
UNIVERSITY OF

CAMBRIDGE

Programming Language Design and

Analysis motivated by Hardware Evolution

Alan Mycroft

Computer Laboratory, University of Cambridge

http://www.cl.cam.ac.uk/users/am/

24 August 2007

Programming Language Design and Analysis 1 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

What’s the issue?

Hardware keeps changing (as ever) but change to multi-core

processing require a major rethink (i.e. opportunities for us!) to:

• Programming Languages

• Analysis Techniques

• Opportunities for Static Analysis

Aim of this talk

• Tutorial on why and how hardware is changing (stress points)

• Neat ideas for research (completed/starting/to be done) for this

community.

Programming Language Design and Analysis 2 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

What’s the issue (2)?

Head in the sand:

Of course, you can always write and use small programs and never

use the additional parallelism (editors, latex, browsers . . .), and

never write papers on the new implications. Only then can you

ignore these technology changes.

Programming Language Design and Analysis 3 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Plan of the talk

• Changes in Technology

• Programming Implications (for Programmers and for Languages)

• Opportunities for Static Analysis/Type Systems

Programming Language Design and Analysis 4 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

What has suddenly changed?

1. Nothing

2. We have hit a design dead-end

Which is true? Both?

Programming Language Design and Analysis 5 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Moore’s Law and Scaling

Programming Language Design and Analysis 6 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Moore’s Law and Scaling (2)

• Moore’s Law: the empirical observation the number of transistors

per unit area on a chip doubles every 18 months. Originally

formulated in 1965 as doubling every 2 years, but 18 months

gives a better fit to reality.

• Originally backward looking, but industry adopted it as a design

objective and the ITRS (The International Technology Roadmap

for Semiconductors) envisages its continuation to 2020!

• This means that a 2020 (say 12 years time) chip will have 256

times as many transistors as today’s chips.

Programming Language Design and Analysis 7 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Moore’s Law and Scaling (3)

So, every 3 years linear dimensions shrink by a linear factor of 2.

����������:

���������1��������:

Chip dimensions (chosen for largely economic reasons) have tended

to stay pretty constant, e.g. 1cm x 1cm. (Bigger, more functional,

chips can be sold for more but the probability of a defect on them

tends to 1 with increasing size.)

What does this scaling do electrically?

Programming Language Design and Analysis 8 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Moore’s Law and Scaling (4)

Scaling: electrically each smaller component has (to first order)

• capacitance C reduced by 4

• resistance R unchanged

• hence switching speed (f = 1/RC) 4 times faster

• power per component (f.CV 2) unchanged at same voltage

• power per chip increased by 4 [HEAT!]

But, in practice we reduce voltage swings (which reduces the speed

increase) so that we can still go (say) twice as fast, but with the new

chip generating not much more power than the old one.

Programming Language Design and Analysis 9 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Moore’s Law and Scaling (5)

But: while feature size goes down uniformly down in all designs,

speeds do not scale as well as suggested:

• in 1985 off-chip RAM and CPUs went at the same speed, now

accessing RAM can take 200 cycles.

So much of Moore’s Law gain in transistor budget has been spent on

caches to try to hide this.

Reduced voltage swings and smaller feature sizes mean less reliable

components (e.g. cosmic rays and statistical thermal noise).

[NEW RESEARCH AREA: programming with unreliable

components] Design and analysis for unreliability (e.g. lambda-zap

[Walker et al.]). Redundant computation and voting logic. ECC.

Do you want every last video pixel to be accurate?

Programming Language Design and Analysis 10 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

What has suddenly changed (reprise)?

1. Nothing – Moore’s Law of exponentially increasing (over time)

transistor densities (i.e. exponentially decreasing ‘feature size’)

continues unchanged. And individual components continue to

switch faster.

2. But these improvements do not translate into faster x86-style

processors – basically we don’t know what to do with all the

additional transistors on a chip. Whole systems do not run faster.

