
Computation Theory

Supplementary notes on decidability

Andrej Ivašković (ai294)
Compiled on: 23rd August 2019

These notes are supplementary to the main course materials. The main reason
for writing them is exploring some concepts in more depth and exploring some
key ideas in reduction proofs.

I first give a slightly more formal treatment of reductions. You will see them in
more detail in Complexity Theory, but some practice with this approach should
make you more comfortable with undecidability proofs. I go on to discuss how
we approach undecidability proofs of ‘practical’ problems, especially the ones
that deal with analysing program flow and behaviour (which come back many
times in Optimising Compilers). Finally, I give an intuitive statement of Rice’s
theorem, which is a simple and useful result that can instantly give you proofs
of undecidability in some cases.1

You should be acquainted with the notions of Minsky’s register machines (RM),
RM computability and decidability, enumerating RMs, universal RM and a
proof of the undecidability of the Halting Problem.

1 Decidability and reductions

Traditionally, textbooks on Computation Theory have a ‘grammar-centric’ view:
Turingmachines are introduced as an extension of push-down automata, which
are, in turn, extensions of deterministic finite automata. This then results in a
natural hierarchy of languages ‘recognised’ by each kind of automaton.2 This
course takes a different view: computable partial functions over accepting a
language. However, since we regularly encounter the problem of determining
whether a set is decidable, it is useful to consider both approaches.

Let us remind ourselves of the definition of decidability given in this course:

1Sadly, using Rice’s theorem without proof is not something I recommend in an exam
environment.

2This is the Chomsky hierarchy – if you haven’t seen it in Discrete Mathematics, you will see
it in Formal Models of Language and Complexity Theory. DFAs recognise regular languages,
PDAs recognise context-free languages, and Turing machines recognise recursively enumerable
languages. There are also context-sensitive languages between the recursively enumerable and
context-free ones.

1

Definition 1.1

A set S ⊆ N is register machine decidable if the total function χS : N →
{0, 1}, defined with:

χS(x) �
{

1, x ∈ S
0, x < S

is register machine computable.

In other words, we see 0 and 1 as REJECT and ACCEPT answers.

From now on, I will mostly use the terms ‘decidable’ and ‘computable’, without
explicitly mentioning the formal model of computation (the ones covered in the
course are all equivalent).

One of themost common tasks you do in this course is proving undecidability of
a particular set. The most significant such problem is the Halting Problem. You
go on to use reductions – these, informally, we tend to use to create arguments
of the form ‘if you could show that S is decidable, then the set T would also be
decidable’.

Starting with the Halting Problem:

Theorem 1.1

The set {〈e , x〉 | ϕe(x)↓} is register machine undecidable.

Proof. Seen in lectures. �

Definition 1.2

Given two sets S1 and S2, a reduction of S1 to S2 is a computable function
f : N→ N such that, for every x ∈ S1:

x ∈ S1⇐⇒ f (x) ∈ S2

The existence of a reduction from S1 to S2 tells us that, in some sense, decidability
of S2 is ‘at least as hard’ as the decidability of S1.

Theorem 1.2

If f : S1 → S2 is a reduction of S1 to S2 and S1 is undecidable, then S2
is also undecidable.

Proof. This is the contrapositive of Exercise 5 in the exercise sheet. �

2

The direction here seems somewhat counter-intuitive at first. We use this result
when we want to show that S2 is undecidable, and S1 is usually the set seen
in the Halting Problem – that is, {〈e , x〉 | ϕe(x) ↓}. Essentially, we show that
any instance of the problem of deciding membership of S1 can be somehow
‘encoded’ as an instance of the problem of deciding membership of S2, where f
is this ‘encoding’.

Let us now see how a simple example fits into this framework.

