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1 Introduction and motivation

Current HDLs present a very low level of abstraction, often requiring the designer to work on
details that could be hidden, and leaving little scope for synthesis tools to optimise performance.
High-level hardware descriptions thus have a useful rôle in EDA, especially in areas such as rapid
development, and reconfigurable computing using devices such as FPGAs. One approach to im-
plementing these high-level description languages is to use software-like languages to describe
hardware, with synthesis tools that will convert these “programs” to netlists. Such an approach
can allow non-experts to design hardware, increase the productivity of more seasoned users, and
increase the flexibility of the implementation by tying it to fewer low-level details. The synthesis
tools can apply a wider range of optimisations, at a higher level of abstraction.

This paper covers such a language, called SASL. It is based on the SAFL [9, 8, 12] language,
which is a simple functional programming language designed for implementation in hardware. The
aim of SASL is to extend the software-like language features available to hardware designers. By
introducing features such as algebraic datatypes and lazy lists, it should be possible to raise the
level of abstraction at which designs are produced. It is hoped that such designs could then be
synthesised to efficient pipelined hardware, by mapping lazy lists to sequences of data items, for
example.

To require no external memory, the language is statically-allocated. Recursive data structures
are not allowed, and the only form of recursion allowed is tail-recursion, to prevent the need for a
dynamically allocated stack. While it would be possible to synthesise circuits that access memories,
to allow for more general purpose computation, this could lead to the introduction of von Neumann
bottlenecks. The synthesis aims are to improve performance over a software implementation, not
only by providing more parallelism, but by holding data closer to the hardware which performs
operations on it.

SASL is a pure functional language. Functional programming languages provide a relatively
abstract way of describing algorithms, and may provide less of a bias towards an implementation
based on sequential computation than many other programming language paradigms. Functional
languages also provide a wealth of program transformations and optimisations which seem suited
to the creation of useful design trade-offs at the synthesis stage.

As a simple first-order pure functional language, SAFL’s I/O capabilities are very limited.
The language SAFL+[12] has extended the language to include channels, similar to those used in
Occam [11] and Handel-C [4]. With channels, the programmer must be aware of the parallelism,
and expressions may have side effects. This paper investigates the use of streams, which we believe
are a simpler and more natural way of representing I/O for hardware communication.

Streams are linear lazy lists. They provide an ordered, possibly infinite, list of data items,
each of which can only be read once. The items of data are generated on demand. This form
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of communication is suitable for a number of applications, such as audio processing, or the pro-
cessing of data retrieved using a regular pattern of memory accesses. Stream processing can also
capture some of the compositional aspect of hardware, allowing stream-processing functions to be
composed in series and so on.

2 Related work

The approach taken here is distinct from languages such as HML [7], Lava [3], muFP [13], Ruby [6]
and Hawk [5], which embed a structural hardware language within a functional framework. In
such languages, a program is generally executed to generate a structural netlist, whereas SAFL-
like languages are “behavioural” descriptions that could be directly interpreted as a standard
functional language, as well as compiled to hardware.

Lucid [1] is a language intended for use as a formal system, which takes a rather different
approach to streams. Streams are described with the first and next primitives, and loops are
generated by extracting elements from streams using the as soon as primitive. This sort of idea
is used in synchronous dataflow/signal languages such as Lustre [2] and Hydra [10], where the
basic datatypes are streams. The elements of the streams are defined in terms of non-recursive
functions of elements of other streams, and earlier stream elements. Iteration is built on top of
the streams, with iterations of a loop being mapped to elements of a stream, for example. In
SASL the opposite approach is taken, providing tail recursion, and defining streams in terms of
the tail-recursive functions that generate them.

3 The language

The abstract grammar1 for the language is shown in Figure 1. The language is first-order, and
without lexical scoping. In order to make the language statically allocated, only tail recursion is
allowed. Tail calls must take place in a tail context. Tail contexts are those expressions marked
in the grammar with tr, when the enclosing expression is also in a tail context.

p := d1 . . . dn program definition
d := fun f x = etr function definition
e := f e function application

| c(e1, . . . , ek) constructor
| (e1, . . . , ek) tupling
| e1::e

tr

2
cons

| case e of m1| . . . |mn constructor case
| case e1 of (x1, . . . , xk) ⇒ etr

2
tupling case

| case e1 of x1::x2 ⇒ etr

2
cons case

| let x = e1 in etr

2
let expression

| x variable access
m := c(x1, . . . , xk) ⇒ etr match

Figure 1: The language’s abstract grammar

The language is eagerly evaluated, except for cons, where both the head and tail expressions
are lazily evaluated. Upon case matching of a cons, both the head and tail expressions are
evaluated, and the body of the case expression is only evaluated when both the head and tail have
finished evaluating (the tail normally evaluating to another lazily evaluated cons expression).
Streams are infinite in length, which does not cause a problem, as they are evaluated lazily. The
effect of finite streams can be achieved through streams that just produce the value Nil after a
finite number of elements.