To misquote somewhat (Moore’s law is size not speed):

“Moore’s Law is dead. [for ever-faster x86 architectures]

Long live Moore’s Law! [ever more and faster components]”

Programming Language Design and Analysis 11 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

The big problem: long wires

Scaling 4 disjoint copies of a chip onto one with smaller feature size

in principle is not a problem—apart from getting four-times as many

pins on the new chip!

However, that’s no fun—we want these chips to communicate.

The problem is that long thin wires are very resistive (hence slow).

• OK if wire length co-scales with features, but:

• What about a 1mm copper wire at feature-size width?

ITRS: 111ps in 2006 rising to 1ns in 2013!

Sounds small, but 1ns/mm delay means 75 clock ticks for a cross-chip

round-trip on a 2.5GHz 15mm wide chip!!

Programming Language Design and Analysis 12 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Aside: synchronous design

In elementary digital electronics courses, we are told to arrange our

circuit with all the clock wires connected to a common clock (the

synchronous assumption).

• this design style breaks down if it takes more than one clock

cycle to get across the chip

• so we go slowly, or use huge (millions of transistor size + heat)

networks for clock-distribution

Programming Language Design and Analysis 13 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

The big problem: long wires (2)

Birds eye view: technology scaling favours computation over

communication.

Wires are no longer free, and local re-computation is far better than

sharing computation with a distant place.

NEW RESEARCH AREA:

E.g. EPSRC grant “C3D: Communication-Centric Computer Design”

(Moore Greaves Mullins Mycroft).

Programming Language Design and Analysis 14 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

The big problem: long wires (3)

Of course, while we have a slow long wire across a chip, we can put

gates on it for free (in fact we may need buffers to amplify the signal

anyway).

This gives the idea of Network-of-Chip (NoC). [Not this talk]

NB: moving data across a chip will have large latency but may still

have high bandwidth so that bulk transmission of a data structure to

another CPU may be possible.

Programming Language Design and Analysis 15 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Rent’s Rule – Fractals

Fractals: self-similar structures – look the same (or similar) at all

magnifications.

• Coastline

• Mandelbrot set, Julia set, Menger set:

Hausdorff (fractional) dimension [Menger is 2.73].

Power law: T = T0g
d. Ordinary cube 8 = 23.

Programming Language Design and Analysis 16 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Rent’s Rule – circuits

Another empirical law:

• Rent (1960): external pins T on a chip are T0g
p where g is

number of internal components.

• Donath: applies also to wire-length distribution.

Designs which minimise the exponent offer promise [fewer long wires].

• System Level Interconnect Prediction Workshop.

Intriguing connection to software: top-down design is statically

fractal. Many algorithms are dynamically fractal except for global

memory. NEW RESEARCH DIRECTION: static analysis and

optimisation for dimension?

Programming Language Design and Analysis 17 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Summary: Why don’t we have 5GHz or 10GHz Pentiums?

Because 3GHz seems a natural economic limit for this style of

processor.

Indeed, we now buy two 2.5GHz processors (‘dual core’) instead, and

next year quad-core.

This isn’t just marketing—we’ve seen the technological forces above.

As an aside note that merely distributing the clock on fast Pentium

processors could take 25% and more of the total power (=heat

output) of the chip.

Programming Language Design and Analysis 18 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Plan of the talk

• Changes in Technology — why now?

• Programming Implications (for Programmers and for Languages)

• Opportunities for Static Analysis/Type Systems

Programming Language Design and Analysis 19 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

A programmer’s view of memory

�
�

�
�CPU -

1 cycle

�
�

�
�MEMORY

This model was pretty accurate in 1985. Processors (386, ARM,

MIPS, SPARC) all ran at 1–10MHz clock speed and could access

external memory in 1 cycle; and most instructions took 1 cycle.

Indeed the C language was a expressively time-accurate as a

language: almost all C operators took one or two cycles.

But this model is no longer accurate!

