
Sliding Window Logic Simulation
Sarah Thompson and Alan Mycroft

Computer Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0FD

Abstract

Existing digital logic simulators typically depend on a discrete-time model of circuit behaviour.
Whilst this approach is sufficient in many cases for the validation of the behaviour of synchronous
circuits, it is not good at identifying glitches that are narrower than the available time resolution. More-
over, it is not generally feasible to accommodate uncertainty in delay time in such a way as to detect at
an early design stage glitches that only occur under worst-case layout-specific or environment depen-
dent timing conditions.

This paper presents a technique, based upon abstract interpretation, that, given any synchronous
or asynchronous circuit, allows possible glitches to be detected within a particular time window given
known starting conditions. Since the underlying model is based upon dense (continuous) time, all pos-
sible glitches are detected regardless of how narrow they may be. Adopting a window length equivalent
to the worst-case uncertainty in delay, then ‘sliding’ the window in time such that each successive win-
dow overlaps the previous window allows all possible glitches to be identified, without a need for exact
timing information.

Using this algorithm, it is possible to construct a logic simulator that is capable of automatically
detecting possible glitches early in the design life cycle, before layout-specific timing parameters can
be determined.

1 Introduction

Abstract interpretation [1, 2] is a long-
established technique, most commonly applied
to software, that allows abstract properties of
systems to be determined.

As a simple example, consider the ‘law of
signs’ in integer arithmetic. It is possible, know-
ing only the signs of a and b to know with cer-
tainty the sign of the result of the integer expres-
sion a × b. The sign of the result of the addition
a + b may be determined in some cases, but not
all. This can be thought of as a very simple kind
of abstract interpretation. We might define an
abstract multiplication operator ⊗, and an ab-
stract addition operator ⊕ as follows:

⊗ − 0 + ?
− + 0 − ?
0 0 0 0 0
+ − 0 + ?
? ? 0 ? ?

⊕ − 0 + ?
− − − ? ?
0 − 0 + ?
+ ? + + ?
? ? ? ? ?

where − represents any negative integer, 0 repre-
sents zero, + represents any positive integer and
? represents any integer whatsoever.

The multiplication 1543×−783 = −1208619 in
the concrete world maps to the abstract multipli-
cation +⊗− = −. Using this technique, it is pos-
sible to determine with certainty the sign of the
result of a multiplication without actually need-
ing to carry out the multiplication itself. How-
ever, the addition −344 + 762 = 418 maps to

the abstract addition − ⊕ + =?, since the ab-
stract values −, 0, + and ? do not carry enough
information for a more accurate result to be de-
termined. Nevertheless, in many cases this ap-
proach is still sufficient to fully predict the sign
of an integer expression involving addition and
multiplication, without any requirement to per-
form the actual arithmetic.

This paper presents a similar technique that
allows the possibility of glitches in digital logic
circuits with uncertain delays to be identified,
without requiring all possible combinations of
delays to be laboriously enumerated.

This work is presented at a relatively early
stage – at the time of writing, a simulator based
on this approach has not yet been implemented.

1.1 Motivating Example

The following circuit is probably the simplest
possible that exhibits the kind of behaviour that
we wish to detect:

The Boolean equivalence a ∧ ¬a = 0 is mis-
leading in this case, since the delays inherent
in the inverter and the wires will in many cases
cause a glitch to be triggered either by the lead-
ing or trailing edge of any pulses applied to the
input. If we assume that wire delays are negli-
gible compared with gate delays, it is tempting

1



to assume that glitches will appear only on the
leading edge:

However, in contemporary full-custom VLSI,
it is often the case that wire delays are more sig-
nificant than gate delays [5]. Due to routing limi-
tations, it could be that the ‘direct’ path from the
input to the and gate might actually take longer
to arrive than the path via the inverter:

in which case, glitches will appear on the trailing
edge:

When simulating such a circuit, it is typi-
cally necessary to make some kind of assump-
tions about timing. However, since simulation
is generally used most heavily in the early stages
of the design process, detailed timing informa-
tion is not yet available. It would be desirable,
in such cases, for possible glitches to be high-
lighted, thereby allowing problems to be caught
early rather than post-layout (or worse, post-
manufacture).

1.2 Identifying Glitches by Abstract
Interpretation

Various abstract interpretation based ap-
proaches to the detection of glitches, varying in
sophistication, are possible [7]. In this paper, we
will concentrate on a relatively straightforward
approach that can nevertheless still be used to
detect possible glitches.

