
Semantics of Programming Languages
Exercise Sheet

Andrej Ivašković (ai294)
Compiled on: 31st October 2019

Before attempting the problems

The goal of this course is to introduce you to a formal way of reasoning about
programs. You consider the operational approach to formal semantics of a
programming language (you might see other approaches in Part II). It is vital
that you do not forget why we are looking at these issues – everything here
is based on real programming languages, and understanding what programs
do and translating them into a formal language is important if we wish to
mechanise program verification. Formal verification is gaining more traction,
and programming languages are seeing more versatile type systems nowadays.

The lecture notes contain more ‘drill’ exercises on typing and deriving trans-
itions. You are more than welcome to attempt some of them, though the main
lesson you will learn is that you need to leave a sufficient amount of space for
the proof tree. Other exercises encourage you to play with the interpreter –
please do, it will give you some valuable background for Compiler Construction.

You should know off the top of your head the main concepts and definitions,
especially properties of typing. Consider compiling a glossary.

1 L1 and types

Exercise 1.1. What are the first eight reduction steps of the expression

while !l1 ≥ 0 do (l2 :� !l2 + !l3; l1 :� !l1 − 1)

when {l1 7→ 3, l2 7→ 1, l3 7→ 5} is the initial store? Show the proof trees for the
first two of these reductions.

Exercise 1.2. What is the type of the expression

if !l2 ≥ !l1 then l1 :� !l2 else skip; !l1,

given the typing environment l1 : intref, l2 : intref? Show the typing derivation.

1

Exercise 1.3. Explain why the following is not an L1 rule:

〈e1, s〉 → 〈e′1, s′〉
〈while e1 do e2, s〉 → 〈while e′1 do e2, s′〉

Exercise 1.4. State the Progress, Safety and Type Preservation properties for a
particular programming language (both informally and formally). Which ones
are consequences of the other two?

Exercise 1.5. L1 stores contain only integer references. How can you handle
references of any type? State the additional (or revised) operational semantics
and typing rules.

Exercise 1.6. In this exercise we look at a simple imperative language that ex-
tends L1 that adds handling fixed-length arrays whose elements are all integers.
Define the syntax, operational semantics and type system for this language.
There should be dedicated expressions for accessing the array item at a partic-
ular index, as well as creating a new array of a given length whose items are all
the same value. Is your language type safe?

(This problem is underspecified – you are free to interpret it in any way you want, as
long as you state your assumptions and justify them.)

2 Proofs by induction

Exercise 2.1. Complete the proof of Progress for L1.

Exercise 2.2. State and prove Uniqueness of Typing for L1. What proof principle
are you using?

Exercise 2.3. The lecture notes present operational semantics in small-step style:
only ‘one step’ is observed in a reduction sequence, and the reflexive transitive
closure→∗ of the transition relation→ says something about eventually reach-
ing a state. Contrary to that, big-step semantics consider transitions of the form
〈e , s1〉 ⇓ 〈v , s2〉, where e is an expression, v is a value, and s1 and s2 are stores –
meaning that the expression e will, when the store state is s1, eventually reduce
to a value v, with the state of the store s2. For example:

〈if !l1 � 5 then l2 :� 0 else l1 :� 5, {l1 7→ 3, l2 7→ 1}〉 ⇓ 〈skip, {l1 7→ 5, l2 7→ 1}〉

(a) State the big-step operational semantics of L1.

(b) Prove that, if 〈e , s1〉 ⇓ 〈v , s2〉 (according to your big step operational
semantics), then 〈e , s1〉 →∗ 〈v , s2〉. Does the converse hold?

2

3 L2 and functions

Exercise 3.1. Let e be the following closed L2 expression:

e � fn x : α⇒ (fn y : β⇒ ((fn x : (β→ α) ⇒ x y) (fn z : β⇒ x)))

(a) What is the type of e? Show the typing derivation.

(b) Does e eventually reduce to a value? If so, what value? If not, why?

(c) What is the De Bruĳn representation of e?

Exercise 3.2.

(a) Give an example of a well-typed L2 configuration that eventually reduces
to a value with both call-by-value and call-by-name calling semantics, but
the values differ.

(b) Does there exist a well-typed L2 configuration that eventually reduces
to a value in call-by-value semantics, but loops forever in call-by-name
semantics?

(c) Does there exist a well-typed L2 configuration that eventually reduces
to a value in call-by-name semantics, but loops forever in call-by-value
semantics?

Exercise 3.3. Define the operational semantics for call-by-need calling semantics
in a pure functional programming language, so that the actual parameters in
function calls are evaluated at most once.

Exercise 3.4. Prove Type Preservation for L2.

Hint. You might need to state and prove a substitution lemma.

Exercise 3.5. It this exercise we look at the following purely functional program-
ming language (that is, there is no mutable store) with support for handling
ML-style lists. Its expressions are given by the following grammar:

e ::� x | fn x : T ⇒ e1 | e1 e2 | []T | e1 :: e2
| case e1 of ([]T ⇒ e2 | x1 :: x2⇒ e3)
| let val x : T � e1 in e2 | let rec x : T � e1 in e2

The case syntax distinguishes the cases of an empty and a non-empty list: if e1 is
empty, the expression evaluates to e2; otherwise, it evaluates to e3, which might
make use of the head (fresh variable x1) and the tail (fresh x2) of the list.