Example 1.1. Show that {e | ϕe(0)↓} is undecidable.
Let S � {e | ϕe(0)↓}, and let H � {〈e , x〉 | ϕe(x)↓}. We want to find a reduction
of H to S. Just doing a projection π1 : 〈e , x〉 7→ e will not work, since this is not a
reduction: a program might never terminate for input 0, but it might terminate
for some other input. The reduction f must map every 〈e , x〉 into a program
with code f (e) that essentially does the same thing as e, but sets its input to x.
Such a program transformation is not difficult:

f (〈e , x〉) � dset registers to values specified by x; append machine ee

This is a ‘simple enough’ operation, and it is computable (in fact, it can be
written explicitly using the list processing operations used in the universal
register machine). f is a reduction of H to S because:

• for every instance 〈e , x〉 ∈ H, the machine with code f (〈e , x〉) will halt
when started with input 0;

• for every f (〈e , x〉) ∈ S, we know that the machine with this code halts,
and it can only terminate when e halts when started with x.

Since H is undecidable, then S must also be undecidable. �

2 Operational behaviour of programs

Not all programanalysis is undecidable, but it usually is. In this section I discuss
the “sometimes it can be decidable” kinds of problems, which are mainly con-
cerned with the program execution, less so about the result of the computation.

Example 2.1. Let

S � {〈e , x〉 | RM e halts in at most 100 steps when started with input x}

Even though it looks like the Halting Problem, this turns out to be decidable!
This is merely due to the fact that there is a constant upper bound here (which
could be arbitrarily large).

Recall the universal registermachineU: it takes aRMcode e and an input x, then
simulates the execution of e when started with x and returns the output. We
can introduce small modifications to U to solve this problem. Let us introduce
a special N register that keeps track of howmany steps the machine has taken so

3

far. This counter is incremented every time an instruction of e is executed. If the
value of this counter exceeds 100, halt the machine and output 0. Otherwise, if
e halts before then, halt and output 1. This machine decides S. �

It is usually the case that, whenever these kinds of sets are decidable, we some-
how make use of universal register machines.

Example 2.2. Let:

S � {e | RM e loops at least once when started with all registers zeroed}

Looping at least once is not a property that is conveniently stated in terms of ϕe .
Furthermore, this is a decidable set: the property here says nothing about the
program never terminating, merely that it only looped at least once.

A program loops at least once if its trace (list of all program counter values
seen during its execution) has duplicates. Once again we look at the universal
registermachineU. Let usmodify it somewhat, and construct a similarmachine
V .

• There is no input x – set all of the registers to 0 initially.

• V maintains in a special register S the list (that is, its natural number
representation) of all program points seen so far – initially 〈〉.

• Before V considers the instruction in e with label Lk , it first checkswhether
S contains k as its member: if it does, it halts with the value 1; if it does
not, it adds k as the head of S and continues.

• If the execution of e halts, then V halts with the return value 0.

All of this is computable, and V will always terminate (the register machine e
has a finite number of instructions). Hence S is decidable. �

However, universal register machines are not a universal solution, there remain
undecidable problems. Sometimes they are very small variations of decidable
ones.

Example 2.3. Let:

S � {〈e , x , `〉 | RM e started with x eventually reaches the label `}

In other words, this is like answering the question “will the program trace
contain the instruction with label `”. This is intuitively undecidable – let us
prove that it is indeed so.

We construct a reduction of the Halting Problem. Consider an arbitrary RM e
and input x. The RM e can be transformed so that all HALTs are replaced with
a single one, say the label with the least index `, and all of the ‘transitions’ are
updated appropriately. All ‘invalid transitions’ can become valid by making
them point to the HALT instruction at L` . This yields a computable function f
that maps 〈e , x〉 to 〈e′, x , `〉, where e′ is the RM just described. This f is also a
reduction of H to S:

4

• whenever e halts when started with x, this means that e′ will also halt
when its input is x, and the only HALT is at label L` ;

• whenever the execution of e′ when started with x reaches L` , this means
that the execution of e when started with x halts.

Again, since H is undecidable and f is a reduction of H to S, we conclude that
S is undecidable.

