
FreshML: A Fresh Approach to
Name Binding in Metaprogramming Languages

Final Report∗

Andrew M. Pitts
February 2005

Abstract

The FreshML project made a fundamental and rigorously-
founded extension to functional programming languages.
The extension has to do with metaprogramming, the activ-
ity of creating software systems that manipulate syntactical
structures (interpreters, compilers, proof checkers, proof
assistants, etc). In all but the most trivial cases, these syn-
tactical structures involve name binding, with associated
notions of free and bound names, renaming of bound names,
substitution of terms for free variables, and so on. It is gen-
erally agreed that this important aspect of representing and
computing with syntax is not catered for satisfactorily in
existing functional programming languages commonly used
for metaprogramming activities. The project addressed
this issue by developing and applying a new mathematical
model of names and binding called “nominal sets”, based
on simple, but subtle ideas to do with permutations of names
that first arose in mathematical logic in the 1930s. This
model was the basis for the design of a “Fresh” patch of
the Objective Caml functional language that relieves the
user from having to deal with many tedious and error-prone
details when programming with names and binders, while
still remaining close to informal practice. The project also
explored applications of nominal sets for programming lan-
guage semantics and for logic programming.

1 Background and Context

Typed functional programming languages in the ML tra-
dition, such as Objective Caml (www.ocaml.org) and
Haskell (www.haskell.org), provide their users with
high-level facilities that greatly simplify one of the main
tasks for which these languages were intended, namely
metaprogramming—the construction and manipulation of
syntactical structures. In these languages the implemen-
tation automatically takes care of the low-level details of

∗The FreshML project ran from July 2001 to December 2004 and was
funded by EPSRC grant GR/R07615/1 and a donation from Microsoft Re-
search Ltd.

constructing and deconstructing data values. Thus users of
these functional metaprogramming languages can specify
datatypes for representing “object-level” syntactical struc-
tures in quite an abstract fashion: they just need to declare
the types of the various functions for constructing the data.
Then they can use patterns to indicate how values should
be decomposed by algorithms that operate on such data. In
particular, the declaration of recursive, meta-level functions
for manipulating the parse trees of object-level languages
is made much simpler (and hence less error prone) through
the use of patterns to match against parts of parse trees.

Unfortunately a pervasive problem spoils this rosy pic-
ture: object-level languages often involve binding opera-
tions. In this case meta-level programs only make sense,
or at least only have good properties, when we operate not
on parse trees themselves, but on α-equivalence classes of
parse trees, identifying trees differing only in the names of
bound entities. At the moment metaprogrammers deal with
this case-by-case according to the nature of the object-level
language being implemented, using a self-imposed disci-
pline. For example, they might work out (not so hard) and
then correctly use (much harder) some “nameless” repre-
sentation of α-equivalence classes of parse trees in the style
of de Bruijn [7]. The tedious and error-prone nature of
ad hoc solutions to this semantically trivial, but pragmat-
ically non-trivial issue of α-equivalence is widely acknowl-
edged [21, Sect.13]. There is a clear need for better au-
tomatic support for object-level α-equivalence in metapro-
gramming languages. The FreshML project has provided a
way of meeting this need by developing some new theory
that seems useful in practice.

2 Achievements of the Research

The FreshML project more than fully met its original objec-
tives, which were:

1. To develop the FM-sets model [14] of abstract syntax
with binders (see Section 2.2).

2. To design and implement a functional programming
language based on that model (see Section 2.1).

1



3. To discover, through experimentation, whether the
model and programming language provide a useful id-
iom for metaprogramming tasks involving syntax with
binders (see Sections 2.3 and 2.4).

In fact the research also developed in ways that were un-
foreseen at the time the original proposal was formulated;
these developments are outlined in Section 2.5.

