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You may email me your work or leave it in my pigeonhole in the Trinity
College Great Court mail room.

Please submit the assigned work at least 24 hours before the supervision!

1 Before attempting the problems

This exercise sheet covers the last bit of the course – mostly on linear regression
and model fitting. There are a few questions here that reinforce the concepts
from the previous parts of the course.

Linear regression is interesting in the way it combines linear algebra, optimisa-
tion and probability: it is a problem you can interpret in several different ways.
Some of the techniques you use for deriving results here will be applicable in
Machine Learning and Bayesian Inference.

2 Problems

1. A recent Ipsos MORI opinion poll1 (fieldwork carried out 19–22 Oct 2018)
investigated the popularity of UK political parties. 876 GB adults in total
stated their voting preferences. Out of these, 351 people said they would
vote Conservative, 324 would vote Labour, and 101 would vote for the
Liberal Democrats (the remainder of people polled expresed a preference
for other parties). The usual way of modelling voting preferences is by
looking at every single party separately and looking at the probability a
randomly drawn voter casts their vote for that party.

(a) Calculate 95% confidence intervals for party support for the Conser-
vatives, Labour and Lib Dems. Round your results sensibly.

(b) Compare your result with the headline ‘39% Con, 37% Lab, 10%
LibDem’. Is there any discrepancy, and what might be the cause of
it?

(c) How can you estimate the probability that Labour are actually ahead
of the Conservatives?

1Source: here.
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https://www.ipsos.com/sites/default/files/ct/news/documents/2018-10/pm-tables-october-2018.pdf


2. Attempt past exam question: 2010 Paper 8 Question 2.2

3. (a) What does it mean for a set of vectors to be linearly independent?

(b) What are feature vectors and residuals in the context of linear models?

(c) What does it mean for two vectors two be orthogonal, and for a set of
vectors to be orthonormal?

(d) How do we calculate the orthogonal projection of a vector onto an-
other one? How is this result relevant for orthonormal sets of vectors?

(e) What is the problem of confounding variables when fitting a model?
What can we do about it?

(f) What is non-indentifiability of a parameter?

4. For the stop-and-search data in section 4.1.2 of lecture notes, the proposed
model was:

P(Yi � find) �
exp(ξi)

1 + exp(ξi)
where ξi � α + βei + γgi

where Yi ∈ {find, nothing} is the outcome of the search, gi is the gender,
and ei is the ethnicity of suspect i. Rewrite the equation for ξ as a linear
model, using one-hot coding.

5. The example given for the Iris dataset looks at the linear model:
Petal.Length1
Petal.Length2

...

 ≈ α

1
1
...

 + β

Sepal.Length1
Sepal.Length2

...

 + γ

(Sepal.Length1)2
(Sepal.Length2)2

...


Show that the set of these three basis vectors on the right hand side of the
expression is not orthonormal. Can you transform it into an orthonormal
system? When you do that, can you immediately get the values of α, β, γ?

[Hint: example 5.8 in the notes illustrates the Gram–Schmidt processwhich
you might want to use here.]

6. Starting from basic principles, derive closed form expressions for themax-
imum likelihood estimators â, b̂, σ̂2 in the model y ≈ a + bx given n data
points {(x1, y1), . . . (xn , yn)} and assuming Normal(0, σ2) noise.

7. (a) Show that finding values a, b and c that fit z ≈ axb exp(−c y2), where
xi > 0, zi > 0 for all data points ((xi , yi), zi), can be done using linear
regression. What is the assumption on the noise in that case?

(b) Why is there no such solution for y ≈ axb + c? What can we do about
it instead?

(c) What about y ≈ axb exp(−cx2)?
2Yes, it is an old Artificial Intelligence II question. Note that you are asked about a MAP

estimate – it is exactly what you expect it is, similar to the maximum likelihood approach.
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8. As an alternative to the climate model given in section 5.2.2 of the lecture
notes, we might suspect that temperatures are increasing linearly up to
1980, and that they are increasing linearly at a different rate from 1980
onwards. Devise a linear model to express this.

9. This question is about inference for the linear regression model:

temp � α + β1 sin(2πt) + β2 cos(2πt) + γt + Normal(0, σ2)

(a) Give pseudocode to find the maximum likelihood estimators α̂, β̂1,
β̂2, γ̂, and σ̂.

(b) What is meant by parametric resampling? Explain how to use paramet-
ric resampling to synthesize a new version of the climate dataset.

(c) Consider the confidence interval γ ∈ (γ̂ ± 0.1). Explain how to use
bootstrap resampling to find the error probability of this confidence
interval.

(d) Give a brief outline of how to find a 95% Bayesian confidence interval
for γ.

10. As hinted in the course, we can define an inner product for many kinds
of vector spaces. In the vector space of real functions, we can define the
inner product of two functions f and g as:

f · g def
�

∫
+∞

−∞
f (x)g(x)W(x)dx

where W is a ‘weighting’ function.3 Consider the Legendre definition of W :

W(x) def
�

{
1, −1 ≤ x ≤ 1
0, otherwise

Find an orthonormal basis for the vector space of third degree single-
variable polynomials (with respect to this definition of inner product).

Some of the exercises have been taken from the official exercise sheet for the
course. Credit for those is due to Dr Damon Wischik.

3You get different function families and orthogonal sets of functions for different choices of
W . The Fourier basis seen in Fourier series is one such set, but there are also Jacobi polynomials,
Chebyshev polynomials and others.
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