This shows that even determining whether a particular part of the code is
reachable is undecidable. Note, however, that there exist conservative overap-
proximations that can determine some of the instructions which are surely
unreachable. �

3 Rice’s theorem

Rice’s theorem is a simple andgeneral statement about the decidability of certain
sets. Youmay see it as just another proof that everything interesting turns out to
be undecidable. In fact, youwill sometimes see it quoted as ‘anythingnon-trivial
is undecidable’, which is very misleading. Properly stating the theorem and
seeing how it is applicable is part of the challenge. After that, the applications
are mostly simple.

If youwant to avoidusingRice’s theorem for a particular problem, you can adapt
the proof given here – it is a general approach you can use in many different
scenarios.

3.1 Statement

Theorem 3.1

Let P be a property of codes representing register machines. Consider
the set S � {e | P(ϕe)}. If both of the following are true:

• P is a property that depends solely on ϕe

• ∅ , S , N

then S is undecidable.

Proof. See subsection 3.3. �

Pay attention the important requirement that the property P should depend on
ϕe , not e: we are not talking about the ‘small step’ behaviour of the machine
here, but rather its ‘big step’ or ‘functional’ behaviour. We call these kinds of
properties P semantic.

It is not uncommon to see the property P depend on e in some sources. You
should not forget that it still has to be a semantic property.

5

3.2 Applications

Before delving into how we use it, let us first have a look at two simple cases
when Rice’s theorem cannot be applied.

Example 3.1. Consider the following set: S � {e | e is even}. It is very clearly de-
cidable. Rice’s theorem does not apply here, as the property given here does not
depend on ϕe . The same holds for S � {e | e contains an even number of labels}.

�

Example 3.2. Let S � {e | ϕe is computable}. While the property does depend
on ϕe , it in fact holds for all e: every ϕe is, by definition, a computable function.
Since S � N, Rice’s theorem cannot be used here either. �

Rice’s theoremgives us an alternative, simplemethod for establishing the decid-
ability of some problems. Consider the following two examples ‘sanity checks’.

Example 3.3. Let S � {e | ϕe is total}. There are clearly computable functions
that are total, say the identity function x 7→ x, and those that are not, say the
totally undefined partial function ⊥ (its RM contains an infinite loop). Since the
property relies on ϕe , the set S is undecidable. �

Example 3.4. Let S � {e | ϕe(x) � 0 for at least one input x}. This is a property
that depends on ϕe , so this is fine. The constant zero function is clearly comput-
able and is in S, and the constant one function is not in S. Hence S is undecidable
by Rice’s theorem. �

However, Rice’s theoremreally shines in slightlymore involvedexamples,where
a reduction of the Halting Problem might not be immediately obvious.

Example 3.5. Consider the set:

T � {〈e , k〉 | whenever RM e halts, it returns a value less than k}

Intuitively, this should be undecidable. We cannot use Rice’s theorem, asT is not
the ‘right kind of set’. However, we can get some insight by fixing a particular
value of k: if T were decidable, then we would be able to establish membership
of, say, 〈e , 7〉. Thus we first solve a different problem.

For some positive natural number k, let:

Sk � {e | whenever RM e halts, it returns a value less than k}

While this looks operational, this is actually a purely semantic property:

Sk � {e | (∀x ∈ N)(ϕe(x)↓ �⇒ ϕe(x) < k)}

so we can apply Rice’s theorem.3 Sk is non-trivial, since zero ∈ Sk and constk <
Sk , where constk is the computable total function that is constantly equal to k

3The notation I use here is of the form (∀x ∈ S)(Q(x)), for a set S and predicate Q. Alternative
ways of writing it are ∀x ∈ S.Q(x), (∀x ∈ S)Q(x) and others.

6

(its RM simply has k R+0 instructions in succession, and then a HALT). Thus Sk is
undecidable.

Now consider the following reduction f of S7 to T:

f : e 7→ 〈e , 7〉

It is not difficult to show f is a reduction. Thus T is undecidable by Theorem
1.2. �

3.3 Proof*

There are multiple proofs of Rice’s theorem. The one I present here is just a
reduction of the Halting Problem.