2.1 Fresh Objective Caml

The main piece of software produced by this project is Shin-
well’s “Fresh” patch of the Objective Caml language. The
latter is a product of INRIA Rocquencourt, who provide
open access to source code, documentation and tools at
www.ocaml.org. Shinwell’s Fresh O’Caml [22] makes the
distinctive features of FreshML, as described in [25], avail-
able in the context of what is a well-regarded and increas-
ingly widely used general-purpose functional programming
language in the ML family. Specifically, the Fresh patch
extends Objective Caml with a general-purpose type con-
struction, written <<bty>>ty, for binding names of user-
declared type bty in expressions of arbitrary type ty. This
new type construction is used in declarations of types rep-
resenting object-level syntax to specify information about
name binding operations. For example, suppose we want to
represent expressions of a small ML-like language with the
following syntactic forms:

x value identifier
fun x → e function abstraction
e1 e2 function application
let x = e1 in e2 local value
let rec f x = e1 in e2 local recursive function

In Fresh O’Caml we can declare a new type vid of bindable
names for object-level value identifiers and then declare a
datatype expr for the above expressions:

type expr = Vid of vid

| Fun of <<vid>>expr

| App of expr * expr

| Let of expr *(<<vid>>expr)

| Ltr of

<<vid>>((<<vid>>expr) * expr)

In this declaration, types (such as tell the system which
data constructors are binders and how their arguments are
bound. For example in let rec f x = e1 in e2 there is
a binding occurrence of f whose scope is both e1 and
e2; and a binding occurrence of x whose scope is just
e1. These binding scopes are reflected by the argument
type <<vid>>((<<vid>>expr) * expr) of the construc-
tor Ltr in the declaration of expr. This declarative specifi-
cation of binding structure is particularly useful because,
as proved in [24], the design of Fresh O’Caml endows
datatypes like expr with two crucial properties:
Abstractness: object-level expressions represented as
values of the datatype are operationally equivalent in

Fresh O’Caml if and only if they are α-equivalent in the
object language.
Concreteness: values of such datatypes can be decon-
structed by matching against patterns that explicitly name
bound entities.
Indeed, FreshML provides automatic language-level sup-
port for the common informal idiom which refers to α-
equivalence classes via representative parse trees, with
bound names changed “on the fly” to make them dis-
tinct among themselves and distinct from any other names
in the current context of use. For example, the fol-
lowing Fresh O’Caml declaration of a function subst

of type expr -> vid -> expr -> expr suffices for
subst e x e’ to compute (a representation of) the object-
language expression obtained by capture-avoiding substitu-
tion of the expression represented by e for all free occur-
rences of the value identifier named x in the expression rep-
resented by e’.

let subst e x =

let rec s e’ =

match e’ with

Vid x1 -> if x1 = x then e else e’

| Fun(<<x1>>e1) -> Fun(<<x1>>(s e1))

| App(e1, e2) -> App(s e1, s e2)

| Let(e1, <<x1>>e2) ->

Let(s e1, <<x1>>(s e2))

| Ltr(<<f>>(<<x1>>e1, e2)) ->

Ltr(<<f>>(<<x1>>(s e1), s e2))

in s

This declaration not only endows subst with the ex-
pected properties, but is remarkably simple compared with
how capture-avoiding substitution must be defined in pre-
existing languages that are commonly used for metapro-
gramming tasks. In particular, in the above declaration the
clauses dealing with substitution under a binder only have
to specify the result when the bound name is sufficiently
fresh.

A distinguishing feature of the FreshML-style represen-
tation of object-level binders is that it uses a meta-level bi-
nary operation <<->>(-) on names and values (combined
with the ability to declare local fresh names), rather than
a meta-level binding operation. This is in contrast to pre-
vious, “functional” approaches to representing object-level
syntax modulo α-conversion, either based on meta-level
typed λ-calculus [16], or on de Bruijn indexes/levels and
presheaves [9] and seems to account for the expressiveness
of the FreshML approach: the user of Fresh O’Caml gets
expressive linguistic tools for manipulating binders that not
only respect α-conversion, but also seem rather close to in-
formal, “pencil-and-paper” practice.

2.2 Nominal sets and domains

Fresh O’Caml’s novel features arise from a mathematical
model of fresh names and name binding that was introduced

2



in [14] and which makes use of the classical Fraenkel-
Mostowski permutation model of set theory. That paper
expresses its results in terms of a non-standard axiomatic
set theory and our experience is that this formalism im-
pedes the take up of the new ideas within computer sci-
ence. Therefore we have developed an essentially equiv-
alent, but more concrete description of the model as stan-
dard sets equipped with some simple extra structure (a per-
mutation action for which every element of the set has “fi-
nite support”). These so-called nominal sets are introduced
in [17]. The paper [24] and Shinwell’s thesis [23] develop
the rudiments of Plotkin-Scott style domain theory in nom-
inal sets. This combines the ability to solve recursive do-
main equations with interesting new domain constructors
for name abstraction and dynamic allocation of names. The
new domain theory is used to prove that FreshML correctly
represents syntactical data modulo α-equivalence. One of
the exciting features of this domain theory is that it provides
a notion of “support” that generalises the notion of “set
of free variables” from syntactical data to abstract math-
ematical objects, such as extensional functions of higher
type. This opens up new possibilities for the denotational
semantics of computations on open expressions, such as oc-
curs in normalisation by evaluation and type-directed par-
tial evaluation [8], and for programming languages that mix
syntax and semantics, such as multi-staged metaprogram-
ming [21]. Much of the theory of “nominal domains” re-
mains to be developed and applied.

