
Jones Optimality and Hardware Virtualization
A Report on Work in Progress

Boris Feigin Alan Mycroft
Computer Laboratory, University of Cambridge
{Boris.Feigin, Alan.Mycroft}@cl.cam.ac.uk

Abstract
The growing popularity of hardware virtualization (VMware and
Xen being two prominent implementations) leads us to examine
the common ground between this yet-again vibrant technology and
partial evaluation. A virtual machine executes on host hardware and
presents to its guest program a replica of that host environment,
complete with CPU, memory, and I/O devices. A virtual machine
can be seen as a self-interpreter.

A program specializer is considered Jones-optimal if it is capa-
ble of removing a layer of interpretational overhead. We propose a
formulation of Jones optimality which coincides with a well-known
virtualization efficiency criterion.

A fully abstract programming language translation (an idea put
forward by Abadi) is one that preserves program equivalences.
We may translate a program by specializing a self-interpreter with
respect to it. We argue that full abstraction for such translations
captures the notion of transparency (whether or not a program can
determine if it is running on a virtual machine) in virtual machine
folklore.

We hope that this discussion will encourage wider exchange of
ideas between the virtualization and partial evaluation communi-
ties.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics; D.3.4 [Pro-
gramming Languages]: Processors—Interpreters; D.4.8 [Operat-
ing Systems]: Performance—Modeling and prediction

General Terms Performance, Languages

Keywords Jones optimality, virtualization, virtual machines, full
abstraction

1. Introduction
Over the last few years, many academic and commercial hardware
virtualization offerings have emerged (VMware [1] and Xen [5]
are two prominent examples). A virtual machine monitor (VMM)
is responsible for sharing out the hardware resources of the host
system between several simultaneously running virtual machines
(VMs). Each VM presents to its guest program a replica (with pos-
sible variations in the number and types of available I/O devices,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PEPM’08, January 7–8, 2008, San Francisco, California, USA.
Copyright c© 2008 ACM 978-1-59593-977-7/08/0001. . . $5.00

amount of memory, etc.) of the host environment. In their seminal
1974 paper, Popek and Goldberg [20] described three requirements
that a VMM must meet: efficiency, equivalence, and resource con-
trol. A VMM must not impose undue overhead, be faithful to the
original hardware, and retain control over certain aspects of guest
program execution (access to I/O devices, for example).

Since we are not concerned with issues of concurrency, in the
remainder of this article we shall assume that only a single VM is
running and use “VM” in preference to “VMM” henceforth.

1.1 Virtualization as self-interpretation
Let p be a program in languageL (machine code) and d and s range
over the inputs and outputs of p respectively. Let [[·]] be a valuation
function on L as implemented by the hardware. Recall that for a
self-interpreter sint and a program specializer mix , the following
equalities hold by definition:

s = [[p]](d) (1)
= [[sint]](p, d) (2)
= [[[[mix]](sint , p)]](d) (3)

Conceptually, a VM plays the role of sint . A common technique
of avoiding the associated interpretational overhead relies on hard-
ware support (or “assists”) and is known as “trap-and-emulate”.
Instructions of the guest program are executed directly by the hard-
ware; however, in keeping with the resource control requirement,
privileged instructions (reading from a device, for example) are
trapped and the VM is allowed to emulate them. Popek and Gold-
berg [20] derived formally the conditions that a trap-and-emulate
hardware architecture must meet in order to support virtual ma-
chines.

Techniques based on binary translation are used when imple-
menting VMs on hardware architectures that do not provide virtu-
alization assists. One may argue that Equation 3 is the essence of
this approach.

Equation 3 captures the spectrum from Equation 1 (cf. Equa-
tion 3 with a Jones-optimal mix ; see next section) to Equation 2
(cf. Equation 3 with a trivial mix). Thus, even though mix has no
immediate analogue in virtualization, we rely on Equation 3 perva-
sively.

1.2 Overview
We attempt to relate hardware and software techniques of efficient
virtual machines to the notion of interpretational overhead known
from partial evaluation.

