
On Integration of Programming Paradigms

ALAN MYCROFT

Computer Laboratory, Cambridge University, UK 〈Alan.Mycroft@cl.cam.ac.uk〉

Programming notions can be expressed in many different paradigms—using im-
perative, object-oriented, concurrent, functional, logic-programming (or other)
formulations. Choice of an appropriate paradigm can greatly affect the ease
of programming. Initially this choice appears unequivocally helpful to the pro-
grammer, but doubts soon arise. What if parts of a system are written in a
typed imperative language (e.g. C) and others in an untyped logic program-
ming language (e.g. Prolog)? How can a lazy functional language (e.g. Haskell)
invoke procedures which have state? We thus confront the problem of Integra-
tion of Programming Paradigms—to integrate subsystems expressed in differing
paradigms into a coherent whole. The aim of this paper is to expound an al-
gebraic view of such integration. Work with related aims but differing starting
points can be found in the “Action Semantics” approach [2] and the “Monads”
view of feature composition (see e.g. [1]). Also relevant is work [3] on using
complexity to compare semantic models.

Integrating subprograms written in varying source languages Si, i ∈ {1, 2}
intuitively represents writing in the union of these languages; actually what we
mean is a target language expressive enough to express concepts from all the
source languages. If the languages all had a single sort (syntactic category)
then this could be the language generated by the union of the constructors of
the source languages. More thought leads us to a target language T which has
embeddings θi : Si → T . The θi should be injective at the semantic level thus,
given si, s

′

i ∈ Si, we require [[si]] 6= [[s′i]] ⇒ [[θisi]] 6= [[θis
′

i]]. However, in general
this still behaves as the union—there is no constructor to use a term in Sj as a
term in Si; indeed all we can do is to write programs totally in S1 or S2. There
are various alternative forms of interaction possible: the least expressive is a
pairing constructor which allows us write a program (s1, s2) consisting of pro-
grams si ∈ Si (as they cannot yet interact it is pointless to discuss whether eval-
uation happens in parallel or not). If there are operators (e.g. ‘;’) which we wish
to identify in the Si then we can require [[(s1, s2); (s

′

1
, s′

2
)]] = [[(s1; s

′

1
, s2; s

′

2
)]]. In

practice we require more complex interaction: for example, if S1 is Pascal and
S2 is Haskell, we might desire variables effectively to coincide, so that writing
x in S1 affects reading x in S2 (or more structured constructs to access a pro-
cedure in S1 with values from S2). This is handled by adding constructors to
T which represent the interaction (correspondence) between constructs in the
Si. This in general causes surprising degrees of complexity.1

1One is reminded of the word problem for groups—given two groups we have a well-
defined notion of the free group which they generate. But, suppose we then decide certain
relationships also must hold, e.g. ab3 = b

2
a
−1 then in general it is undecidable whether two

such presentations represent equal groups. Note that the word problem is trivial for abelian

groups; this corresponds to the case above where composition distributes over pairing—if
features do not really interact then no additional complexity arises.

1



Some features embed naturally by an injection as suggested above; for others
the issue is more subtle. One case might be that some unrestricted feature is
deemed harmful and only a restricted aspect of it is to be embedded. An
example here is the use of abstract data types to embed mutable arrays into
Haskell (‘monads’) in such a way that mutability is not observable but keeping
the implementation advantages of a single-threaded state. Another alternative
is to encode the feature to some extent. For example Prolog can be embedded
in a procedural language having catch and throw.2 This approach is appealing,
but problems soon arise as before. What if the Haskell array-as-monad also is
accessible to a procedural language? Suppose our Prolog program is embedded
as indicated in our language with catch and throw. A compiler might ‘know’
how to compile an image of Prolog into efficient code, but this ability would be
lost when fragments of code from another language result in the target program
not being an image of Prolog.

For many source languages, there is the possibility of a universal target
language—the typed λ-calculus. The complexity of interaction of features led
Mosses to develop “Action Semantics”. Recent work by Liang and Hudak [1]
uses monads to structure denotational semantics for compiler generation with
similar aims. One problem here though is that monads do not in general com-
pose.

It feels appropriate here to discourage the idea that reflection (e.g. [4])
primitives might help. In reflective systems access to the state of a presumed
interpreter is made available to the running program. While careful use of such
facilities may provide great power, in general they can be seen as tightly bound
integration of two paradigms and therefore are liable to be hard to reason about.

A related approach is that of meta-programming. In various logic program-
ming communities there is an emphasis on meta-programming, by which is
meant that one constructs an interpreter for a language close to the problem
and then writes problem solutions using the primitives of this language. In gen-
eral the same problems seem to occur here for multi-paradigm working as occur
for the embedding into a target language above; the difference seems merely to
reflect a choice of translation versus interpretation.

How then is one to proceed? To me, the best solution uses disparate aspects
of the above discussion. The higher the degree of interaction between languages
the more inter-language interaction complexity can grow—hence subsystems
written in different languages should only be loosely connected (this is desirable
for program structuring reasons too). Moreover, the interaction seems best
handled indirectly by a coordinator whose primitives are the notions imported
or exported from each subsystem. It seems to matter less whether this is seen
as a ‘union’ language or as an interpreted meta-program in a small language of
combinators—although the latter allows more appropriate type-checking, e.g.
that an imperative routine cannot incomparably update a lazy list. One should
note that interface design in the presence of multiple programming paradigms

2Clause alternative selection is handled by a loop containing catch and failure by throw.
Unifications are implemented as undoable assignments (e.g. by an explicit undo stack popped
at every catch.)

2



is rather pervasive; changing behaviour of a subsystem component can greatly
affect the combinator system which the coordinator constitutes.

I thank the organisers (Chris Hankin and Hanne Nielson) and participants
of Dagstuhl ‘Integration of Paradigms’ in September 1995 for stimulating my
thoughts on the subject of this essay.

References

[1] Liang, S. and Hudak, P. Modular Denotational Semantics for Compiler
Construction. Proc. European Symposium on Programming (ESOP’96):
Lecture Notes in Computer Science, to appear, Springer-Verlag 1996.

[2] Mosses, P.D. Action Semantics. Cambridge Tracts in Theoretical Com-
puter Science, vol. 26, CUP 1992.

[3] Mycroft, A., Degano, P. and Priami, C. Complexity as a Basis for Compar-
ing Semantic Models of Concurrency. In: Algorithms, Concurrency and
Knowledge—Proc. 1995 Asian Computing Science Conference, Lecture
Notes in Computer Science, vol. 1023, Springer-Verlag 1995.

[4] Smith, B.C. Reflection and Semantics in Lisp. Proc. 11th ACM Sympo-
sium on Principles of Programming Languages, 1984.

3


