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You may email me your work or leave it in my pigeonhole in the Trinity
College Great Court mail room.

Please submit the assigned work at least 24 hours before the supervision!

1 Before attempting the problems

This exercise sheet covers the first half of the course – conveniently, this cor-
responds to the first three chapters of the lecture notes. The problems do not
necessarily follow the order in which the topics are covered in the lectures or
the notes.

There are several topics covered here (not directly tied to chapters in the notes):

• Properties of random variables. Most of this will be familiar to you from
IA, and was covered in the revision sheet. This includes the concepts of
mean and variance, though likelihood is also introduced. Likelihood is
really mostly relevant for performing inference, and it is closely tied to
performing probabilistic inference. The cumulative distribution function
can be used to generate random variables of a particular distribution (as-
suming a random number generator). You also get to see how you can
use your knowledge of probability to estimate values of integrals that are
difficult to compute.

• Estimating the distribution based on data. The Central Limit Theorem
is a key result in probability and statistics, and it demonstrates why the
normal distribution is ubiquitous. The error probability of the computed
confidence interval can be estimated either based on the properties of the
normal distribution or by using resampling methods such as bootstrap-
ping. This is not the only way to figure out the ‘shape’ of a random
variable’s distribution – you can also try computing the empirical distri-
bution. Finally, if you know which class of distribution a random variable
belongs to, you can try finding the optimumdistribution parameters using
maximum likelihood estimation.1

1In mathematical statistics it sometimes turns out that the maximum likelihood estimate is
biased – but you don’t need to care about that in this course.
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• Probabilistic inference. In hypothesis testing, know the term null hypo-
thesis – you may understand its importance better if you look up Type I
and Type II errors. For estimating probabilities of outcomes or output val-
ues, in this course you either you use the maximum likelihood estimator
or you use Bayesian methods. The key to understanding Bayesian ideas
is to keep in mind that no hypothesis about the world is ever dismissed,
merely given a current ‘degree of belief’ probability.

A lot of concepts seen here will be relevant in the Part II course Machine Learning
and Bayesian Inference.

2 Problems

1. Use the inverse transform method in order to generate a random variable
X ∼ Exponential(λ).

2. Let U ∼ Uniform(0, 1). Compute the probability density function of the
variable Y � U(1−U). [Hint: find the cumulative distribution function of
Y first]

3. Suppose we are given n independent samples X1, . . . ,Xn of a random
variableX. ThevariableX has anunknownmean µ andunknownvariance
σ2. To estimate the mean and variance of X, we use the sample mean and
sample variance:

Xn �
1
n

n∑
i�1

Xi

S
2
n �

1
n − 1

n∑
i�1
(Xi − Xn)2

Show EXn � µ and ES
2
n � σ2. What is the variance of Xn?

4. The proof ofWeak Law of LargeNumbers can be broken down into several
smaller steps that are of independent importance.

(a) Prove Markov’s inequality: if X is a real non-negative valued random
variable with a finite mean and a is a positive real number, then:

P(X ≥ a) ≤ EX
a

(b) Prove Chebyshev’s inequality: if X is a real valued random variable
with finite mean and finite variance and ε is a positive real number,
then:

P(|X − EX | ≥ ε) ≤ Var X
ε2

(c) Use Chebyshev’s inequality and the result from problem 3 to infer
the Weak Law of Large Numbers.
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5. Find a 95%-confidence interval for the mean of a random variable X ∼
Exponential(λ), given 1000 samples. Write pseudocode to compute a
95%-confidence interval for λ.

6. Consider a pair of random variables with joint density

PX,Y(x , y) � 3
16x y2, for 0 ≤ x ≤ 2, 0 ≤ y ≤ 2

Find the marginal densities of X and Y.

7. The Gumbel distribution has the following cumulative distribution func-
tion: if X ∼ Gumbel(λ), then:

P(X ≤ x) � exp
[
− exp(λ − x)

]
Let X1 ∼ Gumbel(λ1) and X2 ∼ Gumbel(λ2) be independent. Show the
following:

(a) max(X1,X2) ∼ Gumbel(log(eλ1 + eλ2))

(b) P(X1 ≥ X2) �
eλ1

eλ1 + eλ2

8. Given n samples, compute the maximum likelihood parameter estimators
for the following distributions:

(a) Poisson(λ)
(b) Uniform(0, θ)
(c) Normal(µ, σ2)

9. Let X1, . . . ,Xn be independent identically distributed Normal(µ, 1). Sup-
pose that the null hypothesis is H0 : µ � 0 and we are testing it against
H1 : µ � µ′ > 0. We reject H0 if the ratio of likelihoods for H1 and H0
is greater than some number k. Show that this test can be rephrased as
‘reject H0 if the samplemean is greater than c’, and explainwhat c is in this
case. What happens if we replace the likelihood with a posterior ratio?

10. I flip what I initially thought was a fair coin 10 times and I get 8 heads and
2 tails. I want to estimate the probability that the next flip will also result
in a head, but I am now skeptical of the assertion that the coin is fair.

(a) What is the probability of getting a headunder amaximum likelihood
estimation approach?

(b) A friend of mine says: ‘Maximum likelihood estimators are stupid,
you should really use a Bayesian approach here to compute this prob-
ability’. What is the result if I listen to them?

(c) Another friend ofmine tellsme that neither of these approachesmake
much sense and that there is no reason to conclude that the coin is
biased. Why are they saying this?
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11. Write brief notes about the following:

(a) How can we compute an empirical distribution function given a set
of samples of the random variable? How can we use it to compare
this result to what we expect if the cumulative distribution function
is known analytically?

(b) How can we use stochastic (Monte Carlo) methods to compute integ-
rals that cannot be computed analytically?

(c) Bootstrapping: the method and its applications.

Some of the exercises have been taken from the official exercise sheet for the
course. Credit for those is due to Dr Damon Wischik.
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