
Algorithms
Exercise Sheet

(first half of the course)
Andrej Ivašković (ai294)
Compiled on: 25th January 2021

Recommended additional work
I highly recommend making use of the Introduction to Algorithms (CLRS) text-
book. Manber’s Introduction to Algorithms: A Creative Approach has some inter-
esting exercises, proofs and covers certain topics in a concise and approachable
way. Sedgewick’s many books on algorithms also cover some topics in an easy
to digest way. If you are looking for a challenge, Knuth’s The Art of Computer Pro-
gramming books (especially Volume 3), as well as Concrete Mathematics contain
interesting supplementary material.

If you are keen on doing algorithmic exercises, I suggest looking into ICPC-like
contests and invite you to participate at UKIEPC in Michaelmas term. Websites
such as HackerRank and Codeforces will help you get better at these kinds of
problems and prepare for job interviews.

Some of these problems are based on existing exercise sheets provided by lec-
turers or other supervisors. Many thanks to Professor Frank Stajano, Dr Damon
Wischik, and Petar Veličković.

Have a look at the exercises in the lecture notes and feel free to ask me any
questions about any of them.

1 Sorting

1.1 Before attempting the exercises
This set of exercises covers the first topic covered in the lectures: sorting al-
gorithms. Throughout the chapter, you also explore concepts in searching,
computational complexity, and algorithm design.

The hardest part of this section of the course is probably coming to terms with
reasoning formally and mathematically about algorithms. It also requires a lot
of creativity on your part – you develop that with practice. I strongly encourage
looking up the so-called ‘master theorem’ for solving recurrences.

1



1.2 Problems
Exercise 1.1. Find the asymptotic solutions of the following recurrences:

(a) )(=) = )(= − 1) + 5=2 − 3=

(b) )(=) = )(=/2) + 2
(c) )(=) = 2)(=/4) + log =

(d) )(=) = )(
√
=) + 2

Exercise 1.2. Prove that Bubble Sort, as presented in the lectures, will never
make more than = passes of the array.

Exercise 1.3. One optimisation of Insertion Sort illustrated in the lectures and
the notes is using binary search in order to find the appropriate place where the
new item will be inserted.

Write a Javamethod that implements binary search. It should take as arguments
an array sorted in increasing order1 with element type T, a comparator that
represent this ordering, and a value of type T. It should return a position in the
array whose value is equal to the value given in the argument, with -1 returned
in case no such item exists.

Exercise 1.4. Given an array 0 of = integers and @ queries defined by pairs 〈G8 , H8〉
representing ‘how many items in 0 are strictly greater than G8 and strictly less
than H8’, populate an array of length @with the answers of the respective queries.
Assume both = and @ are bounded by 106. Give efficient solutions and state
their time complexities with the following underlying assumptions:

(a) all items are positive integers less than 1000;

(b) all items are signed integers, no greater than 109 in magnitude.

Exercise 1.5.

(a) Describe an algorithm that performs =+ dlog2 =e −2 pairwise comparisons
in order to find the second smallest of = items.

(b) In practice, is this algorithm ever useful or notably better than the simple
one?

Exercise 1.6. Write pseudocode for the bottom-up version of Merge sort.

Exercise 1.7. Somebody claims that the best way of sorting an array is by
converting an array to a list, deleting the original array, and then performing
Merge sort on these list, which requires $(1) additional space and $(= log =)
time. Comment on this.

Exercise 1.8. The Quick sort algorithm can be slightly modified to give the
least : items of an array of length =, not in a sorted order – this algorithm is

1I make a distinction between increasing and strictly increasing, where the latter implies that
that there are no items that are equal. An alternative is to refer to them as non-decreasing and
increasing, respectively – I do not like this terminology.

2



sometimes called Quickselect.

(a) What modifications do you have to make?

(b) Argue why the average case complexity of Quickselect is $(=).
Exercise 1.9. Show how Heap sort sorts the array [7 1 5 3 4 2 8 6] in in-
creasing order.

Exercise 1.10. Consider the Quicksort, Merge sort and Heap sort algorithms.
All of them have certain advantages and disadvantages. State them and discuss
when you would use one over the other.