(a) Define the operational semantics and the type system for this language.
The language should have call-by-value calling semantics and the se-
mantics should satisfy all ‘desirable’ typing properties (Progress, Safety
and others).

(b) Write a curried function append in this language that takes two lists, `1
and `2, and returns the concatenated list (like ML `1@`2). Infer the type
of append using your type system.

3

(c) State Progress for this language. What proof principle is used to prove it?
Show it on the case of the three expressions dealing with lists.

4 L3 and data

Exercise 4.1. Show how the reduction sequences for 〈e1, {}〉 and 〈e2, {}〉 differ,
where e1 � (ref 0, ref 0) and e2 � let val x : int ref � ref 0 in (x , x).
Exercise 4.2. The lecturenotes introduce theCurry-Howard correspondence, where
types correspond to theorems and programs correspond to proofs of said the-
orems. For example, the theorem {} ` P ∧ (P → Q) → Q corresponds to the
type T1 ∗ (T1 → T2) → T2 in an empty context. A closed term of this type,
corresponding to a proof of the theorem, is:

fn x : (T1 ∗ (T1→ T2)) ⇒ ((#2 x) (#1 x))

Give terms that correspond to proofs of the following theorems:

(a) {} ` (P ∧Q) ∨ (¬P ∧ R) → Q ∨ R

(b) (P ∧Q) ∨ R ` (P ∨ R) ∧ (Q ∨ R)
(c) (P ∨ R), (Q ∨ R) ` (P ∧Q) ∨ R

Exercise 4.3. Design type rules and evaluation rules for ML-style exceptions.
Start with exceptions that do not carry any values.

Hint 1. Take care with nested handlers within recursive functions.

Hint 2. You might want to express your semantics using evaluation contexts.

5 Subtyping

Exercise 5.1.

(a) Explain the reasoning behind the subtyping rule for function types.

(b) For each of the two bogus T ref subtype rules on slide 202, give an example
program that is typable with that rule but gets stuck at runtime.

Exercise 5.2. For each of the following, either give a type derivation or explain
why it is untypable:

(a) {} ` {p � {p � {p � {p � 3}}}} : {p : {}}
(b) {} ` fn x : {p : bool, q : {p : int, q : bool}} ⇒ #q #p x : ?

(c) {} ` fn x : {p : int} → int⇒ (f {q � 3}) + (f {p � 4}) : ?

(d) {} ` fn x : {p : int} → int⇒ (f {q � 3, p � 2}) + (f {p � 4}) : ?

4

Exercise 5.3. State the subtyping rules for sums, let val x : e1 � T in e2 and
let rec x : e1 � T in e2.

6 Concurrency

Exercise 6.1. Show all possible reduction sequences for e1 ‖ e2 from the initial
store {l1 7→ 10, l2 7→ 40} and no locks acquired, where:

e1 � lock m; l1 :� !l1 − 2; l2 :� !l1 + 1; unlock m
e2 � lock m; l2 :� !l2 + 3; l1 :� !l1 − 3; unlock m

Show the derivations of the possible candidates for the first reduction.

Exercise 6.2. We sometimes extend type systems with additional information,
giving rise to type-and-effect systems. The judgements are now Γ ` e : T&F, where
F is an effect (meaning and structure depends on usage). In this exercise, we
will be looking at the concurrent language from the notes (if the language has
functions, we add latent effect annotations to function types: T1

F−→ T2).

Let F represent the sequence of locks and unlocks of mutexes. It will be repres-
ented by a list over the set {Lm ,Um | m ∈ M}. For example, [Lm1 , Lm2 ,Um2 ,Um1]
is the effect of an expression that first acquires the lock m1, then m2, and then
unlocks m2 and m1.

Devise a type-and-effect system that only accepts those concurrent programs
obeying the O2PL discipline (concurrent expressions with inadequate locking
disciplines do not type check).

Exercise 6.3. Attempt 2014 Paper 6 Question 9 (very challenging!).

7 Semantic equivalence

Exercise 7.1. Let e1 and e2 be expressions and Γ1 and Γ2 be contexts such that
Γ1 ` e1 : unit and Γ2 ` e2 : unit. Show that, if Γ1 and Γ2 are disjoint, then
e1; e2 'unit

Γ
e2; e1, where Γ � Γ1 ∪ Γ2.

Exercise 7.2. The following L3 judgements hold:

l : int ref ` l :� 0 : unit
l : int ref ` l :� 1 : unit

Show that these two assignments are not contextually equivalent.

Exercise 7.3. Prove or disprove Conjectures 30, 31, 32 from the notes.

5

	L1 and types
	Proofs by induction
	L2 and functions
	L3 and data
	Subtyping
	Concurrency
	Semantic equivalence