2.3 Case studies

Fresh O’Caml sources, documentation and examples are
available at www.fresh-ocaml.org. We have used the
language for a number of case studies: type inference algo-
rithms; normalisation-by-evaluation for untyped λ-calculus
and for Girard-Reynolds polymorphic λ-calculus; and the
calculation of labelled transitions in the Milner-Parrow-
Walker π-Calculus (see [13]). We have also used it in as yet
unpublished joint work with Sheard (PSU, Oregon) to ex-
plore the denotational semantics of MetaML [26, 21]. This
work showed up one of the strengths of Fresh O’Caml: it
is extremely useful for rapidly prototyping algorithms that
have to manipulate expressions with free names (semantics-
based interpreters for MetaML, in this case). Since it al-
lows one to remain quite close to familiar informal prac-
tices concerning bound names, new implementation ideas
can be tried out quickly; but at the same time one avoids
getting bogged down in the error-prone book-keeping usu-
ally associated with respecting α-conversion of explicitly
given bound names. This also make Fresh O’Caml useful
as a teaching aid; we have used it as an adjunct to a third-
year undergraduate course on type systems (www.cl.cam.
ac.uk/Teaching/2004/Types/).

The biggest test of Fresh O’Caml so far has been con-
ducted in collaboration with the Acute project (www.cl.
cam.ac.uk/users/pes20/acute/) at Cambridge and

INRIA Rocquencourt. Acute is a language with features for
typed distributed communication [20]. Its prototype imple-
mentation is of the order of 20,000 lines of Fresh O’Caml
code. This represents a substantial experiment in using the
FreshML constructs for programming with explicit names
and binders. The collaboration has led to a more robust
Fresh O’Caml implementation and has brought out several
issues that are important for its large-scale use: the im-
portance of delayed permutations for performance, name-
indexed hash tables, and name-variety-indexed binders. So-
lutions for all of these have been proposed and will be in-
vestigated as part of the EPSRC project beginning in 2005
on Naming, Distribution, and Versioning: Programming
Language Design and Implementation (GR/T11715), led by
Sewell.

2.4 Nominal logics

Beyond its application to the design and properties of
Fresh O’Caml, the theory of nominal sets has the potential
to improve both the state of the art and the state of mech-
anised support for the ubiquitous issues of naming, name
binding, locality and freshness of names in programming
language semantics (both operational and denotational se-
mantics). In order to realise that potential it is first nec-
essary to develop formal logics that express the way that
these things are dealt with using nominal sets. So we
investigated such logics as part of the FreshML project.
In [12], Gabbay describes a higher-order logic, FM-HOL,
that bears the same relationship to (a generalised version
of) Fraenkel-Mostowski set theory as does Church’s higher-
order logic to classical set theory. In [11], he reports on his
development of machine-assistance for proving theorems
in FM-HOL, using Paulson’s generic theorem proving en-
vironment Isabelle (www.cl.cam.ac.uk/Research/HVG/
Isabelle/). An alternative approach (as yet unpublished)
has recently been taken by Urban. Rather than devel-
oping a new Isabelle object-logic, he uses the standard
and extensive Isabelle/HOL logic to develop the proper-
ties of nominal sets relevant to programming semantics,
such as its principle of induction for structure modulo α-
equivalence [14, Theorem 6.8]. Both of these efforts have
highlighted how useful it would be to have the nominal
logic notions of “name-permutation” and “finite support”
built into the metalogic. There are theoretical issues to be
solved to achieve this; but the main obstacle is practical:
re-engineering a major theorem-proving system such as Is-
abelle is a huge undertaking.