Exercise 1.11. What is the least and the greatest number of elements that a
binary heap of height : may have?

Exercise 1.12. Suppose you are given an array of 〈:8 , E8〉 pairs, where :8 are in-
tegers in the range between −1000 and 1000. Explain howCounting, Bucket and
Radix sort would sort such data, with only :8 being considered for comparison.

Exercise 1.13. Why does Radix sort require the underlying sorting algorithm to
be stable? Is it possible to modify any comparison-based sorting algorithm to
make it stable?

2 Dynamic programming and greedy algorithms

2.1 Before attempting the problems
This set of exercises covers dynamic programming and greedy algorithms. Most
of these require you to devise algorithms using some of the design ideas covered
in the course. These problems do not require you to know almost any bookwork,
just use experience and try out possible approaches. As an additional bonus, this
will give you somemore experience tackling coding questions in job interviews.

To solve a dynamic programming problem, think about what it means to solve a
particular problem instance, and how the solution differs from the one you get if
you, say, remove a subset of the data. Usually it involves you creating a helper[8]
array, where helper[=] consider the entirety of the data. If you introduce such a
helper, you should consider two things: the base case and the recurrence. If at first
you fail, try a variation of this approach: you can try recurrences that choose
these subsets in a different way; youmight want to consider a multidimensional
array; you can try solving a slightly different problem; you might want to sort
the data according to something first. If you are asked to compute a set of
data that optimise something, you can usually ‘work backwards’ to perform
reconstruction. In some cases, you can greatly reduce the space complexity
(especially if dealing with a multidimensional array).

As before, whenever you are asked to devise an algorithm, either pseudocode
or a sufficiently detailed explanation will do. If you write pseudocode, make it
clear and easy to read.

3



1 3 2 −5 6

4 6 1 9 2

2 8 3 2 4

20 5 −50 1 −1

Figure 1: Maximum sum: 27

2.2 Problems
Exercise 2.1. For an integer array 0 with length =, define its nonconsecutive
subsequence as a subsequence2 of 0 that does not contain any two items that
have adjacent positions in 0. Its maximum nonconsecutive subsequence is the non-
consecutive subsequence of 0 whose sum is greatest out of all nonconsecutive
subsequences. For example, for the array [3, -2, -1, 4, 5, 7], its maximum
nonconsecutive subsequence is [3, 4, 7].

Devise a dynamic programming algorithm that computes themaximumachiev-
able sum. How can you then reconstruct the sequence?

Exercise 2.2.

(a) A robot walks on an = × < map represented by a matrix of integers.
Whenever it steps on a tile, it will gain the number of points equal to the
value on this tile. Suppose the robot starts moving from the top left corner
of the array and aims to reach the lower right corner by only moving one
tile to the right or one tile down in every turn. Compute the maximum
number of points achievable with such movement. See Figure1 for an
example.

(b) [F] What if you can also move up, and you cannot step on a tile more than
once?

Exercise 2.3. Recall the knapsack problem explored when you covered greedy
algorithms in lectures. It is an NP-complete problem.3 Devise a dynamic
programming algorithm for the case when all item masses are positive integers
and the knapsack capacity is also a positive integer. Assume that this capacity
is E and that there are = items, and that E ≤ 104 and = ≤ 5000.

Exercise 2.4. Suppose you are playing a game where you control a character at
the bottom of the screen and some objects fall down as time passes, and you
collect points for collecting these. Suppose there are = such objects, where the

2a sequence G is a subsequence of sequence H if G can be derived from H by removing some
of its items

3Without going into a proper complexity theory definitions, there are no known polynomial
time algorithms forNP-complete problems, and the existence of a polynomial time algorithm for
one of themwould imply the existence of a polynomial time algorithm for all otherNP-complete
problems.

