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Abstract. In many distributed computing paradigms, especially sensor
networks and ubiquitous computing but also grid computing and web
services, programmers commonly tie their application to a particular set
of processors. This can lead to poor utilisation of resources causing in-
creased compute time, wasted network bandwidth or poor battery life,
particularly if later changes to the architecture or application render
early decisions inappropriate. This paper describes a system which sepa-
rates application code from the description of the resources available to
execute it. Our framework and prototype compiler determines the best
location to execute different parts of the distributed application. In ad-
dition, our language encourages the programmer to structure data, and
the operations performed on it, as monoids and monoid homomorphisms.
This approach enables the compiler to apply particular program trans-
formations in a semantically-safe way, and therefore further increase the
flexibility of the assignment of application tasks to available resources.

1 Introduction

Sensor networks [1] are composed of many low-power computer nodes; each node
contains one or more sensors, a small processor and one or more methods of
communication. Nodes collaborate to collect, process and distribute data from
their own sensors as well as data from other nodes. The ultimate goal of a sensor
network is to deliver a pertinent summary of the raw sensor data to a sink
node or gateway. For example, raw temperature readings from sensors might
be summarised into minimum, mean and maximum values. Raw data is not
delivered to the gateway since either the available network bandwidth makes it
infeasible or the power budget of the sensor nodes makes it undesirable.

When building sensor networks today, a programmer will typically take a
sensor platform such as the Mica Mote and write code for the platform directly
in a low-level language such as nesC [2]. This approach to systems building re-
sults in early physical binding since the programmer must decide at design time
the places at which data is processed and summarised. This can lead to poor
utilisation of resources, such as increased compute time, wasted network band-
width or poor battery life, particularly if later changes to the architecture or
application render early decisions inappropriate. This paper describes a system



which separates application code from the description of the resources available
to execute it. This allows late physical binding of the application since the com-
ponents of the application can be optimised for execution on available resources
after the components have been written or modified.

This work is not only relevant to sensor networks. Ubiquitous computing
envisions an era when computers “weave themselves into the fabric of everyday
life until they are indistinguishable from it” [3]. Such a system requires sensors
to gather information about the real world in order to interact seamlessly with
its inhabitants. In addition, our work is applicable to on-going research in Grid
Computing [4] which utilises data and processing capabilities in many different
physical locations and across organisational boundaries. Grid Computing enables
scientists to write programs which are distributed over multiple computers and
access repositories of data which are sufficiently large that moving programs
onto processors near the data source is much easier than moving the data itself.
We believe there is a strong analogy between the requirement to fix sensors at a
particular physical location in a sensor network and the position of a petabyte
data store in the Grid: both are infeasible to move.

When introducing web services as components of the Semantic Web, Berners-
Lee et al. describe a scenario where a patient wishes to book an appointment
with a doctor [5], necessitating the sharing of calendar data. Determining what
data should be transferred where is not obvious: for example, should appropriate
diary times be transferred to the doctor’s computer for comparison, or to the
patient’s? Here a qualitative measure of ‘confidentiality’ might replace latency
or bandwidth as a metric for optimal placement.

Our approach allows application programmers in these fields to define the
tasks which constitute a program separately from the topology of the network
of processors and data sources. The tasks are described in such a way (Sect. 2)
that permits late binding to processors by our compiler. Our language encourages
programmers to identify particular kinds of program task to allow the program
to be analysed and to determine whether particular program transformations can
be performed safely. These transformations (Sect. 2.2) enable the program to be
better-suited to execution in a particular network of processors. We observe that
sensor data often forms a monoid and exploit this in both the language design
and the optimisation framework. We then describe the syntax of the language
(Sect. 3) and the implementation of the compiler (Sect. 3.3).

2 Computational Model

Applications in sensor networks usually involve executing a set of tasks to col-
late, process and distribute sensor-related information, where a task is a set of
instructions which must be executed sequentially on a single processor. Our aim
is to make tasks and the datatypes they operate over (i) simple to specify and
(ii) structured so that program optimisations are possible.