2.5 Nominal computational logic

Our experience using nominal sets shows that the “fresh-
ness” of a name with respect to an element of a nominal set
emerges as a central concept, even though it is defined in
terms of simpler things (name-permutation and quantifica-
tion over finite sets of names). By taking name-freshness

3



as well as name-permutation as primitive, Pitts was able to
develop a first-order theory, nominal logic [17], which is in-
complete, but nevertheless seems to capture the practically
important aspects of modelling names and binders using
nominal sets. This first-order nominal logic also turned out
to have interesting applications for fully automatic (rather
than machine-assisted) computational logic, as we now de-
scribe.

By examining the equational part of nominal logic, Ur-
ban, Pitts and Gabbay developed a generalisation of first-
order unification to the practically important case of equa-
tions between terms involving binding operations [28]. A
substitution of terms for variables solves such an equation
if it makes the equated terms α-equivalent, i.e. equal up
to renaming bound names. For the applications they have
in mind (computing with rule schemas in structural oper-
ational semantics), one must consider the simple, textual
form of substitution in which names occurring in terms may
be captured within the scope of binders upon substitution.
They are able to use the approach to binding characteris-
tic of this project, in which bound entities are explicitly
named (rather than using nameless, de Bruijn-style repre-
sentations), and yet get a version of this form of substitu-
tion that respects α-equivalence and possesses good algo-
rithmic properties. They achieve this by adapting two exist-
ing ideas. The first one is terms involving explicit substitu-
tions of names for names, except that they only need to use
explicit permutations (bijective substitutions). The second
one is that the unification algorithm should solve not only
equational problems, but also problems about the freshness
of names for terms. They show that there is a simple gener-
alisation of classical first-order unification problems to this
setting which retains most of the latter’s pleasant properties:
unification problems involving α-equivalence and freshness
are decidable; and solvable problems possess most general
solutions. (However, the most efficient algorithm for nom-
inal unification known so far is quadratic rather than linear
in the size of the problem.)

Following on from this, Cheney and Urban have devel-
oped a prototype logic programming language, AlphaPro-
log, for declaring and querying relations between terms
modulo α-equivalence [6]. AlphaProlog not only relies on
the unification algorithm from [28], but also on the proof
theory of nominal logic developed by Cheney and Gab-
bay [10, 5]. Some initial difficulties reported in [27] seem
to have been overcome [4]; but much remains to be under-
stood about the expressive power and practical utility of this
extension of logic programming.

3 Project Plan Review

Comparison with original plan When this project be-
gan we planned just to implement a prototype version of
FreshML containing some, but not all the features of a fully-
fledged ML-like language. One of the novel features envis-
aged in the original design of FreshML [18] was to enforce

the condition “freshly chosen names do not occur in the sup-
port of the final result”. This was to be achieved through an
extension of ML’s usual type inference at compile-time, by
deducing information about a relation of freshness of names
for expressions that is a decidable approximation to the (in
general undecidable) nominal sets notion of “not-in-the-
support-of”. The result is a pure functional programming
language: static freshness inference ensures the dynamics
of replacing insufficiently fresh names on the fly is refer-
entially transparent. Purity makes reasoning about program
properties simpler and is desirable, but our static freshness
inference which achieved it had a drawback: since fresh-
ness is only an approximation of “not-in-the-support-of”,
the type-checker inevitably rejects some algorithms that do
in fact respect α-conversion of bound names. In trying to
“program round” this difficulty in specific examples, we
made a key discovery: perhaps surprisingly, static fresh-
ness inference is not necessary for the crucial Abstractness
property mentioned in Section 2.1 to hold. We can have
Abstractness in the presence of the Concreteness property
also mentioned there, so long as the operational semantics
of [18] is modified to make the declaration of fresh bind-
able names generative like some other sorts of names (ref-
erences, exceptions and type names) are in ML. (This fact
is not at all obvious and requires proof, which we finally
gave, after some false starts, in [24].) Ditching freshness
inference at the expense of a moving to a less “pure” func-
tional programming language was a huge win. It enabled
us to integrate the simplified FreshML design into the fully-
fledged Objective Caml language, making experimentation
much easier and user-adoption much more likely. (For ex-
ample, the Acute work mentioned in Section 2.3 would have
been impossible without this development.)

