COMPARING DATA SOURCES AND ARCHITECTURES FOR DEEP VISUAL REPRESENTATION LEARNING IN SEMANTICS Douwe Kiela, Anita L. Verő and Stephen Clark Computer Laboratory, University of Cambridge

1. Resources for Multi-Modal Semantics

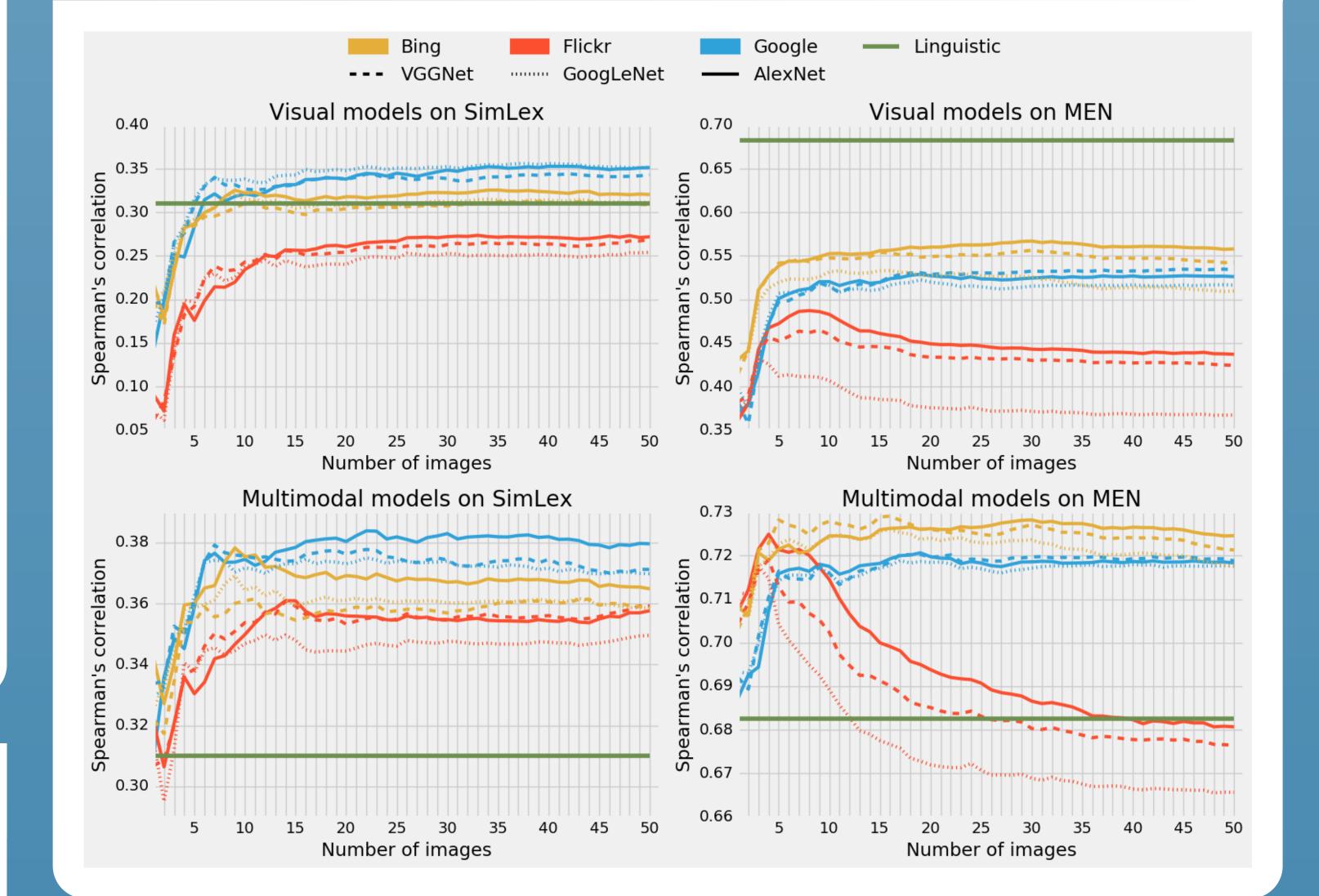
Distributional models suffer from the grounding problem:

Grounding problem: the fact that the meaning of a word is represented as a distribution over other words does not account for the fact that human semantic knowledge is grounded in physical reality and sensorimotor experience. (Harnad, 1990)

Multi-modal semantics addresses this by *enhancing* linguistic representations with extralinguistic perceptual input, usually using **images**.

Open questions about representation learning techniques and data sources: Does the improved performance over bag-of-visual-words extend to **different convolu**tional network architectures?

5. Number of images and representation quality



How important is the **source** of images? Is there a difference between **search engines** and manually annotated data sources? Does the number of images obtained for each word matter?

Do these findings extend to **different languages** beyond English?

2. CNN Architectures

We use the **MMFeat toolkit** (https://github.com/douwekiela/mmfeat) to obtain image representations for three different convolutional network architectures:

- AlexNet (Krizhevsky et al., 2012)
- GoogLeNet (Szegedy et al., 2015)
- VGGNet (Simonyan and Zisserman, 2014)

The models are trained on the **ImageNet** classification task to maximize the multinomial logistic regression objective:

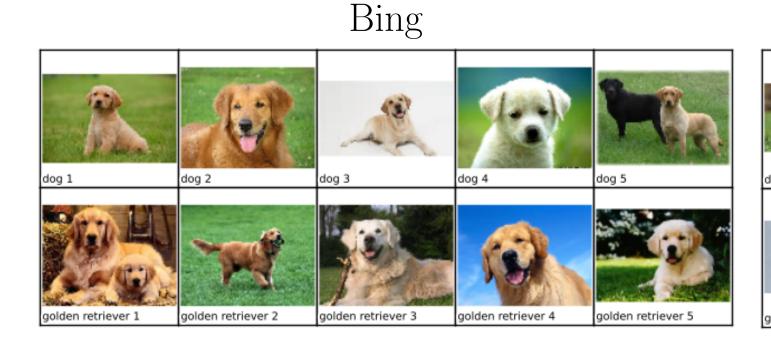
$$-\sum_{i=1}^{D}\sum_{k=1}^{K} \mathbf{1}\{y^{(i)} = k\} \log \frac{\exp(\theta^{(k)\top}x^{(i)})}{\sum_{j=1}^{K}\exp(\theta^{(j)\top}x^{(i)})}$$

3. Image Data Sources

6. Semantic Similarity and Relatedness

	Arch.	AlexNet				GoogLeNet				VGGNet			
	Agg.	Mean		Max		Mean		Max		Mean		Max	
Source	Type/Eval	SL	MEN	SL	MEN	SL	MEN	SL	MEN	SL	MEN	SL	MEN
Wikipedia	Text	.248	.654	.248	.654	.248	.654	.248	.654	.248	.654	.248	.654
Google	Visual	.406	.549	.402	.552	.420	.570	.434	.579	.430	.576	.406	.560
	MM	.366	.691	.344	.693	.366	.701	.342	.699	.378	.701	.341	.693
Bing	Visual	.431	.613	.425	.601	.410	.612	.414	.603	.400	.611	.398	.569
	MM	.384	.715	.355	.708	.374	.725	.343	.712	.363	.720	.340	.705
Flickr	Visual	.382	.577	.371	.544	.378	.547	.354	.518	.378	.567	.340	.511
	MM	.372	.725	.344	.712	.367	.728	.336	.716	.370	.726	.330	.711
ImageNet	Visual	.316	.560	.316	.560	.347	.538	.423	.600	.412	.581	.413	.574
	MM	.348	.711	.348	.711	.364	.717	.394	.729	.418	.724	.405	.721
ESPGame	Visual	.037	.431	.039	.347	.104	.501	.125	.438	.188	.514	.125	.460
	MM	.179	.666	.147	.651	.224	.692	.226	.683	.268	.697	.222	.688

Trade-off of coverage and (human) annotation quality (see paper for a detailed comparison):



Flickr

Performance on maximally covered datasets (see paper).

7. Multi- and cross-lingual applicability

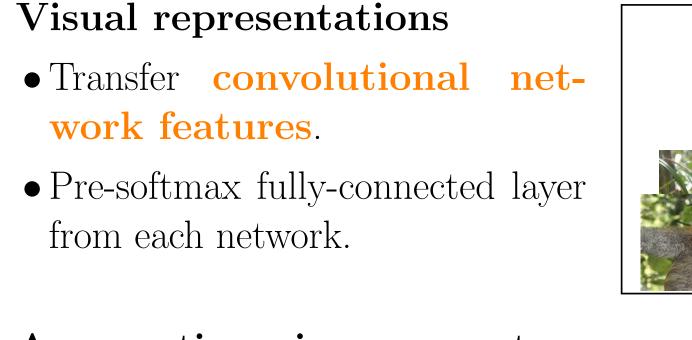
SimLex

EN IT (M) IT (C)

Wikipedia Linguistic .310 .179.179

> Visual .340 .238 .231

Evaluations

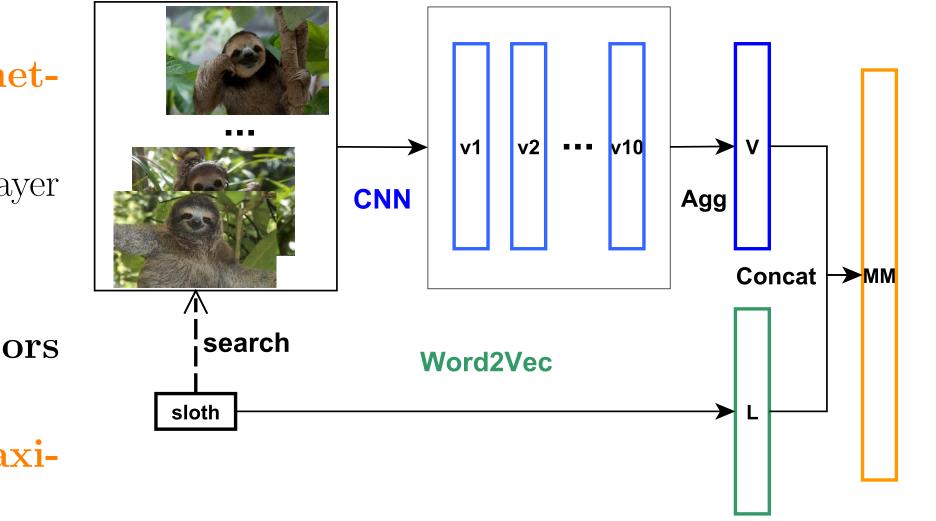


Aggregating image vectors for one word

• Element-wise **Mean** or **Maxi**mum.

Multi-modal representation: concatenating visual and textual vectors.

Standard multi-modal evaluations: MEN and SimLex-999.



Multi-modal .380 .231 .227

Visual .325 .212 .194 Bing Multi-modal .373 .227 .207

8. Conclusion

- Multi-modal representations consistently outperform linguistic ones.
- Different CNN architectures perform similarly.

Google

- The choice of data sources has a bigger impact: Google, Bing and Flickr have the advantage of providing full coverage image datasets.
- The **number of images** has a significant impact on performance that stabilises around 10-20.
- These findings **extend to other languages**.