Formally, we model the tasks representing an algorithm as a directed graph
Gt = (Et, V t) called the task graph. The set of vertices, V t, are the tasks and



x1

x2

x3

⋆ f R

y1

y2

y3

(a) Task graph

A
D

B

C

(b) Resource topology
graph

A B C

D

x1y1 x2y3

⋆

x3y2

f

R

(c) Tasks assigned to re-
sources

Fig. 1. Example graphs.

the edges, Et, indicate the direction of data flow between tasks. An edge (v1, v2)
indicates that task v2 receives the output of task v1, and that v2 cannot com-
mence execution until the execution of v1 is complete. An example is shown
in Fig. 1(a). We define algorithms in terms of six kinds of task. These differ in
terms of the type and number of inputs and outputs, and are sufficient to express
any algorithm. We present them intuitively first, then explain the underpinning
theory.

Source tasks are points where data is produced, drawn as circles. A source
task has no inputs and one output. Although they only have one output
edge, multiple values can be emitted in a sequential fashion. In other words,
a source task produces a stream of values. For example, in a sensor network,
a thermometer which outputs the temperature once per minute is modelled
as a source task.

Sink tasks are points where data is consumed, drawn as circles. A sink task
has one input and no outputs.

Processing tasks are functions which transform data of one type to another
type, and are drawn as circles.

Merge tasks are functions which combine two items of data of a particular type
into a single value of that type, and are drawn as rectangles. A merge task
has two inputs, a single output and is commutative and associative. More
than two items of data can be combined into a single value by chaining
several merge tasks together in any order. For convenience, we draw a chain
of merge tasks combining n items of data as a single n-ary task.
Merge tasks are particularly important in applications where a large number
of input values from different sources need to be processed, such as sensor
networks or grid computing. Because of the wealth of input data, it is usually
necessary to be able to aggregate data into a significantly smaller amount of
information to make their processing and interpretation more manageable.
Because merge nodes combine data which may have different data rates and
sensor applications must be resilient to the failure of a subset of sensors,



each merge chain can be given a specified timeout after which it produces a
result based on the available inputs.

Split tasks are functions which decompose a single item of data of a particular
type into two values of that same type, and are drawn as rectangles. These
values must be constructed such that, when fed into a merge task, the original
item of data is yielded. Thus, split tasks can be thought of as the inverse of
merge tasks. As with merge tasks, an item of data can be split into more
than two parts by chaining several split tasks, and we draw such a chain as
a single n-ary task.
Split tasks allow large items of data to be partitioned into smaller items so
that computation can be performed in parallel. This permits a divide-and-

conquer approach to data processing.
Replication tasks are functions which copy a value into a pair of identical

values, and are drawn as octagons. A replication task thus has a single input
and two outputs. As before, a chain of replication tasks can be constructed
in order to generate more than two replicas of a value, and is drawn as a
single n-ary replication task.

Datatypes are defined in terms of underlying sets from which values are
drawn (e.g. the natural numbers) along with operations, or tasks, that may be
performed on them.

Some datatypes which hold values of type T also have a binary operation
⋆ : T × T → T which is associative and commutative, and have an identity
element i ∈ T such that ∀a ∈ T . i ⋆ a = a. The identity element denotes the
datatype’s ‘empty’ value. These datatypes are of particular interest because their
operation ⋆ is equivalent to the definition of merge tasks above. Thus, using ⋆,
several items of data of the same type can be combined into a single item of that
type.

Such a datatype is modelled mathematically as a commutative monoid (T, ⋆, i).
Some examples of simple commutative monoids are set union (P(S),∪, ∅), ad-
dition (R,+, 0) and maximisation (R,max,−∞). We refer to these datatypes as
being mergeable. Associativity and commutativity reflect the idea of summaris-
ing data from a set of physically distributed sensors.

Since a split task for a particular datatype is an inverse of its merge task, it
follows that mergeable datatypes necessarily support split operations. By anal-
ogy with the monoid (N,×, 1), where merging is multiplication, splitting is fac-
torisation into a pair of factors. Note that while splitting merely needs to be
a right-inverse for merge, and therefore many split operations may exist for a
given merge operation ⋆, we will nonetheless use the notation ⋆−1.