Staff The original Project Plan called for an experienced
Research Associate to carry out FreshML design and im-
plementation work. Despite considerable efforts, we failed
to recruit at the post-doctoral level and fell back on em-
ploying Mark Shinwell as a post-graduate Research Assis-
tant. The money saved by this lower-level appointment en-
abled us to employ Murdoch Gabbay as a Research Asso-
ciate to work on the theoretical and theorem-proving aspects
of the project for two years rather than the one year origi-
nally envisaged (at the expense of also not employing 5%
of a Computer Officer and Administrator). On leaving the
project, Gabbay moved to the INRIA Futurs Laboratory in
Paris as a research fellow. As it turned out, appointing Shin-
well as a Research Assistant was very effective. Not only
did he implement Fresh O’Caml, but he also completed a
PhD thesis [23] containing a very interesting blend of the-
ory and practice, which was successfully defended in Febru-
ary 2005. Shinwell is being employed as a Research Asso-
ciate on a new project beginning in 2005 (see Section 7).
Mike Gordon was named as a co-investigator in the original
Project Plan, but played less of a role than planned: this was
due to the fact that our case studies concentrated on func-
tional metaprogramming and not, as originally envisaged,

4



also on building prototype theorem-proving systems.
Collaboration The project interacted with the Pro-
gramming Principles and Tools group at Microsoft Re-
search Cambridge—particularly Simon Peyton Jones, Mark
Shields (now at Galois Connections Inc, USA) and Nick
Benton. (This group employed Mark Shinwell as an in-
tern prior to his employment on this project.) With Simon
Peyton Jones and Mark Shields, and also Koen Claessen
(Chalmers), we explored issues to do with the implemen-
tation of FreshML and in particular the possibility of a
call-by-need version. The desirability of such a “Fresh-
Haskell” seems clear enough, but more work is needed to
understand whether there are efficient lazy implementations
of FreshML’s characteristic name-permutation operations;
furthermore Haskell puts great store on encapsulating im-
pure effects, whereas we have found the way Fresh O’Caml
mixes up dynamic creation of fresh names with expression
evaluation to be very convenient. As a result of Pitts’ visit to
Portland, Sheard has produced a useful Haskell library that
provides a “poor man’s” version of FreshML’s characteris-
tic features without having to re-implement Haskell itself.
We also had discussions with Benton about the domain the-
ory that we developed in nominal sets (Section 2.2); this has
been used by Benton and Leperchey as the basis of a new
analysis of program equivalences in higher-order functional
programming with local state [2].

Pitts and Gabbay also collaborated on nominal logic with
Christian Urban, Michael Norrish (both Research Fellows
funded by Cambridge Colleges) and James Cheney. Ch-
eney was a graduate student from Cornell University who
accompanied his advisor Morrisett on a visit to Cambridge
in 2003; he subsequently went on to complete a PhD thesis
on nominal logic [5], containing important results for the
work described in Section 2.5.

4 Research Impact and Benefit to Society

The most important impact of this project has been to pro-
mote within the programming languages research commu-
nity the fundamental ideas behind the nominal sets model—
the use of name-permutations and the notion of “finite
support”—as best-practice when dealing with syntactical
structure involving names and binders. There is already ev-
idence of their take-up among researchers: they have been
used by Caires and Cardelli in their spatial logic for con-
currency [3]; by Abramsky et al [1] in the context of their
games semantics to solve a long-standing full abstraction
problem to do with dynamic allocation of names; by Schöpp
and Stark [19] in a dependent type theory with names and
binding; and (indirectly) by Nanevski and Pfenning in their
work on modal types in functional metaprogramming [15].
However, it is very difficult to change the existing ortho-
doxy, which relies on (total) functions to represent binders,
because of the legacy of mature systems based upon that
method of representation (whose drawbacks we discussed
at the end of Section 2.1). Nevertheless, we believe the

ideas behind the nominal sets model are sufficiently simple
to stand a good chance of being widely adopted as standard
tools by people who create and use formal descriptions of
programming languages and logics. We plan to promote
them through expository material and teaching (see Sec-
tion 6); and Harper (CMU) is using them in a forthcom-
ing graduate text on Programming Languages: Theory and
Practice (www.cs.cmu.edu/~rwh/plbook/, Chapter 5).

For our main software product, Fresh O’Caml, to itself
have a lasting impact outside the research community would
require it to be folded in to a future release of the Objective
Caml language. The changes made by the current Fresh
patch are too great and too inefficient for there to be much
prospect of that happening at the moment; the situation
may change after further development as part of the Nam-
ing, Distribution, and Versioning project (see Section 7). In
fact we believe that, rather than a general-purpose program-
ming language, the development of domain-specific tools
for metaprogramming based on the ideas of FreshML are
probably the way ahead.

