

we have (a′, ā1) ∈ Aa ⊗ A
σ1 = A

σ . So e = a′. e′
1 = (a′, ā1). ē1 with (a′, ā1) # A,

ē1 ∈ S|σ1| = S|σ | and (a′, ā1) �σ ē1.

To prove Theorem 5.2, we also need to see that its induction hypotheses (IHK) are
equivalent to ones that universally rather than existentially quantify over suitably
fresh nested tuples ā of atoms. To do so, we make use of the following generalization
of permutations that transpose a pair of atoms.

Definition A.3 (Vector-Transpositions). Let � be a nominal signature and σ ∈
Ar(�) an arity over the signature. Let the nominal set A

σ of nested tuples of distinct
atoms be defined as in Figure 2. For each pair of elements ā, ā′ ∈ A

σ with ā # ā′, let
τā,ā′ ∈ Perm be the atom-permutation that transposes the atoms at corresponding
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positions in the nested tuples ā and ā′. More formally, τā,ā′ is defined by ordinary
structural recursion on the arity σ as follows:

σ (ā, ā′) ∈ A
σ ⊗ A

σ �→ τā,ā′ ∈ Perm
a ∈ �A ((), ()) �→ ι
s ∈ �D ((), ()) �→ ι

1 ((), ()) �→ ι
σ1 ∗ σ2 ((ā1, ā2), (ā′

1, ā′
2)) �→ τā1,ā′

1
◦ τā2,ā′

2�a�σ1 ((a, ā1), (a′, ā′
1)) �→ (a a′) ◦ τā1,ā′

1

Although the clauses defining τā,ā′ make sense for any pair ā, ā′, we restrict to
pairs satisfying ā # ā′ to ensure that τā,ā′ enjoys many properties of single-atom
transpositions, (a a′). In particular, one can easily prove by ordinary structural
induction for arities that:

π ◦ τā,ā′ ◦ π−1 = τ(π ·ā),(π ·ā′) (any π ∈ Perm) (121)

supp(τā,ā′) ⊆ supp(ā) ∪ supp(ā′) (122)
τā,ā′ = τā′,ā (123)

τā,ā′ ◦ τā,ā′ = ι (124)

τā,ā′ · ā = ā′. (125)

Part (2) of the following result generalizes the “some/any” Theorem 3.8 from single
atoms to elements of A

σ .

LEMMA A.4.

(1) For all finite sets of atoms A, there is some ā ∈ A
σ with ā # A.

(2) For all finitely supported subsets S ∈ Pfs(Aσ ), if S is supported by the finite set
of atoms A, then the following statements are equivalent.

(∀ā ∈ A
σ ) ā # A ⇒ ā ∈ S (126)

(∃ā ∈ A
σ ) ā # A & ā ∈ S. (127)

PROOF. Part (1) follows easily by ordinary structural induction for arities σ ∈
Ar(�). For part (2), first note that in view of part (1), one just has to show that
(127) implies (126). Suppose ā ∈ A

σ satisfies ā # A & ā ∈ S. Given any other
ā′ ∈ A

σ with ā′ # A, we have to show ā′ ∈ S. We can use part (1) to find ā′′ ∈ A
σ

with ā′′ # (A, ā, ā′) and then use the vector-transpositions of Definition A.3 to
define π � τā′,ā′′ ◦ τā,ā′′ ∈ Perm.17 By (125), we have π · ā = ā′; and because
by (122) π is supported by supp(ā, ā′, ā′′), which is disjoint from A and hence
from supp(S), we have π · S = S. So applying π to ā ∈ S we get ā′ ∈ S, as
required.

The following result generalizes the characterization of α-equivalence mentioned
in Example 3.9. Note that in view of the previous lemma, the right-hand side of the

17 Since it may not be the case that ā # ā′, we cannot use τā,ā′ ; so (unlike in the proof of Theorem 3.8)
we resort to swapping via an intermediate, fresh ā′′.



502 ANDREW M. PITTS

bi-implication in (128) could be replaced by (∀ā′′ ∈ A
σ ) ā′′ # A ⇒ τā,ā′′ · ē =

τā′,ā′′ · ē′ ∈ Tα(�)|σ |.

LEMMA A.5. Suppose ā, ā′ ∈ A
σ and ē, ē′ ∈ Tα(�)|σ | satisfy ā �σ ē and

ā′ �σ ē′. If A is a finite set of atoms supporting (ā, ā′, ē, ē′), then

ā. ē = ā′. ē′ ∈ Tα(�)σ ⇔
(∃ā′′ ∈ A

σ ) ā′′ # A & τā,ā′′ · ē = τā′,ā′′ · ē′ ∈ Tα(�)|σ |. (128)

PROOF. This can be proved by ordinary structural induction for arities σ .
The induction step for atom-binding arities uses the corresponding property (29)
of =α.