In an application which processes data, it is not always enough to manip-
ulate data within a single type, so functions f : T1 → T2, where T1 6= T2, are
necessary in order to transform data into a new type. We refer to such functions
as processing functions. An example of a processing function is list2hist which
converts a multiset of temperature readings (encoded as a list) into a histogram.

A processing function f is a monoid homomorphism if it transforms data from
one monoid (S, ⋆, i1) into data from another monoid (T,⊗, i2) whilst satisfying



two properties:

f(i1) = i2, (1)

f(a ⋆ b) = f(a) ⊗ f(b). (2)

An example of a monoid homomorphism is a function f(x) = ex from monoid
(N,+, 0) to monoid (R,×, 1). It is trivial to check that f(0) = 1 and f(a + b) =
f(a)f(b). A more realistic example is list2hist above.

Monoids (identifying merge tasks) and homomorphisms (enabling certain
transformations—see below) are marked syntactically. Programmers are expected
to identify which datatypes and functions are appropriate to treat in these ways.
We believe that programmers will be able to easily identify these in everyday
applications. In the worst case, when these are overlooked, this merely results in
a smaller range of placement optimisations being available to the compiler.

In practice, the constraints of computation mean that real implementations of
datatypes are not necessarily perfect monoids. For example, addition and multi-
plication are only approximately associative in floating point arithmetic, thus we
cannot faithfully implement the monoid (R,+, 0). Similarly, certain thresholding
operations, e.g. f(a) = ⌊a⌋, do not satisfy property (2) to be homomorphisms;
timeouts further complicate the issue. Nevertheless, we expect programmers to
identify these as monoids to reap the benefits that brings; a formal treatment
would involve adding a metric space structure to monoids and adding a conti-
nuity requirement for homomorphisms and then to argue that the approximate
behaviour is ‘close enough’ for a given application.

2.1 Example

In sensor networks, it is common to want to find the arithmetic mean of a
large number of sensor readings. The centralised approach would gather and
sum all the readings at the sink node and divide by the number of readings
received. Partitioning the problem into smaller subsets of readings means that
we can reach an answer using less energy or more quickly as several additions
can be executed in parallel. However, the arithmetic means of arbitrary, distinct
subsets of readings cannot be readily combined into the overall mean, because
the number of readings contributing to each subset’s mean is lost. A solution
to this problem is to keep a running total of the number of readings in each
partition. Adopting this approach, we can express the arithmetic mean of a set
of numeric values by employing two processing functions—one a homomorphism,
the other not.

A set of real numbers is represented by the monoid (P(R),∪, ∅). We use an
intermediate monoid (R×N,⊕, (0, 0)), where (a1, n1)⊕ (a2, n2) ≡ (a1 +a2, n1 +
n2), to store the numerator and denominator in the calculation of the arithmetic
mean. The homomorphism to convert the set of numbers into this form is

h(∅) = (0, 0)

h({x} ∪ xs) = (x, 1) ⊕ (h(xs)).
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Fig. 2. Example task graphs for computing the arithmetic mean of two sets of
values in a distributed fashion.

Values from this monoid can then be transformed into the desired result using
a non-homomorphic function, g(x, n) = x/n. An example task graph for this
application is depicted in Fig. 2(a). The sum and count of two sets of values are
computed by h before being combined by the ⊕ merge task. Finally the mean is
computed by g.

2.2 Program Transformation

An advantage of identifying datatypes which are monoids and processing func-
tions which are monoid homomorphisms is that static analysis can be used to
transform the program whilst maintaining semantic integrity.

For some programs, it is possible to express the graph of tasks in a variety
of semantically-equivalent ways. For example, the task graph shown in Fig. 2(a)
can be equivalently expressed as shown in Fig. 2(b). The former is a conversion
to numerator-denominator pairs (processing) for both of the sets, followed by
the summing function ⊕ (merge), and finally g. The latter is a union operation
(merge) on the two sets, followed by the conversion by h to the numerator-
denominator pair (processing), and finally g. The general form of this trans-
formation is depicted graphically in Fig. 3. We refer to this transformation as
Merge–Processing.