1Example code may use other constructs that can be reduced to this grammar, to aid readability.
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The type system uses Hindley-Milner style type inference, but with a hierarchical type sys-
tem to prevent streams of streams, or streams being held inside algebraic datatypes. Although
type definitions aren’t included in the abstract grammar, we assume that non-recursive algebraic
datatypes can be constructed, which are used through constructor and constructor case expres-
sions. Constructors take zero or more arguments, returning the appropriate algebraic datatype.
Basic types are built from constructors. For example, boolean values can be represented with
zero-parameter constructors True and False. Tuples of basic types can be created using con-
structors. For example, n-bit binary numbers can be represented with constructors that take n

boolean arguments. A value type represents the type of an expression, and may be a basic type,
a stream of basic type items, or a tuple of value types. Functions are typed as taking a value type
and returning a value type, while constructors take a list of basic types, and return a basic type.

4 Possible pitfalls

A stream-less version of the language does not require any special constraints to allow static
allocation of programs, but the introduction of streams creates new problems. It must not be
possible to create programs that require unbounded buffers of stream values, or otherwise build
up the processing required by a stream in an unbounded way. A stream should not be able to be
“rewound”—after reading an unbounded number of items from a stream, it should not be possible
to go back an unbounded number of items. Linearity prevents this problem; once a stream is
matched to read an item from it, it cannot be used again, and the program may only match on
the tail of the stream, to read the next item.

It should not be possible to build up streams recursively, with functions such as

fun build(item, stream) = build(item, (item::stream))

Similarly, it should not be possible to build up the computation required along a stream. For
example, the following program should not be allowed (as the number of times f is applied to an
item increases unbounded):

fun map_f(stream) = case stream of hd::tl => f(hd)::map_f(tl)

fun map_iter_f(stream) = case map_f(stream) of hd::tl => hd::map_iter_f(tl)

5 Constraints for static allocability

Two constraints are used to make programs statically allocated—linearity and stability. Linearity
ensures that each stream variable, or variable containing a stream, is only used at most once. The
same item cannot be read out of a stream repeatedly, and the same stream cannot be passed to two
different functions, with the same items being read in both. A combination of linearity and the
tail recursion constraints prevent the creation of multiple copies of a stream, and other operations
that may require unbounded buffering between streams. We use an affine linearity constraint on
all variables that contain a stream type.

Stability prevents a stream from requiring more and more storage space over repeated tail
calls to a function. The stability constraint we use is that in recursive calls the streams passed
as actual parameters must be substreams of the matching formal parameter, where a substream
is the stream produced by taking the tail of a stream zero or more times. We implement the
stability constraint by using stream identifiers, attached to the typings of streams. The stability
constraint disallows the functions build and map iter f from the previous section, while still
allowing statically allocable functions such as map f.
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6 Examples

Common list-processing operations, such as map, fold and zip can be applied to the streams. As
the language is first-order, fully general functions cannot be created, but appropriate functions
can be made by renaming:

fun map_f stream =

case stream of hd::tl => f(hd)::map_f(tl)

fun fold_g (acc, stream) = case stream of hd::tl =>

if test(hd)

then let acc’ = g(acc, hd) in fold_g(acc’, tl)

else acc

fun zip (stream1, stream2) =

case stream1 of hd1::tl1 =>

case stream2 of hd2::tl2 =>

(hd1, hd2)::zip(tl1, tl2)

In terms of real-world examples, we provide a function that searches a stream for a two character
header, returning upon a match, and a very simple, abstract version of an audio tone generator
and mixer:

(* Header matcher. *)

fun stream_sync_internal(stream, last_char) =

case stream of hd :: tl =>

if last_char = header_1 and hd = header_2

then tl

else stream_sync_internal(tl, hd)

fun stream_sync(stream) = stream_sync_internal(stream, header_1 + 1)

(* Tone generator and mixer. *)

fun sine_gen(t, delta_t, omega) =

sin(t * omega) :: sine_gen(t + delta_t, delta_t, omega)

fun mix(stream_1, volume_1, stream_2, volume_2) =

case stream_1 of hd_1::tl_1 =>

case stream_2 of hd_2::tl2 =>

hd_1*volume_1 + hd_2*volume_2 ::

mix(tl_1, volume_1, tl_2, volume_2)

7 Conclusions and further work

The typing rules and static allocation constraints are being formalised, and hardware synthesis
techniques investigated. We are currently working on a synthesis tool, and while some extensions to
the language are being investigated, the main aim of the research is towards optimising synthesis
of the language, by pipelining the stream processing, for example. The aim is to provide the
programmer with a powerful and flexible software-like environment which can be used to synthesise
efficient hardware.
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