We can now complete the proof of Theorem 5.2. We are given subsets (Ss ∈
Pfs(Tα(�)s) | s ∈ �D) supported by the finite set of atoms A and satisfying (IHK)
for each K ∈ �C. Define (Sσ ∈ Pfs(Tα(�)σ ) | σ ∈ Ar(�)) as in the right-hand
column in Figure 3. It is not hard to see that all of these subsets are also supported
by A and hence so is their union S �

⋃
σ∈Ar(�) Sσ . If S = Tα(�), then Ss = Tα(�)s

for each s ∈ �D; and to prove S = Tα(�) we just have to prove that this S
satisfies the conditions (41)–(45) of Theorem 4.5. Conditions (41) and (43)–(45)
are immediate from the definition of (Sσ | σ ∈ Ar(�)) in Figure 3. For condition
(42), given (K : σ → s) ∈ �C and e ∈ Sσ , we have to show that K e ∈ Ss. First
note that by applying Lemma A.4(2) to the subset {ā ∈ A

σ | (∀ē ∈ Tα(�)|σ |) ā �σ

ē & ē ∈ S|σ | ⇒ K ā. ē ∈ Ss}, which is supported by A, to see that (IHK) is
equivalent to

(∀ā ∈ A
σ ) ā # A ⇒ (∀ē ∈ Tα(�)|σ |) ā �σ ē & ē ∈ S|σ | ⇒ K ā. ē ∈ Ss.

(129)

By Lemma A.2, e = ā. ē with ā ∈ A
σ , ē ∈ S|σ |, ā # A and ā �σ ē; so (129)

gives K e ∈ Ss. Thus, we can indeed apply Theorem 4.5 to conclude that S is the
whole of Tα(�) and hence in particular that each Ss is equal to the whole of Tα(�)s,
completing the proof of Theorem 5.2.

B. Proof of Second α-Structural Recursion Theorem

We will establish the second α-structural recursion principle (Theorem 5.1) via
a common strategy for reducing recursion to induction: we first construct re-
lations (using a rule-based inductive definition) that would be the graphs of
the required functions f̂ s were they single-valued and total relations–and then
prove they are so by applying Theorem 5.2. A further application of Theo-
rem 5.2 is needed to show that the functions f̂ s are unique with the stated
properties.

So suppose we are given a family of nominal sets X = (Xs | s ∈ �D) indexed
by the data-sorts of a nominal signature �, and functions ( fK ∈ X (σ ) →fs X (s) |
(K : σ → s) ∈ �C) all of which are supported by a finite set A of atoms and satisfy
(FCBK).
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B.1. Existence of the Functions f̂ s ∈ Tα(�)s →fs Xs

Consider the subsets Fs ⊆ Tα(�)s × Xs (for s ∈ �D) that are inductively defined
by the following rule

K : σ → s ā ∈ A
σ ē ∈ Tα(�)|σ |

ā # A ā �σ ē (ē, x̄) ∈ F |σ | ā �σ x̄
(K ā. ē, fK(ā, x̄)σ ) ∈ Fs

(130)

where F |σ | ⊆ Tα(�)|σ | × X |σ | is defined from any family (Fs ⊆ Tα(�)s × Xs | s ∈
�D) by ordinary recursion on the structure of arities as follows.

σ F |σ | ⊆ Tα(�)|σ | × X |σ |
a ∈ �A {(a, a) | a ∈ Aa}
s ∈ �D Fs

1 {((), ())}
σ1 ∗ σ2 {((ē1, ē2), (x̄1, x̄2)) | (ē1, x̄1) ∈ F |σ1| & (ē2, x̄2) ∈ F |σ2|}
�a�σ1 F |σ1|

It is not hard to see that the set of rules determined by (130) is supported by A.
Hence, by Theorem 3.6, so are all the subsets Fs (and the subsets F |σ | defined from
them). For the existence part of Theorem 5.1, it suffices to show that each Fs is the
graph of a function f̂ s from Tα(�)s to Xs. For then:

—each f̂ s and the functions f̂ |σ | defined from them as in Figure 2 are supported
by A, because Fs is;

—the graphs of the functions f̂ |σ | are the relations F |σ |, because of the above
definition of F |σ |;

—if ā # A and ā �σ ē, then ā �σ f̂ |σ |ē, because of the definition of f̂ |σ |;
—hence ( f̂ s | s ∈ �D) satisfies the recursion property (47): for if ā # A and ā �σ ē,

then x̄ � f̂ |σ |ē satisfies (ē, x̄) ∈ F |σ | and ā �σ x̄ ; so (K ā. ē, fK(ā, x̄)σ ) ∈ Fs by
rule (130) and hence f̂ s(K ā. ē) = fK(ā, x̄)σ = fK(ā, f̂ |σ |ē)σ .