In general, we note that property (2) above implies that merging before
processing will yield the same result as processing before merging if and only

if the processing function is a monoid homomorphism. This means that it is
useful for a programmer to be able to express to a compiler when a processing
function is a homomorphism, so the compiler knows when the transformation
can be applied and is guaranteed not to affect the semantics of the program.

In the cases where a processing function is not a homomorphism, informa-
tion is lost when it is executed, and this means that performing merging before
processing will not yield the same result as processing before merging. As noted
earlier, functions merely approximating homomorphisms will in not in general
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give bit-identical values, but sufficient for purpose if carefully marked as homo-
morphisms.

Using the Merge–Processing program transformation has several implications.
Firstly, there are more tasks on the right side of the transformation than on the
left. Depending on the computational complexity of f , ⋆ and ⊗, the overall
amount of work involved may be different. Moreover, the volume of data flow
may be affected by the transformation, depending on the relative sizes of the
pre- and post-processing datatypes.

To exemplify these differences, consider an application which processes video
data and extracts the number of people seen. If there are multiple video cam-
eras, one distributed version of this application could involve appending all of
the videos (merging) and then running the person-recognition algorithm on it
(processing). Applying the transformation yields an alternative expression of the
application in which the person-recognition algorithm (processing) is run on each
individual video, and then the number of people are summed to a single value
(merging). Since video data has a significantly higher data rate than the integer
count, there is less network traffic required in the latter version of the algorithm.

2.3 Other Transformations

A second transformation, Processing–Replication, is similar to the transformation
described above, but involves swapping the order of processing and replication
tasks rather than processing and merge tasks. Rather than performing some
processing and then replicating the result, we can replicate the input and process
each replica individually. This transformation is depicted in Fig. 4. On the right,
the amount of work is doubled and the volume of data flow may be affected.

The symmetry between split tasks and merge tasks gives rise to a transfor-
mation called Farm, depicted in Fig. 5. A processing task can be replaced by an
array of processing tasks which each tackle a part of the input data. Although
the transformation shows only two processing tasks, repeated application of the
transformation can give rise to a larger number of processing tasks. This trans-
formation facilitates the parallelisation of data processing, so is applicable to
grid computing where a large problem is commonly divided into a number of
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smaller problems processed in parallel. This paradigm is familiar from popular
distributed computing applications such as SETI@Home.

A further transformation, Split–Merge (Fig. 6), follows from the definition
of a split task for a particular type as an inverse of the merge task for that
type. Transformation Split–Merge is valid because ∀x. ⋆ (⋆−1(x)) = x. The final
transformation, Replication–Split, involves the exchange of replication and split
tasks, shown in Fig. 7. This transformation also preserves the semantics of the
program.

2.4 Task Assignment

As well as describing the program’s algorithm as a task graph Gt = (Et, V t), the
network of processors in which it is to be executed must also be known. Program
tasks can then be assigned to a processor for execution.

The network is modelled as a graph Gn = (En, V n), where now vertices
V n model processors and edges En model communication links between pro-
cessors. An example is shown in Fig. 1(b). The processing nodes, which have
local memory, are not assumed to be homogeneous in their processing power or
communications capabilities.

An assignment function A : V t → V n maps tasks to processing nodes. Source
and sink vertices in the task graph must be mapped to the particular nodes in
the network where data is produced and consumed, respectively. Other tasks can
be mapped to reachable network nodes. An example of an assignment function
is shown pictorially in Fig. 1(c), where ⋆ is mapped to processor B and f and R
are mapped to processor D.