To capture Popek and Goldberg’s efficiency requirement for
VMs, in Section 2 we propose a variant of Jones optimality based
on program traces. Section 3 defines UAL, an assembly language
for an idealized von Neumann machine with I/O devices. We show
a meta-circular interpreter for UAL and argue that it fails to make

an efficient VM. Virtualization assists after trap-and-emulate are
presented in two alternative extensions to UAL (UAL/step and
UAL/eval) in Section 4. The trivial specializer is trace Jones
optimal with respect to a self-interpreter for UAL/eval.

Section 5 contains a discussion on the relevance of full abstrac-
tion to virtual machines. References to related work are given in
Section 6. Section 7 concludes with an outlook to further work.

This paper captures a snapshot of work in progress. The in-
terested reader is encouraged to consult the first author’s web-
site (http://www.cl.cam.ac.uk/∼bf241/virt/) for future re-
visions.

2. Jones Optimality for Traces
A Jones-optimal specializer removes a layer of interpretational
overhead. Let sint range over self-interpreters, and p over pro-
grams, then a specializer mix is Jones-optimal (“strong enough”
in the original nomenclature of Jones [11]) whenever

∃sint ∀p [[mix]](sint , p) =α p (4)

The definition above is usually endowed with a side-condition to
the effect that mix may not “cheat” by textually comparing sint
against a known self-interpreter and emitting p on success. (To a
cheating, Orwellian mix , “some self-interpreters are more equal
than others”.)

Let us generalise the definition in the style of Glück [10]. Let
∼ be a binary relation on programs capturing some equivalence or
ordering. Then define ∼-Jones-optimality of mix with respect to
sint as follows

Jopt∼(mix , sint)
∆
= ∀p [[mix]](sint , p) ∼ p (5)

Then ∼-Jones optimality of mix on its own is defined as

Jopt∼(mix)
∆
= ∃sint Jopt∼(mix , sint) (6)

Let us now rewrite Equation 4 as

Jopt=α
(mix) (7)

The original definition of Jones optimality disallows potential opti-
misations that mix might be able to perform, since, e.g. 1 + 2 6=α

3. Consequently, Jones et al. [13, Definition 6.4] relaxed the order-
ing to ≤time , defined as follows:

p ≤time p
′ ∆

= ∀d timep(d) ≤ timep′(d)

where timep(d) is the execution time of running p on data d. Under
a very reasonable assumption that α-equivalent programs consume
equal execution time, this definition subsumes the original. The
crucial change is that an intrinsic (“static”) notion of equivalence
of Equation 4 is replaced with an extrinsic (“dynamic”) one. We
now define variants of Jones optimality (based on program traces)
intermediate between Jopt=α

and Jopt≤time
.

2.1 Traces
Intuitively, a program trace is a sound abstraction of a program run.
Usually, it is the sequence of states (registers, memory, etc.) that
are encountered during the run, or the sequence of operations (and
their inputs and outputs) that are executed. Since we are trying to
characterise interpretational overhead (i.e. extraneous operations),
the latter approach is better suited. Let Td(p) denote the trace of
program p on input d. Note, that values read from I/O devices are
assumed to be part of the input d.

2.2 Jopt=T
and Jopt≤T

Define trace equality of programs, =T , as follows:

p =T p′
∆
= ∀d Td(p) = Td(p′) (8)

Two α-equivalent programs produce the same trace (since a trace
only includes runtime values). Two programs with the same trace
consume equal execution time, making Jopt=T

an intermediate
criterion between the two classical formulations of Jones optimal-
ity.

Let us also define a “subtrace” relation ≤T . Inspired by process
calculi, first say that trace t is simulated by t′, written t � t′, iff t
is a subsequence of t′. Formally

t � t′ iff ti = t′f(i) (9)

for some strictly increasing function f on sequence indices. We
define ≤T by lifting this to programs:

p ≤T p′
∆
= ∀d Td(p) � Td(p′) (10)

To summarise, we have that

=α

=T

��
�� DDD

DD

≤T

==
==

=time

||
||

≤time

2.3 Self-interpretation
We expect that, modulo instructions with immediate operands (see
Section 3.4), a self-interpreter implements instructions of the in-
terpreted program using the corresponding machine instructions.
Thus, we can assume that

∀p p ≤T [[mix]](sint , p)

Intuitively, the self-interpreter always executes at least those oper-
ations that a program would on its own. With minor caveats, we
view this as an issue of correctness rather than efficiency.