Programming Language Design and Analysis 20 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

A modern view of memory timings

�
�

�
�CPU -

2

�
�

�
�L1 cache -

10

�
�

�
�L2 cache -

200

�
�

�
�MEMORY

So what happened? On-chip computation (clock-speed) sped up

faster (1985–2005) than off-chip communication (with memory) as

feature sizes shrank.

The gap was filled by spending transistor budget on caches which

(statistically) filled the mismatch until 2005 or so.

Techniques like caches, deep pipelining with bypasses, and

superscalar instruction issue burned power to preserve our illusions.

2005 or so was crunch point as faster, hotter, single-CPU Pentiums

were scrapped. These techniques had delayed the inevitable.

Programming Language Design and Analysis 21 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Multi-core chips or Chip Multi-Processors (CMP)

For much of the past 20 years chip designs (as per previous slide)

were distorted to support faster and faster single-core processors. (10

years of Moore’s Law’s additional transistors had been spent on

caches, pipelines, superscalar processing without being visible at the

user-level.)

Now the dam is broken, more innovative designs are possible. We can

spend the vast transistor budget on many and varied things; what

would you like to spend it on?

[VAST NEW RESEARCH AREA!]

Programming Language Design and Analysis 22 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Multi-core-chip memory models

Today’s model:

�
�

�
�CPU 1 -

2

�
�

�
�CACHE 1

�
�

�
�CPU 2 -

2
�
�

�
�CACHE 2

-6
?

snoop

�
��

@
@R

200

200�
�

�
�MEMORY

Will scale to 2, 4 maybe 8 processors. But ultimately shared memory

becomes the bottleneck (1024 processors?!?).

NEW [or ancient] RESEARCH AREA: Programming languages

without a uniform memory model?

Programming Language Design and Analysis 23 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Multi-core-chip memory models (2)

• Can program analysis help design memory models?

• Note temporal order of writes may even vary according to

different observers (research on “Java Memory Model” problems)

int a=7, b=6, x;

par { {a=11; b=10; } | { x = a-b; } }

Can x be negative?

[NEW-ish RESEARCH AREA:] shared memory algorithms

parameterised by memory model. Analysis? Refactoring?

Programming Language Design and Analysis 24 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Multi-core state of the art

• Intel’s Terascale chip: 80 cores (8x10 array) each running at

3.1GHz all on a 2.75cm2 chip. On-chip network to connect to

other chips and memory. Plus a 20MB SRAM bonded on top of

the chip of CPUs.

• MIT and Berkeley: RAW and SCALE tiled processors; RAMP

FPGA-based emulator for a range of new architectures.

• Stop press at Hotchips 20/8/2007 Tilera announced: chip with

64 RISC-like cores running at up to 1.0GHz plus switches linking

cores in an 8x8 grid (“to 32 terabits per second of data

bandwidth across the whole chip“).

Programming Language Design and Analysis 25 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Plan of the talk

• Changes in Technology

• Programming Implications (for Programmers and for Languages)

• Opportunities for Static Analysis/Type Systems

Programming Language Design and Analysis 26 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Machine-oriented languages

These are languages in which machine operations all have high-level

language correspondents, and high-level language constructs take a

cycle or two.

• C for x86, MIPS, SPARC in 1985

• Occam for transputers (1980’s computer on a chip)

• More?

Of course, we also need higher-level languages, but thinking about

what is a good machine-level language helps clarify thoughts.

Machine-oriented languages can be efficiently compiled without

pervasive whole-program optimisations.

Programming Language Design and Analysis 27 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Pointers considered harmful

OK, I really only mean unrestricted pointers, the sort you see in C or

Java or ML. Let’s explore:

• Pointer copy is more expensive that integer copy (even if both

are 32 or 64 bits). Why?

• Because pointer copy creates an alias.

• Aliases stop data being moved between processors.

• Alias analysis (at least whole program) is undecidable in theory

and intractable in practice.