Our technique resembles a Boolean ‘logic’ to
which extra values have been added to encom-
pass transitions as well as steady-state values. A
‘time window’ during which a transition will oc-
cur is assumed in all cases, although the exact
time at which the transition will occur is delib-
erately left unspecified. The values are defined
as follows:

F0 The signal that is 0 for the duration of the
window.

F? A signal that is 0 at the beginning and end of
the window, that may contain zero or more
glitches1.

T0 The signal that is 1 for the duration of the
window.

T? A signal that is 1 at the beginning and end of
the window, that may contain zero or more
glitches.

↑0 A signal that transitions cleanly from 0 to 1.

↑? A signal that transitions from 0 to 1 with zero
or more intervening glitches.

↓0 A signal that transitions cleanly from 1 to 0.

↓? A signal that transitions from 1 to 0 with zero
or more intervening glitches.

⊥ An unknown signal that can not be charac-
terised.

The Boolean operators ∧ and ¬ are defined as
follows:

¬

F0 T0

F? T?

T0 F0

T? F?

↑0 ↓0

↑? ↓?

↓0 ↑0

↓? ↑?

⊥ ⊥

∧ F0 F? T0 T? ↑0 ↑? ↓0 ↓? ⊥

F0 F0 F0 F0 F0 F0 F0 F0 F0 F0

F? F0 F? F? F? F? F? F? F? ⊥

T0 F0 F? T0 T? ↑0 ↑? ↓0 ↓? ⊥

T? F0 F? T? T? ↑? ↑? ↓? ↓? ⊥

↑0 F0 F? ↑0 ↑? ↑0 ↑? F? F? ⊥

↑? F0 F? ↑? ↑? ↑? ↑? F? F? ⊥

↓0 F0 F? ↓0 ↓? F? F? ↓0 ↓? ⊥

↓? F0 F? ↓? ↓? F? F? ↓? ↓? ⊥

⊥ F0 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

DeMorgan’s law2 turns out to continue to
hold in this extended logic, so the truth table for
the ∨ operator may be omitted.

1.2.1 Worked Examples

Returning to the example circuit of section 1.1,
we will use this technique to determine the be-
haviour of the circuit. In particular, we will iden-
tify its behaviour with respect to steady states (F0

and T0) and clean transitions (↑0 and ↓0):

1i.e. a signal that is nominally F , that may glitch or may not
2a ∨ b = ¬(¬a ∧ ¬b)

2



a ¬a a ∧ ¬a

F0 T0 F0

T0 F0 F0

↑0 ↓0 F?

↓0 ↑0 F?

Clearly, the circuit is well-behaved if its in-
puts are steady; however, either a positive or
negative going transition (↑0 or ↓0) results in F?,
which represents a signal that is ‘false’, but that
may glitch. Although timing information is com-
pletely omitted in this domain, the abstract in-
terpretation framework guarantees that all pos-
sible timing relationships are covered – results
obtained in this way are therefore ‘failsafe’ in that
possible problems are always detected.

As a more complex example, the circuits rep-
resented by the expressions

(a ∧ c) ∨ (¬a ∧ b) ∨ (b ∧ c) (1)

and

(a ∧ c) ∨ (¬a ∧ b) (2)

will be compared. With respect to steady-state
values for a, b and c, both circuits would appear
to be identical, with (2) representing a circuit
that may result from naı̈ve optimisation of (1).
Our technique can straightforwardly illustrate
differences in their dynamic behaviour, however.
Consider the critical case a =↑0 and b = c = T0:

(a ∧ c) ∨ (¬a ∧ b) ∨ (b ∧ c) (3)

= (↑0 ∧T0) ∨ (¬ ↑0 ∧T0) ∨ (T0 ∧ T0) (4)

= ↑0 ∨ ↓0 ∨T0 (5)

= T0 (6)

However,

(a ∧ c) ∨ (¬a ∧ b) (7)

= (↑0 ∧T0) ∨ (¬ ↑0 ∧T0) (8)

= ↑0 ∨ ↓0 (9)

= T? (10)

clearly demonstrating the poorer dynamic be-
haviour of (2).

2 Sliding Windows

The technique described in section 1.2 abstracts
away the details of timing. Whilst this is clearly a

desirable property in many respects, it is neces-
sary to reintroduce a concept of absolute time in
order to use this technique to build a logic simu-
lator.