A supremely efficient self-interpreter must also execute at most
those operations that a program would on its own. Thus, our Jones
optimality criterion is now simply Jopt≤T

.

2.4 VM efficiency
According to [20, p. 417], efficiency in VMs is achieved when:

“All innocuous instructions are executed by the hardware
directly, with no intervention at all on the part of the [VMM]
control program.”

No overhead should be incurred when executing non-privileged in-
structions such as register movements and ALU operations. Privi-
leged instructions, on the other hand, are exempt from this require-
ment as their implementations may need to emulate devices which
are not physically present in the machine.

Several VMs may be nested forming a tower of self-interpreters.
We annotate every operation in the trace of a program with a natural
number n indicating the virtualization nesting level at which the
operation was issued: n = 0 corresponds to direct execution on
hardware. The nesting level can be easily added to every state in an
operational semantics.

Let p′ = [[mix]](sint , p). We expect a privileged operation
in the trace of [[p]](d) to correspond to a sequence of (possibly
privileged) operations in the trace of [[p′]](d). Define a projection
φ that removes interpretational overhead incurred by the VM as a
result of emulating privileged instructions on behalf of the program.
Suppose the VM is executing at nesting level l, then let φl(Td(p′))
be the subtrace of Td(p′) consisting of only those operations where
n > l.

p ::= ([b:] ι)∗ Program.
ι ::= v Value v (data).

| nop No-op.
| movi v, r Copy value v to register r.
| mov r1, r2 Copy from r1 to r2.
| ld (r1), r2 Load from location in r1 to r2.
| st r1, (r2) Store from r1 to location in r2.
| beq b, r1, r2 Conditional branch.
| add r1, r2, r3 r3 := r1 + r2
| sub r1, r2, r3 r3 := max (0, r1 − r2)
| halt Halt the machine.
| in 〈r1〉, r2 Input from port in r1 to r2.
| out r1, 〈r2〉 Output from r1 to port in r2.

Figure 1. Syntax of UAL.

σ(pc, . . . , pc + 3) = Then (ρ, σ, pc)
nop (ρ, σ, pc + 4)
movi v, r (ρ [r 7→ v] , σ, pc + 4)
mov r1, r2 (ρ [r2 7→ ρ(r1)] , σ, pc + 4)
ld (r1), r2 (ρ [r2 7→ σ(ρ(r1))] , σ, pc + 4)
st r1, (r2) (ρ, σ [ρ(r2) 7→ ρ(r1)] , pc + 4)
beq b, r1, r2 (ρ, σ, b) iff ρ(r1) = ρ(r2)

(ρ, σ, pc + 4) iff ρ(r1) 6= ρ(r2)
add r1, r2, r3 (ρ [r3 7→ v] , σ, pc + 4)

where v = ρ(r1) + ρ(r2)
sub r1, r2, r3 (ρ [r3 7→ v] , σ, pc + 4)

where v = max (0, ρ(r1)− ρ(r2))
halt > (stuck state)

Figure 2. Semantics of UAL (excluding I/O).

Correspondingly, ψ is a projection that simply removes all priv-
ileged operations from a trace.

Once privileged operations are removed from the trace of p and
their corresponding emulation from the trace of [[mix]](sint , p),
we recover our previous intuitions. We say that [[mix]](sint , p)
simulates p correctly whenever

∀d ψ(Td(p)) � φ0(Td([[mix]](sint , p))

Further, we say that [[mix]](sint , p) simulates p efficiently when-
ever

∀d φ0(Td([[mix]](sint , p))) � ψ(Td(p))

Our Jones optimality formulation states that, modulo emulation
of privileged instructions, the self-interpreter (VM) executes those
and only those operations that the program would if run directly on
hardware, i.e.