4



symbol A B C D E F
frequency 263 451 73 83 59 71

Figure 2: Character frequencies in the document

8-th one will be at the bottom of the screen at time C8 , it will add B8 to your score
if you manage to catch it, and it will be at position G8 . All of these numbers are
positive integers. At time 0 you are at position ? and at every time step you can
move one space to the left or one step to the right. How can you compute the
top achievable score? There are several possible solutions depending on what
the constraints are. Consider:

• max8 G8 ≤ 5000, max8 C8 ≤ 5000 and = ≤ 106, all of the other values are
32-bit values;

• = ≤ 5000, all of the other values are 32-bit integer values.

Choose one of these sets of constraints and solve the problem in that case. Briefly
outline the approach that you would make in order to solve the problem in the
other case.

Exercise 2.5. The lectures explored a greedy approach to solving the knapsack
problem. Provide a counterexample that demonstrates that it will not work in
all cases.

Exercise 2.6. (based on CLRS3, problem 16-1) Consider the problem of making
change for = pennies using the fewest number of coins. Assume the denomina-
tions are 01, . . . , 0: which are all integers, and one of which is 1p.

(a) Describe a greedy $(: log :)-time algorithm to make change. What is it
time complexity? Why is the constraint of there being 1p coins important?

(b) Suppose the available coins are in the denominations that are powers of 2:
the denominations are 20, 21, . . . , 2:−1 for some integers 2 > 1 and : ≥ 1.
Show that the greedy algorithm you described always yields an optimal
solution.

(c) Give a set of coin denominations for which the greedy algorithm does not
yield an optimal solution. You should still assume the existence of a 1p
coin.

Exercise 2.7. Consider a document in which only symbols A, B, C, D, E and F
occur, with frequencies given in Figure 2. Compute its Huffman code, the total
length of the encoded document in bits, as well as the average codeword length.

3 Abstract data types andmachine implementations

3.1 Before attempting the problems
This small set of exercises is aimed at helping you get used to using ADT
terminology.

5



I suggest you look at the standard libraries of all the programming languages
you use and write a few simple programs that make use of data structures
that implement some of these ADTs. Sometimes you will find exactly specified
running times for their operations.

3.2 Problems
Exercise 3.1. Write a Java implementation of the Deque ADT using a doubly-
linked list underlying implementation. Your implementation should not use
any of the Java Collections.

Exercise 3.2. A colleague tells you that ‘anything you want to do with sets, you
can do with dictionaries’ and advises you to never use sets. Comment on this.

Exercise 3.3. Suppose you are given a function f that takes as argument a
pair of integers and returns an integer. You know that it is a pure function (it
has no side effects and cannot raise any exceptions), but have no access to its
implementation. How can you then write a memoized_f function that has the
same signature as f and implement memoization? Feel free to refer either to
ADTs or their concrete implementations.

4 Data structures

4.1 Before attempting the problems
These exercises are concerned with the data structures explored in Chapter 4
of the notes. Think of ADTs as interfaces and the other data structures as their
‘concrete’ implementations.

Before understanding how the operations of a particular data structure are
implemented, you should first ask yourself what task it is solving and what the
time complexities of these operations are. This allows you to understand better
why we are even considering such a structure and what it is used for.

The tree-like data structure you will see throughout this course will usually
involve some logarithm in the time complexities of most operations, compared
to the ‘naive’ (usually array or list based) approach in which some operations
take constant time, and others take much longer.

Note that 2-3-4 trees are just a special case of B-trees.

You are strongly encouraged to implement some of these data structures in Java.

4.2 Problems
Exercise 4.1.

(a) Given a binary search tree C and its node =, how can you find its successor?
Prove that your approach is correct. What is the time complexity of this
operation?

6



(b) Prove that, in a binary search tree, if node = has two children, then its
successor has no left child.

(c) (CLRS3, 12.2-4) Professor Bunyan thinks he has discovered a remarkable
property of binary search trees. Suppose that the search for key : in a
binary search tree ends up in a leaf. Consider three sets: �, the keys to the
left of the search path; �, the keys on the search path; and �, the keys to
the right of the search path. Professor Bunyan claims that any three keys
0 ∈ �, 1 ∈ �, and 2 ∈ � must satisfy 0 ≤ 1 ≤ 2. Give a smallest possible
counterexample to the professor’s claim.