Proof. Let S � {e | P(ϕe)} be non-trivial for some semantic property P.

Consider a register machine program that never halts and let c be its code.

We may, without loss of generality, assume ¬P(ϕc) (if it does not hold, just
consider the set N \ S).

Since S is non-trivial, there also a programwith code b ∈ S, that is, P(ϕb) holds.
Consider the set H � {〈e , x〉 | ϕe(x)↓}. Define the function f : H → S:

f (e , x) �

save input in some register Y not used by e;
run e with input x;
run b with input Y and return result


This function is computable, we can use universal RMs to compute it. Let us
show that f is a reduction.

• Assume 〈e , x〉 ∈ H. Since e halts when started with x, ϕ f (e ,x) � ϕb . Since
P(ϕb) holds, f (e , x) ∈ S.

• Assume 〈e , x〉 < H. In this case ϕ f (e ,x) � ϕc , since RM f (e , x) will never
halt and the corresponding partial functions are totally undefined. Since
¬P(ϕc), we conclude f (e , x) < S.

Thus S is undecidable. �

4 A note on numbering*

So far, we used the notation ϕe to represent the partial function computed by
register machine with code e. For a RM M, this coding e � dMe was the simple
enumeration stated in the notes. However, we could have just as easily come up
with a different enumeration scheme.

7

The key idea was to find a bĳection f between N and the set of all RMs. If we
had found another such bĳection g, then they would really just be renaming –
in fact, f and g induce another bĳection h : N→ N such that f � g ◦ h.

One consequence of this is that all of the decidability results are independent
on the numbering used. This makes sense – the Halting Problem should be
undecidable whatever bĳection we use. Thus, if you find yourself reading some
other materials on computation theory, you will find that some of the theorems
seen here contain ‘for every numbering’.

These kinds of encodings of languages or structures as natural numbers are
commonly referred to as Gödel numberings.4 One example is based on prime
factorisation of numbers: given an n-tuple 〈x1, x2, . . . , xn〉, encode it using the
product of the first n primes, raised to corresponding powers:

d〈x1, x2, . . . , xn〉e � 2x1 · 3x2 · . . . · pxn
n

5 Thanks

Special thanks go to the people who read these notes and gave valuable sugges-
tions: Dhruv Makwana, Domagoj Stolfa, Shaun Steenkamp.

6 Additional exercises

You will encounter several problems about decidability of sets during your
revision. Here are some of the supplementary ones, including a few which are
more easily solved using Rice’s theorem.

Hopefully,withpractice, youwill be comfortable approaching any suchproblem
you might encounter in an exam environment.

Exercise 6.1. Show that the set of numbers that are codes of register machines
that do not contain any loops is decidable.

Exercise 6.2. Is the set

{〈e , x , i〉 | RM e will not modify register Ri when started with x}

decidable?

Exercise 6.3. Use Rice’s theorem to show that that the set {〈e , f 〉 | ϕe � ϕ f } is
undecidable.

Exercise 6.4. Say that a register machine M is rectractable if it takes a single
register R1 as its input (and zeroes all the other registers before usage) and there

4These are named after Kurt Gödel, whose incompleteness theorems carry special significance
and are closely related to early results of computation theory.

8

exists a register machine N such that it also takes only R1 as its input (with same
initialisations to zero) such that, whenever M halts for a certain input, N will
halt when its input is M’s output, and it then returns what M’s input originally
was.

Show that the set of all numbers that are codes of rectractable register machines
is undecidable.

Exercise 6.5. Attempt 2015 Paper 6 Question 3. It discusses a variant of the Busy
Beaver problem – the function s in the question grows too fast to be computable.

9

	Decidability and reductions
	Operational behaviour of programs
	Rice's theorem
	Statement
	Applications
	Proof*

	A note on numbering*
	Thanks
	Additional exercises