Jopt=VM
(· · ·) (11)

where

p =VM p′
∆
= ψ(Td(p′)) � φ0(Td(p)) � ψ(Td(p′))

3. UAL
3.1 Introduction
UAL is an Untyped Assembly Language for an idealized RISC
machine. The machine operates on natural numbers, has thirty-two
registers, and an infinite store holding both instructions and data.
Viz.

v ∈ Value = N0

r ∈ Register = {r0, r1, . . . , r31}
ρ ∈ File = Register → Value
l ∈ Location = Value
σ ∈ Store = Location → Value
ξ ∈ Port = Value

Device I/O is performed via ports (which are akin to channels of
process calculi). For example, the instruction

in 〈r0〉, r1

reads a value from the device attached to the port identified by
register r0 and stores that value in register r1.

Let b range over labels (alphanumeric identifiers in the assembly
code) and, by a slight abuse of notation, the corresponding target
locations (in machine code).

The syntax of UAL is shown in Figure 1. The in, out, and halt
instructions are privileged: when issued by a guest program, they
are to be emulated by the VM in keeping with the resource control
property of Popek and Goldberg [20].

3.2 Translation to machine code
The translation (|·|) from instruction mnemonics of Figure 1 to bi-
nary machine code is straightforward; we omit a formal defini-
tion. Each instruction is assembled to four natural numbers—an op-
code, and three operands. For instructions having fewer than three
operands, the unused slots are zero-padded. Labels are translated to
locations. Let #ι denote the opcode corresponding to instruction ι
(#nop = 0, #movi = 1, and so on), then e.g.

(|movi 42, r1|) (l) = l 7→

8><>:
#movi l = 0
42 l = 1
1 l = 2
0 l = 3

3.3 Reduction
The reduction relation () of Figure 2 is defined over configura-
tions. A configuration is a tuple of the form (ρ, σ, pc) where ρ is the
register file, σ the store, and pc ∈ Location the program counter.
The starting configuration for a program p is (ρ0, σ0, 0) where ρ0

maps all registers to zero and the store is initialised with values
from (|p|).

The reductions for the in and out instructions are respectively

in 〈r1〉, r2 (ρ, σ, pc)
ξ?v
 (ρ [r2 7→ v] , σ, pc + 4)

where ξ = ρ(r1)

out r1, 〈r2〉 (ρ, σ, pc)
ξ!v
 (ρ, σ, pc + 4)

where v = ρ(r1)
and ξ = ρ(r2)

The labels a la CCS on the transitions above indicate that a value v
is being read from (ξ?v) or written to (ξ!v) port ξ.

3.4 Self-interpretation
An interpreter is meta-circular if it “defines each feature of the
defined language by using the corresponding feature of the defining
language” [21]. Figures 3 and 4 together form the core of a self-
interpreter for UAL which still qualifies as meta-circular but for
two exceptions for immediate operands:

1. The beq instruction is implemented with a write to the register
of the interpreter containing the program counter of the inter-
preted program.

2. The movi instruction is implemented with a memory write.

movi 0, r0 Useful constants.
movi 1, r1
movi L.data, r31
mov r31, r2
movi #nop, r10
. . .
movi #out, r20

L.eval: ld (r2), r3 Opcode to r3.
add r2, r1, r2
ld (r2), r4 First operand to r4.
add r2, r1, r2
ld (r2), r5 Second operand to r5.
add r2, r1, r2
ld (r2), r6 Third operand to r6.

add r2, r1, r2

beq L.nop, r3, r10
. . .
beq L.out, r3, r20

L.crash: beq L.crash, r0, r0 Unknown opcode.

Figure 3. Setup, decode, and dispatch.

The self-interpreter requires an array of thirty-two memory cells
to hold the contents of the interpreted program’s registers. For con-
venience, and due to the relative poverty of our instruction set, we
choose to place this array at location zero in the interpreter. A se-
quence of eight nop instructions translates to exactly thirty-two
zeros in machine code. Execution falls through the nop instruc-
tions to the self-interpreter proper, the first part of which is shown
in Figure 3. Registers r0 and r1 hold useful constants: zero and
one, respectively. Register r31 is loaded with the location in mem-
ory of the interpreted program (which is labeled L.data for conve-
nience). The program counter is kept in register r2. Registers r10
through r20 are populated with instruction opcodes. Finally, each
instruction is fetched, decoded (the four values comprising each
one loaded into registers r3 through r6), and dispatched.

