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YOU MAY EMAIL ME YOUR WORK OR LEAVE IT IN MY PIGEONHOLE IN THE TRINITY COLLEGE
GREAT COURT MAIL ROOM.
PLEASE SUBMIT THE ASSIGNED WORK AT LEAST 24 HOURS BEFORE THE SUPERVISION!

1 Before attempting the problems

These exercises concern the last part of the course. This is mainly concerned with
core object-oriented parts of C++, including exceptions and templates. Hopefully,
the previous supervisions has shown you some of the difficulties of using C —and
now you should know how C++ enables you to solve some of them. There are
fewer coding exercises this time, but they are likely to take longer.

Remember the issues with C semantics whenever you write any C or C++ code!
An obvious instance of undefined behaviour is accessing array items of outside of
bounds, but you should not forget about integer overflow.

2 Problems

Some of these questions have been taken from the exercises in the lecture slides.
Credit is due to their authors.

1. Compare and contrast the following aspects of C semantics: undefined beha-
viour, unspecified behaviour and implementation-defined behaviour.

2. Compare and contrast passing by reference in C++ with passing pointers in
C.

3. Explain the usage of the keyword virtual in C++, as well as what the under-
lying implemention of virtual is.

4. How is the dreaded diamond problem resolved in C++?
5. A commonly quoted good practice in C++is declaring all destructors virtual.

Explain why it makes sense to do this.
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6.

10.

11.

Suppose you have defined a class A and wish to allocate an object a of this
class. Compare and contrast the syntax, allocation and deallocation when
you want a to be allocated in stack, heap and static segments.

Implement classes that implement singly linked lists (1inked_list) and dy-
namic arrays (array_list). They should have sensible constructors, destruct-
ors, and methods for adding a new element to the start of the list, adding a
new element to the end of the array, inserting at a given position and removing
the item at a given position.

Initially implement them to support only int items, then extend them to
support data of arbitrary type using templates.

Overload the indexing operator [] in these classes so that a[i] returns the
i-th item in a.

You should throw exceptions when needed.

Finally, introduce an appropriate abstract superclass list for these two
classes.

You don’t need to care about thread safety.

(You are, in essence, reinventing std: :vector.)

. Explain the RAII (Resource Allocation is Initialisation) pattern and describe two

concrete scenarios in which you might use it.

. Write a program that uses template metaprogramming in order to perform

primality testing.

Read up on move constructors and the facilities that allow them to be written in
C++. Compare and contrast them to copying constructors and briefly discuss
when you would use one over the other.

Attempt past exam question: 2017 Paper 3’ Question 2.
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