The decision about which nodes to use impacts on the duration of execu-
tion of the algorithm; the privacy of the originators of the data; the amount
of network bandwidth consumed; and a variety of other factors. The efficacy of
the assignment is described quantitatively by a cost function specific to each
application. A cost function C : Gt × Gn × (V t → V n) → R is a function of an
assignment function yielding a real number indicating the cost of the assignment.
Applications will use a cost function which embodies the trade-offs they desire
between relevant metrics. Finding an optimal assignment with respect to a cost
function is a well-studied research area [6] and is known to be NP-complete in
general; we describe our strategy in Sect. 3.3.



So that a cost function can compute the values of relevant metrics, the graphs
Gt and Gn must be weighted. Nodes of the resource graph (processors) are
weighted with values describing their computational characteristics, such as pro-
cessor speed. Edges of the resource graph (communication links) are weighted
with values characterising the links, such as maximum throughput or latency.
Nodes of the task graph (tasks) are weighted with values describing their re-
quirements, such as the number of instructions constituting them. Edges of the
task graph (data flow) are weighted with values characterising the data, such as
the size of the data or its level of confidentiality.

3 Language

There are various ways in which the computational model described above
could be encoded in a programming language. One approach is task-oriented, in
which each processing and merge task is a first-class citizen. Instead, we chose
a datatype-oriented approach in which merge tasks and processing tasks are en-
capsulated in the definitions of the datatypes they operate on. This approach
ties in well with the modelling of some datatypes as commutative monoids, with
their associated binary operation. For datatypes which can be modelled in this
way, it is natural to encapsulate the underlying set, binary operation and iden-
tity element in a single logical unit. Processing tasks which can process data of
a particular datatype are also encapsulated within that same logical unit. The
datatype-oriented approach fits in well with object-orientation (our prototype
implementation uses Java).

Along with the datatype definitions, the framework must be supplied with
the task graph, the resource graph and a task assignment function. In the current
implementation, these are defined in a co-ordinator file, although logically they
need not be grouped together into a single module. The description of the cost
function by which to evaluate an assignment function is described in a separate
file. The resource graph is not required at design time; rather, it must be provided
just before compilation. Presently, the program must be recompiled whenever
the topology changes.

Our compiler uses the task graph and resource graph in the co-ordinator
definition in order to derive a total task assignment function mapping each task
to the processor found to be most appropriate to execute it. The compiler can
then distribute the merge tasks and processing tasks contained in the datatype
declarations to the chosen processors.

3.1 Datatype Declarations

Each datatype is defined in its own file and has a syntax built on top of a
Java class in our current implementation; this could easily be adapted for use
with other languages. Metrics that are used by the cost function to evaluate a
mapping are also specified in this file. A datatype is declared using the datatype



mergeable datatype PartialAv {
private double numer;
private int denom;

public PartialAv() [cpu=0, out size=1] { Identity element, (0, 0).
this(0, 0);

}

public PartialAv(double numer, int denom) { Singleton constructor
this.numer = numer; for choosing a value
this.denom = denom; from R× N.

}

public PartialAv merge(PartialAv a) Merge function, ⊕.
[cpu=1, out size=sum] Cost annotation.

{
return new PartialAv(this.numer + a.numer,

this.denom + a.denom);
}

Processing function, g,
processto Average [cpu=1, out size=1] { returning an instance of

return new Average(this.numer / this.denom); the Average datatype,
} not defined here.

}

Fig. 8. Datatype declaration representing the monoid (R × N,⊕, (0, 0)).

keyword. To facilitate physical redistribution, static methods and static fields
(except public static final fields) are not permitted in datatype declarations.

As described above, some datatypes are mergeable. Declarations of such
datatypes use the mergeable modifier to indicate this. Figure 8 shows the
datatype declaration for the monoid (R × N,⊕, (0, 0)) used in the arithmetic
mean example in Sect. 2.1, which is a typical mergeable datatype. The use of
the mergeable modifier entails three requirements: (1) The datatype is a monoid
so must have an identity element. This is implemented by requiring that merge-
able datatypes support a constructor which takes no arguments. (2) It must also
have a constructor to create a singleton instance of the datatype. In other words,
a means of wrapping a single element from the underlying set of values must be
provided, to allow new items of data to be instantiated. (3) The binary merge
operation must be specified. This is implemented by requiring that mergeable
datatypes of type α support a publicly visible method merge which takes an
argument of type α and returns a value of type α. The merge function is spec-
ified such that the expression a = a1 ⋆ a2 can be expressed in the fashion a =

a1.merge(a2).