The machine code of the interpreted program is appended to the
self-interpreter and labeled L.data.

3.5 Correctness
We argue, informally, that our self-interpreter is correct, that is

∀d [[sint]](p, d) = [[p]](d)

Define observational equivalence of UAL programs over sequences
of values read from (or written to) I/O ports. Let Sd(p) be the
abstraction of trace Td(p) (Section 2.1) comprising the sequence
of port number/value tuples (of the form ξ?v and ξ!v) representing
the interaction of program p with I/O devices when run on input d.

Two programs are IO-equivalent when they interact with I/O
devices in the same way:

p =IO p′
∆
= ∀d Sd(p) = Sd(p′)

From Figure 4 it is clear that in and out instructions are issued
by the interpreter in the same order and with the same operands as
would be the case had the program been executed directly.

3.6 Efficiency
Despite being correct, our self-interpreter would not make a good
VM. In Figure 4, instructions that do useful work are boxed: every
other instruction contributes to interpretational overhead.

L.nop: nop

beq L.eval, r0, r0

L.movi: st r4, (r5)
beq L.eval, r0, r0

L.mov: ld (r4), r4
mov r4, r7
st r7, (r5)
beq L.eval, r0, r0

L.ld: ld (r4), r4
add r4, r31, r4

ld (r4), r4
st r4, (r5)
beq L.eval, r0, r0

L.st: ld (r5), r5
add r5, r31, r5
ld (r4), r4

st r4, (r5)
beq L.eval, r0, r0

L.beq: ld (r5), r5
ld (r6), r6
beq L.t, r5, r6
beq L.eval, r0, r0

L.t: add r4, r31, r2
beq L.eval, r0, r0

L.add: ld (r4), r4
ld (r5), r5

add r4, r5, r7
st r7, (r6)
beq L.eval, r0, r0

L.sub: ld (r4), r4
ld (r5), r5

sub r4, r5, r7
st r7, (r6)
beq L.eval, r0, r0

L.halt: halt

L.in: ld (r4), r4

in 〈r4〉, r7
st r7, (r5)
beq L.eval, r0, r0

L.out: ld (r4), r4
ld (r5), r5

out r4, 〈r5〉
beq L.eval, r0, r0

L.data: 〈Machine code of interpreted program〉

Figure 4. A meta-circular self-interpreter.

At this point, if we wish to improve the efficiency of our self-
interpreter as a VM, we can either (a) leave the self-interpreter as
is and build a good specializer for UAL, or (b) settle for a trivial
specializer and achieve Jones optimality (in the sense defined in
Section 2) by introducing virtualization assists to UAL. Conceptu-
ally, the latter path is the one taken by the virtualization community
and we explore it in the next section.

4. Virtualization Assists
In this section we add support for trap-and-emulate virtualization
to UAL.

4.1 UAL/step
Volume 3B of the Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual1 states that (p. 18-12):

“The processor generates a single-step debug exception if
(while an instruction is being executed) it detects that the
TF flag in the EFLAGS register is set. [. . .] the exception is
generated after the instruction is executed.”

To speed-up our self-interpreter/VM on non-privileged instruc-
tions without relinquishing control over execution of privileged
ones, we introduce the step instruction into UAL. As the name
suggests, the instruction allows us to single-step through guest pro-
gram code:

ι ::= step r

The only operand to the step instruction is the location of a
VM Control Block (VMCB). Recall that our meta-circular self-
interpreter uses the first thirty-two locations in memory to store the
registers of the interpreted program. The VMCB is a variant of that
structure and plays a role similar to a process control block in an
operating system kernel. We leave the precise format of the VMCB
and a formal semantics for UAL/step to future work. However,
note that the VMCB contains a value for the program counter and
a value for the memory base.

The step instruction saves the values of the registers in the
VMCB and loads new values from the VMCB. It then executes
a single non-privileged instruction at the location identified by the
program counter taking care to offset all memory accesses (includ-
ing branch targets) performed by this instruction with the value of
the memory base. On completion, the current state (registers and
program counter) is saved in the VMCB, the old one restored from
the VMCB and execution continues with the instruction following
step.