To prove that each Fs is the graph of a function, that is, that

Ss � {e ∈ Tα(�)s | (∃! x ∈ Xs) (e, x) ∈ Fs}
is the whole of Tα(�)s, we apply Theorem 5.2. Note that from the way it is defined,
each Ss is supported by A, because Fs is. So we just have to prove that (Ss | s ∈ �D)
satisfies (IHK) for each (K : σ → s) ∈ �C. By Lemma A.4(1), there is some ā ∈ A

σ

with ā # A. We prove (IHK) for this ā by showing that for each ē ∈ S|σ | with ā �σ ē
it is the case that K ā. ē ∈ Ss.

First, note that by the definitions of S|σ | from (Ss | s ∈ �D) (in Figure 3) and
F |σ | from (Fs | s ∈ �D), we have

(∀ē ∈ Tα(�)|σ |) ē ∈ S|σ | ⇒ (∃! x̄ ∈ X |σ |) (ē, x̄) ∈ F |σ |. (131)

In particular, it follows that if ē ∈ S|σ | and (ē, x̄) ∈ F |σ |, then supp(x̄) ⊆ A∪supp(ē)
(since A supports F |σ |); and this in turn implies (by induction on the structure of
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arities σ ) that(∀ā ∈ A
σ , ē ∈ Tα(�)|σ |, x̄ ∈ X |σ |) ā �σ ē & ē ∈ S|σ | & (ē, x̄) ∈ F |σ | ⇒

ā �σ x̄ . (132)

So by rule (130), if ē ∈ S|σ | with ā �σ ē, then there is some x̄ ∈ X |σ | with
(K ā. ē, fK(ē, x̄)σ ) ∈ Fs. Thus, to see that K ā. ē ∈ Ss, it just remains to show that
if (K ā. ē, x) ∈ Fs, then x = fK(ē, x̄)σ . But if (K ā. ē, x) ∈ Fs holds, it must have
been deduced by an application of rule (130) to

ā′ # A & ā′ �σ ē′ & (ē′, x̄ ′) ∈ F |σ | & ā′ �σ x̄ ′

with K ā. ē = K ā′. ē′ and x = fK(ā′, x̄ ′)σ . So ā. ē = ā′. ē′ and by Lemma A.5,
τā,ā′′ · ē = τā′,ā′′ · ē′, for some ā′′ # (A, ā, ē, ā′, ē′). By (122), the atom-permutations
τā,ā′′ and τā′,ā′′ have their support disjoint from A and hence from the support of
F |σ | and S|σ |. Therefore

(τā,ā′′ · ē, τā,ā′′ · x̄) = τā,ā′′ · (ē, x̄) ∈ τā,ā′′ · F |σ | = F |σ | ,

(τā′,ā′′ · ē′, τā′,ā′′ · x̄ ′) = τā′,ā′′ · (ē′, x̄ ′) ∈ τā′,ā′′ · F |σ | = F |σ | ,

τā′,ā′′ · ē′ = τā,ā′′ · ē ∈ τā,ā′′ · S|σ | = S|σ |

and hence by (131), τā,ā′′ · x̄ = τā′,ā′′ · x̄ ′. Note that from (FCBK), by Lemma A.4(2)
we have

(∀ā ∈ A
σ ) ā # A ⇒ (∀x̄ ∈ X |σ |) ā �σ x̄ ⇒ ā # fK(ā, x̄)σ . (133)

So we have ā # fK(ā, x̄)σ and ā′ # fK(ā′, x̄ ′)σ ; and by choice of ā′′ we also have
ā′′ # ( fK(ā, x̄)σ , fK(ā′, x̄ ′)σ ). Since the atom-permutations τā,ā′′ and τā′,ā′′ have their
supports in A and hence disjoint from fK, fK(ā, x̄)σ and fK(ā′, x̄ ′)σ , we have

fK(ā, x̄)σ = τā,ā′′ · fK(ā, x̄)σ = fK(τā,ā′′ · ā, τā,ā′′ · x̄)σ
fK(ā′, x̄ ′)σ = τā′,ā′′ · fK(ā′, x̄ ′)σ = fK(τā′,ā′′ · ā′, τā′,ā′′ · x̄ ′)σ .

From above τā,ā′′ · ē = τā′,ā′′ · ē′; and by (125), τā,ā′′ · ā = ā′′ = τā′,ā′′ · ā′. So
fK(ā, x̄)σ = fK(ā′, x̄ ′)σ = x , as required.

B .2. Uniqueness of the Functions f̂ s ∈ Tα(�)s →fs Xs

Suppose ( f̂ ′
s ∈ Tα(�)s →fs Xs | s ∈ �D) is also supported by A and satisfies

property (47). To see that f̂ ′
s = f̂ s, if suffices to show that Ss � {e ∈ Tα(�)s |

f̂ s e = f̂ ′
s e} is the whole of Tα(�) for each s ∈ �D. This follows almost immedi-

ately by Theorem 5.2; one just has to check that the subsets S|σ | defined from this
(Ss | s ∈ �D) satisfy S|σ | ⊆ {ē ∈ Tα(�)|σ | | f̂ |σ | ē = f̂ ′|σ |

ē}.
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