Some datatypes define an operation to split them into a pair of smaller
elements. Whilst it is necessarily true that all mergeable datatypes are also
splittable in theory, it may be that the algorithm for implementing splitting is
significantly harder to implement than merging. For example, in the monoid
(N,×, 1), merging is multiplication (easy) but splitting is factorisation (hard). It
is also conceivable that the converse is true for some datatypes: it may be much
easier to express a split operation than a merge operation. Therefore, it is not
mandatory that mergeable datatypes support a split operation. The splittable



modifier is used on datatypes which implement a split operation as a publicly
visible method which returns a pair of items (currently implemented as an ar-
ray). Programmers of datatypes that are both mergeable and splittable need to
ensure that the split operation is the inverse of the merge operation; in general
it is undecidable for a compiler to check this statically, but it can be easily unit
tested.

In the computational model, a processing task transforms data of one type
into another type. Each datatype thus has zero or more other datatypes into
which it can be processed. For each such possibility, the datatype declaration
contains the code describing the processing task. These are defined in processto

functions, which must each return an object of the target type. In our Java-
based implementation, this is implemented in the ‘source’ datatype’s declaration
rather than as a constructor in the ‘destination’ datatype’s declaration so that
private members of the source datatype can be accessed. Note that the presence
of a processing function in a datatype’s declaration does not imply that it will
necessarily be part of a task graph; it merely indicates that such a function exists.
Processing functions which are monoid homomorphisms are marked with the
homomorphism keyword, to notify the compiler that transformations appropriate
to homomorphisms can be safely applied in applications using this function.

Annotations describing the values of various metrics that are employed by
the cost function are required for processto functions, merge functions, split
functions and constructors which are used as source tasks. The metrics are spec-
ified as a comma-separated list of (key, value) pairs, enclosed in square brackets,
where the key is a string known to the cost function and the value is a simple
arithmetic expression. Keys may include the out modifier to indicate that they
are metrics characterising data on egress edges from the corresponding node in
a task graph. Other values characterise the node itself. For processing functions,
egress edge values may use the special value in to refer to the value of the input
for the corresponding key. For merge functions, egress edge values may use the
special values sum, max, min, avg to refer to the sum, minimum, maximum or
average of the input values for the corresponding key.

For example, a merge task may be annotated with cpu=50, out size=sum,

out privacy=max to indicate its CPU load; that the size of the output is the
sum of the sizes of its inputs; and that the degree of sensitivity with respect to
privacy is the largest such from among its inputs.

It is necessary for these annotations to be attached to the definitions of the
functions, rather than the task graph, because the compiler is free to apply
transformations to the task graph, and needs to know the values of the metrics
on nodes and edges which it creates in the graph.

3.2 Co-ordinator Definition

The cornerstone to the programmer’s description of an application is the defi-
nition of the co-ordinator. This file contains the ingredients which describe the
application with sufficient flexibility to allow the compiler to determine a strat-
egy for executing it. Although we implement datatype declarations using a Java-



coordinator CoordAv {
taskgraph {

source<TempSet> c0 ["/dev/ttyS0"], c1 ["/dev/ttyS0"], c2 ["/dev/ttyS0"];
merge<TempSet> m0 [1 => inf, 2 => inf, 3 => inf];
process<TempSet, PartialAv> p0;
process<PartialAv, Average> p1;
sink<Average> s0;

c0 -> m0; c1 -> m0; c2 -> m0;
m0 -> p0;
p0 -> p1;
p1 -> s0;

}

resourcegraph {
sensor0: 192.168.0.100 [speed => 2];
sensor1: 192.168.0.101 [speed => 2];
sensor2: 192.168.0.102 [speed => 2];
host3: 192.168.0.103 [speed => 10];

sensor0 -- host3 [bandwidth => 5, latency => 1];
sensor1 -- sensor0 [bandwidth => 1, latency => 1];
sensor2 -- host3 [bandwidth => 5, latency => 1];

}

mapping {
c0 -> sensor0;
c1 -> sensor1;
c2 -> sensor2;
s0 -> host3;

}
}

Fig. 9. Example co-ordinator definition for the temperature-averaging applica-
tion.

like syntax, the co-ordinator language is largely independent of that used in the
rest of the application. An example co-ordinator for the temperature-averaging
application for three sensors is shown in Fig. 9.