Note that the particular interpretational encoding of each in-
struction in the meta-circular interpreter is now uniformly cap-
tured (and one hopes efficiently implemented) by step. A self-
interpreter for UAL/step is shown in Figure 5. It still fails to be
efficient due to the overhead of instruction dispatch. We now intro-
duce an alternative instruction to step closer to the spirit of trap-
and-emulate virtualization.

4.2 UAL/eval
UAL/eval extends UAL with the eval instruction:

ι ::= eval r

The only operand to the eval instruction is the location of a
VMCB. The eval instruction is similar to step, however, it ex-
ecutes any number of instructions rather than just a single one. If a
privileged instruction is encountered, the state is restored and exe-
cution continues at the instruction following eval which may then

1 http://www.intel.com/products/processor/manuals/index.htm

〈Setup as in top of Figure 3〉
movi L.vmcb, r31

L.eval: 〈Load PC field of VMCB to r2〉
ld (r2), r3 Opcode to r3.

Check for privileged instructions:
beq L.halt, r3, r18
beq L.in, r3, r19
beq L.out, r3, r20
step r31
beq L.eval, r0, r0

L.halt: 〈Emulation of halt〉
L.in: 〈Emulation of in〉
L.out: 〈Emulation of out〉

L.vmcb: 〈VMCB〉
L.data: 〈Machine code of interpreted program〉

Figure 5. A self-interpreter for UAL/step.

〈Setup as in top of Figure 3〉
movi L.vmcb, r31

L.eval: eval r31

〈Retrieve opcode and operands from VMCB〉

beq L.halt, r3, r18
beq L.in, r3, r19
beq L.out, r3, r20

L.halt: 〈Emulation of halt〉
L.in: 〈Emulation of in〉
L.out: 〈Emulation of out〉

L.vmcb: 〈VMCB〉
L.data: 〈Machine code of interpreted program〉

Figure 6. A self-interpreter for UAL/eval.

determine the opcode and operands of the offending instruction via
the program counter field of the VMCB.

A self-interpreter for UAL/eval is shown in Figure 6. The
eval instruction increments the current virtualization nesting level.
Therefore, in the trace, instructions that are executed by eval are
marked with the new virtualization level. On encountering a priv-
ileged instruction, the virtualization nesting level is decremented
prior to returning control to the callee. Thus, the sections of inter-
preter code which are responsible for emulating the privileged in-
structions are executed at the same virtualization level as the VM,
whereas those of the program are executed at the higher level.

Recall from Section 2, that in our definition of Jones optimality
(Equation 11) we strip out the emulation by means of the φ0

projection.

4.3 Jones optimality revisited
Starting with a meta-circular interpreter which has most control
over guest program execution, we next have an interpreter using
the step instruction which relinquishes some control in order to
gain performance. Finally, the interpreter using eval does not

handle instructions directly but merely accepts “callbacks” from
the hardware for the privileged instructions. Thus we finally invert
the instruction dispatch loop: whereas before the interpreter was
responsible for dispatch, now the hardware is.

Our observation is that this sequence of steps gradually elim-
inates interpretational overhead and yields an interpreter with re-
spect to which even the trivial mix is Jones-optimal in the sense of
our Equation 11.

5. Towards Full Abstraction for Virtual
Machines

Ideally a program should not be able to detect whether or not it is
executing within a virtual machine. This is not merely a matter of
principle, but is necessary to allow, for instance, safe and reliable
analysis of malware. An observable deviation between two known-
equivalent programs is a litmus test for virtual machine presence.
Garfinkel et al. [9] define VM transparency as: “making virtual
and native hardware indistinguishable under close scrutiny by a
dedicated adversary” and argue on pragmatic grounds that it is not
an achievable goal on real-world, networked, x86 machines.

Full abstraction is best known as a notion of agreement between
the denotational and operational semantics of a particular language.
Abadi [2] suggested that a safe language translation should be fully
abstract. That is given a translation C[[·]] from S to T , the following
should hold:

e ∼S e
′ ⇐⇒ C[[e]] ∼T C[[e′]] (12)

where ∼S and ∼T are observational equivalence relations over S
and T respectively. Intuitively, the definition says that translation
does not permit an adversarial T -context to glean more information
than any S-context might. Notice that full abstraction enforces a
notion of continuity in compilation: a malicious compiler, such as
that of Thompson [25], must either miscompile all programs in an
equivalence class or none at all.