Exercise 4.2. Showhow2-3-4 trees are equivalent to red-black trees by providing
away to ‘encode’ an arbitrary red-black tree as a 2-3-4 tree and away to ‘encode’
2-3-4 trees as red-black trees.

Exercise 4.3.

(a) Show that a red-black tree with 1 non-leaf black nodes has between 1 and
31 non-leaf nodes.

(b) Show that a red-black tree with A red nodes has at least A + dA/2e non-leaf
nodes. What is the greatest number of non-leaf nodes if there are A red
nodes?

(c) What are the least and greatest possible number of nodes of a red-black
tree of height ℎ, where the height is the length in edges of the longest path
from root to leaf?

Exercise 4.4. How do you handle deletions in red-black trees? You do not need
to provide a detailed answer.

Exercise 4.5. Using a soft pencil, a large piece of paper and an eraser, draw a
B-tree with C = 2, initially empty, and insert into it the following values in order:

63, 16, 51, 77, 61, 43, 57, 12, 44, 72, 45, 34, 20, 7, 93, 29

How many times did you insert into a node that still had room? How many
node splits did you perform? What is the depth of the final tree? What is the
ratio of free space to total space in the final tree? What does the equivalent
red-black tree look like?4

Exercise 4.6.

(a) Compare chaining and open addressing methods of hashing. When is it
useful to use one over the other?

(b) How do you handle deletions in these two cases? Consider the different
probing techniques that might be used.

Exercise 4.7. Data structures based on hashing have worst case linear time
complexity for their operations, but typically operate in constant time. Devise

4Sorry for the tedious exercise. I do, however, encourage you to attempt it and do it by hand
– if only to practice doing this under time pressure.

7



a data structure based on hashing that has worst case logarithmic time for its
operations. Discuss the implications of your approach.

Exercise 4.8. Explain how priority queues can be used to implement Huffman
coding. What is the running time of Huffman coding if a binary heap is used as
the underlying implementation of the priority queue?

Exercise 4.9. Show that steps taken (in form of ‘snapshots’) during the lifetime
of a binomial heap ℎ1 that is initially empty, and then the following operations
are performed: insert 5, insert 8, insert 2, insert 9, insert 11, extractMin,
insert 15, insert 3, extractMin, extractMin, insert 4, insert 7, extractMin.

Exercise 4.10.

(a) Prove that the sequence of trees in a binomial heap exactly matches the
bits of the binary representation of the number of elements in the heap.

(b) Suggest a way to reduce the complexity of first() to $(1).
Exercise 4.11. [F]Whatmight be the signature of a priority dequeADT?Describe
its efficient concrete implementation. You should either provide pseudocode or
a sufficiently detailed explanation.

Exercise 4.12. You are tasked with implementing a component of a server that
will manage a key-value store, where keys are strings and values are positive
integers. Clients will send get(key) and set(key, value, timeout) queries
to the server: the former asks the server to retrieve the value associated with
key, and expects 0 if there is none; the latter sets the value associatedwith key to
value, but this expires after timeout milliseconds. This queries get converted
into get(time, key) and set(time, key, value, timeout) queries by the
server socket, which contain the time of receipt. Your job is to implement these
two calls (assuming that you are received the queries in the strictly increasing
order of time). Explain how you would do this in the following cases:

(a) after themost recent value of a particular key expires, there is no associated
value;

(b) after the most recent value of a particular key expires, the associated value
is the most recently assigned one to that key that would not have expired
so far (if none, 0);

(c) after the most recent value of a particular key expires, the associated value
is the highest one that would not have expired so far (if none, 0).

[F] How would you modify your solutions if the set call had arguments f and
arg instead of value, where f is a (possibly computationally expensive) pure
function that can take arg as its argument and the value associated with key
should be set to f(arg)?

8


	Sorting
	Before attempting the exercises
	Problems

	Dynamic programming and greedy algorithms
	Before attempting the problems
	Problems

	Abstract data types and machine implementations
	Before attempting the problems
	Problems

	Data structures
	Before attempting the problems
	Problems