A co-ordinator is defined using the coordinator keyword. It contains three
kinds of definition:

Initial task graph. The taskgraph block is used to specify an initial task
graph, giving to each task an identifier which has scope throughout the co-
ordinator definition. The links between tasks, indicating the direction of data
flow, are also specified.

Source tasks can optionally be given a list of arguments which are to be
passed to the constructor of its datatype, if any are required. In a sensor
network, the source tasks generate the application’s input data, so the argu-
ments can be used to create an instance of the source datatype appropriate
to each source task.

Merge tasks specified in the task graph can be annotated with an array of
timeouts. For an n-ary merge task, timeouts are specified for each number
of potential inputs received from 1 to n. The timeout for m inputs indicates
the longest duration of time the task should wait after having received m−1



input values for the next. The special value inf denotes an infinite duration,
implying that it is not acceptable for the merge task to produce an output
without having received further input values. The value 0 denotes that no
further inputs are necessary. If no timeouts are specified, it is assumed that
the timeout for all numbers of inputs up to and including n are infinite.
(Infinite timeouts are generally undesirable in sensor networks as the failure
of one sensor should not prevent the system from producing output.)

Resource graph. The resourcegraph block defines the processors in the net-
work (four are used in Fig. 9) and the connections between them. An identi-
fier and the hostname is specified for each, along with the values of metrics
that are employed by the cost function. For each communication link, values
of metrics that are employed by the cost function are specified.

Base mapping. The mapping block specifies an assignment function from tasks
to processors. The assignment function derived by a compiler is only per-
mitted to be a superset of the mapping specified here. This is particularly
relevant in sensor networks, where a source task must execute on a particu-
lar processor because it has the sensor to be sampled, and where a sink task
must execute on a particular processor because it needs to know the result
of the processing. However, this feature can also be used by the programmer
to lock other code to a particular processor if desired.

3.3 Current Implementation

In our current implementation we use Polyglot [7] to translate the co-ordinator
definition to instantiate appropriate instances of datatype declarations and gen-
erate standard Java source code. The Java source code is then compiled using a
conventional Java compiler, producing a JAR file for each processor.

During compilation, the compiler analyses the task graph and the resource
graph to determine the best locations to execute the tasks. As part of this pro-
cess, the annotations associated with processors and communication links in the
co-ordinator file are combined with the cost function to determine the relative
suitability of any particular mapping of tasks to processors. As noted earlier this
is a well-studied area, and we have not developed a state-of-the-art assignment
algorithm, but have used a simple technique [8] to explore both task assignment
and program transformation simultaneously. In our solution, we initially assign
all unmapped tasks to reachable nodes with the largest aggregate connectivity.
We then use a method of steepest descent to iteratively search for improvements
in two phases: firstly, we determine all possible immediate program transforma-
tions; secondly, for every program transformation we consider moving each task
in turn to alternative processors in the resource graph. Finally we select the
program transformation and task movement combination with the lowest cost
as the starting point for our next search iteration. We terminate our search when
no further improvements can be found.

The current implementation automatically generates Java RMI code to en-
able inter-task communication. For sensor networks, RMI is not ideal, since this



approach requires a central RMI registry to be present, but this could easily be
replaced by an alternative communications paradigm.

4 Related Work

In Web Services, the Business Process Execution Language (BPEL) [9] is used to
describe high-level ‘business protocols’: stateful workflows between web services.
This standard aims to separate the deployment information (where the services
are executed) from the description of the protocol. Thus, an application specified
in BPEL supports late binding to physical resources, as any resource supporting
a particular interface could be employed to execute a task.