The first Futamura projection lets us perform translation. Instan-
tiate Equation 12 for a self-interpreter sint and a program special-
izer mix :

p ∼L p′ ⇐⇒ [[mix]](sint , p) ∼L [[mix]](sint , p′) (13)

where p and p′ are programs of language L and [[·]] a valuation
function on L. Now, if we let ∼L be ≤time (Section 2), we ensure
that the relative speed of programs is preserved: that is a program
q may not determine whether or not it is executing within a VM by
running p and p′ and comparing their execution times.

We intuit that full abstraction may prove to be a useful notion for
reasoning about the safety of virtual machines. We plan to pursue
this direction in future work.

6. Related Work
We give a few pointers to relevant material on virtualization and
Jones optimality.

Virtualization. The landmark paper of Popek and Goldberg [20]
(see also discussion of same in [24, ch. 8]) establishes architectural
requirements for virtualization in a formal manner.

Robin and Irvine [22] investigate the feasibility of secure virtual
machines on the Intel Pentium. Intel’s VT virtualization extensions
for the x86 architecture and the Itanium are described by Neiger
et al. [18]. Adams and Agesen [3] discuss the pros and cons of
these hardware assists compared with previously used techniques
for x86 virtualization.

Jones optimality. Makholm [15] provides a good discussion of
Jones optimality. More recently, Danvy and López [7] established

a link between Jones-optimal specialization and higher-order ab-
stract syntax. Glück [10] showed that for any Jones-optimal spe-
cializer in a particular class, for any given translation, there ex-
ists an interpreter that under specialization will yield programs “no
worse” than the translation. Gade and Glück [8] give a formal ar-
gument of Jones optimality for the specializer Unmix.

‘Trusting trust’ and friends. Translation discontinuities were ex-
hibited by Thompson’s trojan compiler [25] which inserted spuri-
ous malicious code when compiling itself or the login program.

Mitchell [16] introduced “abstraction-preserving reductions” as
a means of comparing the expressiveness of programming lan-
guages. Abadi [2] pointed out that full abstraction is generally
useful as a benchmark of safety and correctness for translations.
Kennedy [14] showed several cases where full abstraction fails for
a C# to .NET bytecode compiler.

Instrumentation. Jones [12, Section 2.3.3], in describing practi-
cal concerns of constructing interpreters for specialization, notes
that “specialising an instrumented self-interpreter to a source pro-
gram has the effect of inserting instrumentation code into the body
of the source program”. It is unclear precisely how modern instru-
mentation packages such as DTrace [6] and Valgrind [19] can be
understood in terms of interpreter specialization. Jones optimality
for traces seems a promising approach to addressing this.

Siskind and Pearlmutter [23] introduced the map-closure con-
struct which allows identifiers in the environment of a closure to be
rebound, thus permitting non-standard interpretation. The relation-
ship of map-closure to non-standard interpretation techniques de-
veloped by the partial evaluation community is, to our knowledge,
unexplored.

Meta-circularity. The term “meta-circular interpreter” is due
to Reynolds [21] who also demonstrated how a meta-circular in-
terpreter can be disambiguated using defunctionalization and CPS
conversion.

7. Conclusions and Further Work
We have described the current state of our efforts to relate well-
established concepts from partial evaluation with an important
practical application: virtualization. We showed how the well-
known virtualization requirements of Popek and Goldberg [20]
can be understood in terms of Jones-optimal specialization. We
introduced UAL, an assembly language for an idealized RISC ma-
chine with I/O devices. We showed a self-interpreter for UAL as
well as self-interpreters for two alternative extensions of UAL with
hardware virtualization assists: UAL/step and UAL/eval. We ar-
gued that, in our framework, the trivial specializer is Jones-optimal
with respect to the self-interpreter for UAL/eval. Finally, we sug-
gested how the notion of full abstraction can be applied to virtual
machines.

It would also be interesting to explore development of typed
assembly languages with privileged instructions as a first step to-
wards formalizing a minimal trusted virtual machine, much in the
spirit of the work on proof-carrying code [17, 4].