In practice, this can be achieved by slicing
up the simulation in time into overlapping win-
dows3, where the duration of the window is
equivalent to the amount of uncertainty in delay.

Within any particular window, the starting
and ending state of inputs are known, allow-
ing an abstract value F , T , ↑ or ↓ to be chosen.
The circuit is then evaluated as an expression,
with gates represented by their abstract counter-
parts. Results are shown graphically, with possi-
ble glitches highlighted appropriately:

3 Memory Elements

Circuits that contain one or more memory ele-
ments (D-type flip flops, Müller C-elements, SR
latches, etc.) may be simulated using one of the
two following approaches:

White Box Delay elements are simulated as
their component gates, with feedback han-
dled similarly to the way that it is typically
implemented in a conventional logic simu-
lator.

Black Box Delay elements are modeled directly,
without an underlying gate-level model.

Whilst both alternatives are feasible, the
black box approach will in many cases be more
accurate4. As a further benefit, this approach
makes it straightforward to automatically check
design rules during simulation, allowing warn-
ings to be generated if, for example, a clock signal
can potentially glitch.

3In practice, windows typically need to be overlapped, since under some circumstances a transition occurring at or near the
edge of a window may not be properly examined due to quantisation effects

4This follows from the well-known feature of abstract interpretation (f ◦g)# v f# ◦g#, which can informally be read as stating
that the abstract result of the composition of the functions f and g may be more accurately modeled by abstracting the result of a
concrete composition, rather than abstracting f and g separately then performing an abstract composition.

3



4 Related Work

Don Gaubatz [4] proposes a 4-value ‘quaternary’
logic that bears some resemblance to the ex-
tended logic described in section 1.2. Quater-
nary logic is similar to the 5-value logic described
in [7] – in this paper we choose a more accurate
9-value logic and interpret its values somewhat
differently.

Paul Cunningham [3] extends Gaubatz’s work
in many respects, though his formalism is based
on a conventional 2-value logic with transitions
handled explicitly as events rather than as values
in an extended logic.

Both Gaubatz and Cunningham primarily
consider model checking, not simulation, and
simulation tools are generally more important
for the detection of design errors early in a
project’s life cycle.

5 Conclusions

The technique presented here offers a clear ad-
vantage over existing approaches to logic simu-
lation, in that it can detect problems at a far ear-
lier stage within the design life cycle, thereby of-
fering the possibility of reduced time, cost and
risk.

5.1 Future Work

At the time of writing, this technique is essen-
tially a spin-off from broader theoretical work,
and is being presented at an early stage. Imple-
menting the technique in a new logic simulator,
or alternatively adding a post-processing pass to
an existing simulator is clearly desirable as a next
step.

The specific abstract interpretation tech-
nique defined in section 1.2 is actually one of a
number of alternative representations. Empir-
ically comparing the representation used here
with the other approaches also listed in [7] in or-
der to determine which alternative is the most
effective would be appropriate.

6 Acknowledgments

The authors would like to thank Simon Moore for
his comments on an incomplete draft of this pa-
per.

The first author wishes to thank Big Hand Ltd.
for financially supporting this work.

References

[1] P. Cousot and R. Cousot, Abstract interpreta-
tion: a unified lattice model for static anal-
ysis of programs by construction or approxi-
mation of fixpoints, Conference Record of the
Fourth Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Lan-
guages (Los Angeles, California), ACM Press,
New York, NY, 1977, pp. 238–252.

[2] , Systematic design of program anal-
ysis frameworks, Conference Record of the
Sixth Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Lan-
guages (San Antonio, Texas), ACM Press, New
York, NY, 1979, pp. 269–282.

[3] P. A. Cunningham, Verification of asyn-
chronous circuits, Ph.D. thesis, University of
Cambridge, 2002.

[4] D. A. Gaubatz, Logic programming analysis
of asynchronous digital circuits, Ph.D. thesis,
University of Cambridge, 1991.

[5] G. Morelli, Coralled: Get hold of wire delays,
Electronic Design News, September 25, 2003,
pp. 37–46.

[6] A. Mycroft and N. D. Jones, A relational
framework for abstract interpretation, Lec-
ture Notes in Computer Science: Proc.
Copenhagen workshop on programs as data
objects, vol. 215, Springer-Verlag, 1984.

[7] S. Thompson and A. Mycroft, Abstract
interpretation of asynchronous circuits,
Manuscript, In preparation.

4