The Grid Computing paradigm tends to identify networks of computers as
either compute grids or data grids. Compute grids involve participating comput-
ers running an execution environment into which jobs are sent by a co-ordinator,
to allow an application to benefit from parallelisation. Data grids are common
in the scientific community where a large corpus of data is made available to col-
laborators across the globe. In data grids, the question of where data integration
and processing is done is paramount. So as not to incur large volumes of network
traffic, processing is moved close to the data. The OGSA-DAI framework [10]
achieves this using a scripting language whose programs are sent over the grid
and executed close to the data. The idea of moving processing close to a data
source is a particular case of the general principle of optimising the arrangement
of tasks envisioned in this paper; a fixed sensor node can be thought of in the
same way as a large, immovable corpus of data.

Ennals et al. describe an approach to programming network processors using
a domain-specific language PacLang which permits the description of applica-
tions in an architecturally-neutral fashion [11]. An Architecture Mapping Script
describes which core should execute which application task, in a similar fashion
to a co-ordinator file. Furthermore, a set of transformations can be applied to
enable programs to be partitioned into different arrangements of tasks, to allow
the program to be better-suited to execution on a particular architecture. This
work exploited linear types as the basis for the transformations; we have adopted
the approach of modelling datatypes as monoids to similar effect, although these
approaches are not mutually exclusive.

Program transformations are also exploited to aid task assignment in dis-
tributed query processing. It is the job of a query optimiser [12] to choose the
best strategy for executing a distributed database query; this may involve re-
writing the query.

Kremer et al. have implemented a compiler framework to allow an application
which would otherwise run solely on a mobile device to be off-loaded onto a server
[13]. Similar work has been undertaken by Li et al. at the function-call level [14]
and by Ou et al. at the Java bytecode level [15]. These are specific instances
of the kind of application considered in this paper, but they do not consider
whether applications can be transformed to permit parallelised execution.



In sensor networks, J-Orchestra [16] is a system which automatically par-
titions applications into tasks, and allows developers to manually assign tasks
amongst machines. The Titan framework [17] has been designed to permit dy-
namic reconfiguration of which processors execute which tasks for body-area
sensor networks.

Some of the theoretical underpinnings of our work were greatly inspired by
Afshar’s use of monoids and monoid homomorphisms in parallel data-processing
applications [18].

5 Conclusion

We have created a language which can be used to write applications for dis-
tributed systems. The separation of the task definitions from a notion of where
in the system they are to be executed allows a compiler to derive a mapping of
tasks to processors. This mapping can be improved by performing various pro-
gram transformations that change the task graph. Programmers are encouraged
to express datatypes as monoids and functions as homomorphisms to enable safe
use of a wider range of task placement transformations.

We have approached this work from the direction of sensor networks, but we
believe that our ideas are more globally applicable. It is already evident that some
concepts are readily applicable to Ubiquitous Computing, Grid Computing and
Web Services. We hope that this work is a stepping-stone towards a full calculus
with primitives that encompass all of these paradigms.

We have assumed a static network topology. In practice, many sensor net-
works contain mobile nodes, meaning that an initially optimal assignment of
tasks may quickly become sub-optimal. Similarly, in practice, nodes and com-
munication links will fail. A simple adaptation of our work would be to collect
nodes into logical groups from which nodes can leave and join, but where the
characteristics of each group remain largely constant. In addition, we have as-
sumed a single, omniscient co-ordinator, which is impractical, and therefore we
plan to investigate a distributed approach to co-ordination.

The examples used in this paper have been kept simple to ease comprehen-
sion. We believe that it is more generally applicable to larger applications; the
application which inspired this work was the automatic generation of road maps
based on sensor data collected from road vehicles [19]. This application was
originally implemented in a non-distributed fashion in Java; we realised that in
order to make it distributed a lot of boiler-plate code would be required which
could be generated automatically. Furthermore, we realised that it was inappro-
priate to make task placement decisions at design-time. We are in the process
of re-implementing this application using our framework.
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