Acknowledgments
We thank members and friends of the CPRG and the PEPM 2008
referees for helpful comments and pointers to related work. The
first author gratefully acknowledges an EPSRC studentship.

References
[1] VMware Website. http://www.vmware.com/.

[2] Martı́n Abadi. Protection in programming-language
translations. In Proceedings of ICALP, volume 1443 of
LNCS, pages 868–883, 1998.

[3] Keith Adams and Ole Agesen. A comparison of software and
hardware techniques for x86 virtualization. In Proceedings of
ASPLOS, pages 2–13, 2006.

[4] Andrew W. Appel. Foundational proof-carrying code. In
Proceedings of LICS, 2001.

[5] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim
Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew
Warfield. Xen and the art of virtualization. In Proceedings of
SOSP, pages 164–177, 2003.

[6] Bryan Cantrill, Michael W. Shapiro, and Adam H. Leventhal.
Dynamic instrumentation of production systems. In
Proceedings of USENIX ATC, pages 15–28, 2004.

[7] Olivier Danvy and Pablo E. Martı́nez López. Tagging,
encoding, and Jones optimality. In Proceedings of ESOP,
volume 2618 of LNCS, pages 335–347, 2003.

[8] Johan Gade and Robert Glück. On Jones-optimal
specializers: A case study using Unmix. In Proceedings of
APLAS, volume 4279 of LNCS, pages 406–422, 2006.

[9] Tal Garfinkel, Keith Adams, Andrew Warfield, and Jason
Franklin. Compatibility is not transparency: VMM detection
myths and realities. In Proceedings of HotOS, 2007.

[10] Robert Glück. The translation power of the Futamura
projections. In Perspectives of Systems Informatics, volume
2890 of LNCS, pages 133–147, 2003.

[11] Neil D. Jones. Challenging problems in partial evaluation
and mixed computation. New Generation Comput., 6(2&3):
291–302, 1988.

[12] Neil D. Jones. Transformation by interpreter specialisation.
Science of Computer Programming, 52:307–339, 2004.

[13] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial
Evaluation and Automatic Program Generation. Prentice
Hall, 1993.

[14] Andrew Kennedy. Securing the .NET programming model.
Theoretical Computer Science, 364(3):311–317, 2006.

[15] Henning Makholm. On Jones-optimal specialization for
strongly typed languages. In Proceedings of SAIG, volume
1924 of LNCS, pages 129–148, 2000.

[16] John C. Mitchell. On abstraction and the expressive power of
programming languages. Science of Computer
Programming, 21(2):141–163, 1993.

[17] George C. Necula. Proof-carrying code. In Proceedings of
POPL, pages 106–119, 1997.

[18] Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and
Rich Uhlig. Intel Virtualization Technology: Hardware
support for efficient processor virtualization. Intel
Technology Journal, 10(3):167–177, 2006.
http://dx.doi.org/10.1535/itj.1003.01.

[19] Nicholas Nethercote and Julian Seward. Valgrind: a
framework for heavyweight dynamic binary instrumentation.
In Proceedings of PLDI, pages 89–100, 2007.

[20] Gerald J. Popek and Robert P. Goldberg. Formal
requirements for virtualizable third generation architectures.
Communications of the ACM, 17(7):412–421, 1974.

[21] John C. Reynolds. Definitional interpreters for higher-order
programming languages. Higher-Order and Symbolic
Computation, 11(4):363–397, 1998. Reprint of a 1972 paper.

[22] John Scott Robin and Cynthia E. Irvine. Analysis of the Intel
Pentium’s ability to support a secure virtual machine monitor.
In Proceedings of USENIX Security Symposium, 2000.

[23] Jeffrey Mark Siskind and Barak A. Pearlmutter. First-class
nonstandard interpretations by opening closures. In
Proceedings of POPL, pages 71–76, 2007.

[24] James E. Smith and Ravi Nair. Virtual machines: versatile
platforms for systems and processes. Morgan Kaufmann,
2005.

[25] Ken Thompson. Reflections on trusting trust.
Communications of the ACM, 27(8):761–763, 1984.