5 Explanation of Expenditure

There was no significant variation from the original spend-
ing plans other than described in the paragraph on Staff in
Section 3. The donation from Microsoft Research Ltd was
used to fund: the visit of Koen Claessen from Chalmers
University during November 2001; a graduate internship
for Peter White during the summer of 2002 to work on the
FreshML implementation; the visit of Pitts to OGI (Port-
land, Oregon) for October 2003; and for various project-
related conference travel.

6 Dissemination Activities

Papers arising from the research carried out by the FreshML
project have so far been published in the journals Infor-
mation and Computation [17], Theoretical Computer Sci-
ence [28, 24] and Formal Aspects of Computing [14]. Con-
ference papers and talks were given at the following inter-
national conferences and workshops: TACS 20001, Sendai,
Japan (invited); Workshop on 35 years of Automath, Heriot-
Watt, Edinburgh (refereed) [12]; ICALP 2002, Malaga,
Spain (invited); MERLIN 2003, Uppsala, Sweden (refer-
eed) [22]; ICFP 2003, Uppsala, Sweden (refereed) [25];
CSL’03 & KGC, Vienna, Austria (refereed) [28]; APPSEM
2004, Tallinn, Estonia (refereed) [24]; CTCS 2004, Copen-
hagen (invited); SOS 2004, London (invited).

Urban gave a course on “Nominal Reasoning” at the 16th
European Summer School in Logic, Language and Informa-
tion (ESSLLI 2004), Nancy, France, August 2004. Pitts will
give a course on “Nominal Syntax and Semantics” at the
Summer School of the EU Thematic Network on Applied
Semantics II (IST-2001-38957) to be held at Frauenchiem-
see, Germany, in September 2005. In connection with the

5



latter, Pitts is working on an expository publication setting
out the main ideas behind the nominal sets model of names
and binders and their applications in semantics.

7 Further Research Activities

Further development of Fresh O’Caml will take place as
part of the EPSRC-funded project led by Sewell on Nam-
ing, Distribution, and Versioning: Programming Language
Design and Implementation (GR/T11715) that started in
2005 and that employs Shinwell as a Research Associate
in the University of Cambridge Computer Laboratory. Gab-
bay was awarded an EPSRC Visiting Fellowship (Rewriting
Frameworks, EP/C517148) to collaborate with Fernandez
and Mackie at King’s College London on nominal rewrit-
ing during 2004/5. Pitts plans to develop further computa-
tional aspects of nominal sets (see Section 2.5) in collabo-
ration with Fernandez and Mackie, for which EPSRC fund-
ing has been requested (linked proposals EP/D000459/1 and
EP/D501016/1).

References

[1] S. Abramsky, D. R. Ghica, A. S. Murowski, C.-H. L. Ong, and
I. D. B. Stark. Nominal games and full abstraction for the nu-
calculus. In Proceedings LICS’04 . IEEE Computer Society Press,
2004.

[2] P. N. Benton and B. Leperchey. Relational reasoning in a nominal se-
mantics for storage. In Proceedings TLCA’05, Nara, Japan, Lecture
Notes in Computer Science. Springer-Verlag, 2005.

[3] L. Caires and L. Cardelli. A spatial logic for concurrency (part II).
In Proceedings CONCUR’02, Brno, Czech Republic, volume 2421
of Lecture Notes in Computer Science, pages 209–225. Springer-
Verlag, 2002.

[4] J. Cheney. The complexity of equivariant unification. In Proceed-
ings ICALP’04, Turku, Finland, volume 3142 of Lecture Notes in
Computer Science, pages 332–344. Springer-Verlag, 2004.

[5] J. Cheney. Nominal Logic Programming. PhD thesis, Cornell Uni-
versity, August 2004.

[6] J. Cheney and C. Urban. αProlog, a fresh approach to logic pro-
gramming modulo α-equivalence. In Proceedings UNIF’03, Va-
lencia, Spain, number DSIC-II/12/03 in Departamento de Sistemas
Informáticos y Computación Technical Report Series. Universidad
Politécnica de Valencia, 2003.

[7] N. G. de Bruijn. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the
Church-Rosser theorem. Indag. Math., 34:381–392, 1972.