So, want languages to support non-uniform memory—indeed we wish

to de-emphasise shared RAM (serialised access).

Programming Language Design and Analysis 28 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

OO-Languages (C++ and Java) considered harmful

History: C and similar languages were fine for mid-1980’s. Programs

got bigger—needed better languages: object-orientation.

But OO programming co-grew with the spread of the ever-faster

single processor (no pressure to evolve).

Current OO languages have real problems with non-uniform memory.

Let’s look at a simple C++ declaration (chosen on day zero).

class Q { ... };

void f(Q x) { ... }; /* by value */

void g(Q *p) { ... }; /* by reference (sort of) */

void h(Q &p) { ... }; /* by reference (sort of) */

Programming Language Design and Analysis 29 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

OO-Languages considered harmful (2)

What’s wrong with this? The very first thing we do in C++ is to

freeze in constraints about whether a function shares a data address

space with its caller!

• Call-by-reference means caller and callee share data addresses

• Call-by-value means value can be transmitted to another

processor (and potentially [Java Futures] code after the call

executed in parallel).

This is early binding of physical distribution. [BAD!]

Programming Language Design and Analysis 30 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

OO-Languages considered harmful (3)

Surely late binding of physical distribution is what we want? How

about call-by-either-when-equivalent

void f(Q @p) { ... }; /* either CBV or CBR? */

meaning “use either CBV or CBR but reject the body of f if it does

anything which can tell the difference”?

Functions needing CBR or CBV can have it, but CBEWE allows late

binding of physical distribution.

Programming Language Design and Analysis 31 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

OO-Languages considered harmful (4)

Why can’t we do this automatically? Alias analysis?

• Whole program alias analysis is too imprecise/too discontinuous

• Suggestion is more like a type system – gives anchors to local

analysis.

Ah, but Java doesn’t have all this C++ nonsense?

• Java just fixes on CBR – inhibiting distribution

What’s wrong with RMI (remote method invocation)?

• user still has very different syntax for CBV/CBR (= early

binding)

• late change is still too hard semantically.

Programming Language Design and Analysis 32 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Taming pointers

“Structured programming for pointers”.

Possibilities:

• ‘Q @p’ notation above is essentially linear or quasi-linear types.

• Ownership types from OO community

• Extend pointers to know which memory region they apply to:

extern void f(int addressspace(A) *p);

These are essentially ‘regions’ (Talpin, Tofte).

Lightweight enough for ordinary programmers?

NEW RESEARCH NEEDED!

Programming Language Design and Analysis 33 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Quasi-linear types

Linear types are too much of a pain for many programmers (all data

threading is explicit).

PacLang looked at providing quasi-linear types for general

programmer use:

extern void g(packet p); /* consumes p */

extern bool h(!packet p); /* ‘borrows’ p */

packet f(packet p)

{ if h(p) return p;

/* needs "else kill(p)"

or "else g(p)" here */

return new(packet)

}

Programming Language Design and Analysis 34 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Quasi-linear types (2)

Microsoft’s Singularity OS project further develops this idea to a

message-passing operating system—linear data buffers (allocated in

ExHeap) can be transferred from process to process.

What does linearity buy?

Implementation either by copy or by reference – perfect for

multi-core with non-uniform memory.

Programming Language Design and Analysis 35 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Locks considered harmful

Locking mechanisms represent shared memory. This needs to be

discouraged along with programming mechanisms which stress it

without user awareness. E.g. synchronized objects in Java.

Reminder: Needham-Lauer “Duality of operating structures” showed

shared memory and message-passing are duals.

Encourage message-passing programming models. (Actor model has

disjoint memory spaces per process.)

Interesting observation: message passing and shared memory are

directly equivalent with linear uses of buffers.

Programming Language Design and Analysis 36 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Locks considered harmful (2)

More lightweight alternatives (but still need shared memory)

• lock-free data structures?

• software transactional memory?

• speculative memory?

NEW RESEARCH AREAS: (i) refactoring between locks and these

(e.g. Ennals’ ‘LockBend’); (ii) making any of these work with

non-standard memory models.

What if memory is distributed across an on-chip network?

Programming Language Design and Analysis 37 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Locks considered harmful (3)

Separation logic as a basis for reasoning?

Coarser-grain notion of ‘separation’ (e.g. between memory spaces)?

Programming Language Design and Analysis 38 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

I use ML or Haskell, aren’t I safe?

Well, in some sense, because the compiler can choose to copy or alias

data in pure functional languages. But

• ML has references (can’t be copied)

• How does laziness distribute? Copy = rework!

• Even pure data: when do we distribute and when not?

Programming Language Design and Analysis 39 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Wall’s work

Wall had an interesting paper “Limits of Instruction Level

Parallelism” in 1991/1993.

• Compiled SPEC test suite

• Looked at instruction traces and assumed various models

including hardware with perfect oracle (e.g. for branch

prediction).

• Oriented to classical CPU, instructions executed more-or-less in

order.

• How about re-doing this work using additional cores for

speculation? (see next).

Programming Language Design and Analysis 40 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Wall’s work (2)

E.g. compiling

if e0 then e1 else e2

into

par {x = e0 | x1 = e1 | x2 = e2 };

if x0 then x1 else x2

What are the lower bound limits on existing computations then?

RESEARCH: Are there then ‘obvious’ (to a compiler) spurious

sequentialities in SPEC? Can analysis tell the user what inhibits

parallelisation?

Programming Language Design and Analysis 41 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

What about the heat?

• Compiling to optimise energy. Philips Digital Audio Cassette.

• As circuits get smaller, voltage scaling means higher leakage

current. Must turn parts of chip on and off.

• Even if we’re doing sequential computation, might wish to

migrate the computation (heat source).

NEW RESEARCH: not totally new areas, but new models/analyses

needed.

Programming Language Design and Analysis 42 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

What’s a bad interface?

module two_stage (in, out, clock); <<=======

input [7:0] in;

output [7:0] out;

input clock;

reg [7:0] state1;

reg [7:0] state2;

assign out = state2; // or out = state1

always @(posedge clock)

begin

state1 <= in;

state2 <= state1;

end

endmodule

Programming Language Design and Analysis 43 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

What’s a bad interface (2)?

Good interface languages:

• are easy for ordinary programmers to understand

• fault programs after partial edits are made

• provide anchors for static analysis

E.g. C’s function types (ISO not K&R).

NEW-ish RESEARCH AREA: interfaces for multi-core?

For memory system assumptions?

Programming Language Design and Analysis 44 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Can we characterise program forms

Berkeley dwarfs – archetypical large programs.

Do different dwarfs need different optimisation analyses/anchors?

Programming Language Design and Analysis 45 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Plan of the talk

• Changes in Technology

• Programming Implications (for Programmers and for Languages)

• Opportunities for Static Analysis/Type Systems

Programming Language Design and Analysis 46 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Research I’d like to see done

• programming language designs to better reflect new hardware

(e.g. aliasing controls, physical distribution, actors)

• more programming support/analysis for (un)reliability

• fundamental limits to algorithms (extend Wall’s work), fractal

analysis.

• innovative hardware ways to use all these extra transistors

Programming Language Design and Analysis 47 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

SAS Heresy

• Why is this talk about language design not static analysis

Because I no longer believe in whole program analysis;

• Why?

The discontinuity effect: big program program P might have

property Q but a small change P + ∆P might no longer have Q.

What if Q is needed to parallelise P?

Local inference is good (and generally more continuous), but needs

user-specified anchor points – interface specifications.

Programming Language Design and Analysis 48 SAS’2007: 24 August 2007

UNIVERSITY OF

CAMBRIDGE

Conclusions

• “what is a computer” is now changing quite quickly;

• this gives opportunities for new research areas.

Programming Language Design and Analysis 49 SAS’2007: 24 August 2007