[8] P. Dybjer and A. Filinski. Normalization and partial evaluation. In
G. Barthe, P. Dybjer, and J. Saraiva, editors, Applied Semantics, Ad-
vanced Lectures, volume 2395 of Lecture Notes in Computer Sci-
ence, Tutorial, pages 137–192. Springer-Verlag, 2002.

[9] M. P. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax and variable
binding. In Proceedings LICS’99, pages 193–202. IEEE Computer
Society Press, 1999.

[10] M. Gabbay and J. Cheney. A proof theory for nominal logic. In
Proceedings LICS’04. IEEE Computer Society Press, 2004.

[11] M. J. Gabbay. Automating Fraenkel-Mostowski syntax. In V. A.
Carreno, C. A. Munoz, and S. Tahar, editors, Track B Proceedings of
TPHOLs 2002, Hampton, Virginia, USA., NASA CP-2002-211736,
pages 60–70. NASA Langley Research Center, 2002.

[12] M. J. Gabbay. FM-HOL, a higher-order theory of names. In F. Ka-
mareddine, editor, Workshop on Thirty Five years of Automath, Infor-
mal Proceedings. Heriot-Watt University, Edinburgh, Scotland, April
2002.

[13] M. J. Gabbay. The π-calculus in FM. In Fairouz Kamareddine,
editor, Thirty-Five Years of Automating Mathematics, volume 28 of
Applied Logic, pages 71–123. Kluwer, 2003.

[14] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax
with variable binding. Formal Aspects of Computing, 13:341–363,
2002.

[15] A. Nanevski. Meta-programming with names and necessity. In Pro-
ceedings ICFP’02, Pittsburgh, Pennsylvania, pages 206–217. ACM
Press, 2002.

[16] F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proceed-
ings PLDI’88, pages 199–208. ACM Press, 1988.

[17] A. M. Pitts. Nominal logic, a first order theory of names and binding.
Information and Computation, 186:165–193, 2003.

[18] A. M. Pitts and M. J. Gabbay. A metalanguage for programming
with bound names modulo renaming. In R. Backhouse and J. N.
Oliveira, editors, Proceedings MPC 2000, Ponte de Lima, Portugal,
volume 1837 of Lecture Notes in Computer Science, pages 230–255.
Springer-Verlag, 2000.

[19] U. Schöpp and I. D. B. Stark. A dependent type theory with names
and binding. In Proceedings CSL’04, Karpacz, Poland, volume 3210
of Lecture notes in Computer Science, pages 235–249. Springer-
Verlag, 2004.

[20] P. Sewell, J. J. Leifer, K. Wansbrough, M. Allen-Williams, F. Zappa
Nardelli, P. Habouzit, and V. Vafeiadis. Acute: high-level program-
ming language design for distributed computation. Design rationale
and language definition. Technical Report UCAM-CL-TR-605, Uni-
versity of Cambridge Computer Laboratory, October 2004.

[21] T. Sheard. Accomplishments and research challenges in meta-
programming. In W. Taha, editor, Proceedings SAIG 2001, Florence,
Italy, volume 2196 of Lecture Notes in Computer Science, pages 2–
44. Springer, 2001.

[22] M. R. Shinwell. Swapping the atom: programming with binders in
Fresh O’Caml. In Proceedings MERLIN’03, Uppsala, Sweden. ACM
Press, 2003.

[23] M. R. Shinwell. The Fresh Approach: Functional Programming with
Names and Binders. PhD thesis, University of Cambridge Computer
Laboratory, 2005. Available as University of Cambridge Computer
Laboratory Technical Report UCAM-CL-TR-618.

[24] M. R. Shinwell and A. M. Pitts. On a monadic semantics for fresh-
ness. Theoretical Computer Science, 2005. To appear. A preliminary
version appears in the proceedings of the Second workshop of the EU
FP5 IST thematic network IST-2001-38957 APPSEM II, Tallinn, Es-
tonia, April 2004.

[25] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: Program-
ming with binders made simple. In Proceedings ICFP’03, Uppsala,
Sweden, pages 263–274. ACM Press, 2003.

[26] W. Taha. Multi-Stage Programming: Its Theory and Applications.
PhD thesis, Oregon Graduate Institute of Science and Technology,
Portland, Oregon, USA, 1999.

[27] C. Urban and J. Cheney. Avoiding equivariance in alpha-prolog. In
Proceedings TLCA’05, Nara, Japan, Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2005.

[28] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. The-
oretical Computer Science, 323:473–497, 2004.

6


