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Abstract In this paper, we discuss how distributional semantics can be formally related to a simple
model-theoretic approach, with a view to proposing a single account for both the phenomena
traditionally covered by formal semantics and those dealt with by lexical semantics. We define some
of the traditional lexical semantic relationships within this framework, and also outline its treatment
of phenomena which have been considered within Generative Lexicon theory. We further discuss
how the approach acknowledges linguistic differences amongst speakers of a same language.
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1 Introduction

Distributional approaches to semantics are based on the principle that the linguistic contexts in
which a word (or a phrase) appears can be used as a partial representation of its meaning.1 The usual
approach to formalizing and implementing this idea is to represent a word using a vector whose
elements correspond to features derived from the contexts in which that word occurs. The approach
can be thought of as defining a high-dimensional meaning space, and hence the terms vector space
model or semantic space model are also used. In the simplest case, the features correspond to the
words found within a window of text on either side of the term of interest. Various operations can
be performed on these representations: for instance, by computing similarities between vectors,
we can obtain a measure of the similarity between terms. While such models are now very often
used in computational linguistics and psychology, and have had considerable empirical success
in modelling some aspects of language, there has been relatively little discussion of them within
the recent linguistics literature. One reason for this may be that distributional models are seen as
‘engineering’, without theoretical validity, or perhaps that they are simply too different from the
approaches to semantics which have been studied within linguistics.

Our goal in this paper is to explore a theoretical approach by which we can relate distributional
semantics to compositional semantics and to lexical semantics, in an attempt to build bridges rather
than to replace existing accounts. We have attempted to make the account accessible to readers who
may be unfamiliar with the computational literature, though we do not provide a comprehensive
overview of the techniques. The core idea is to work with distributions in logical forms. For
instance, where conventional logical representations might contain cat′, the set of all cats in some
world, we will instead use cat◦, the set of all contexts in which “cat” has been uttered. As we will
discuss, an equivalence can be obtained between a model-theoretic account and a distributional
account. A relationship can also be seen with lexical semantics. To make these links requires a
novel idealization of the notion of distribution, which we develop in this paper.

1 Harris (1954) is usually cited as being the first linguist to express this idea: we discuss the history briefly in §7.
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The reason for attempting to provide these bridges is that we believe that distributional ap-
proaches complement compositional semantics and non-distributional approaches to lexical seman-
tics. We assume that a full account of semantics should support compositionality and inference,
as is generally accepted in formal semantics. It should also provide a way of representing lexical
meaning, including a non-stipulative approach to word senses and regular polysemy. We further
assume that an account of semantics should be plausible with respect to learnability, and allow for
differences between individuals in their beliefs about lexical meaning. These latter issues have not
traditionally been given priority in formal accounts: in fact, we believe that the traditional Fregean
view of sense leads to a dead end in these respects.

This paper belongs to a tradition in computational linguistics which takes syntax and formal
semantics seriously, but which attempts to arrive at a notion of semantics which is potentially
compatible with complete coverage of a language (as used in general text corpora, for instance)
and which makes realistic assumptions about ambiguity. Elsewhere (Copestake 2009), one of us
used the tongue-in-cheek term ‘slacker semantics’ for this approach, though many of the ideas we
draw on date back at least to Hobbs (1985). What we want to argue here is that we can build on the
computational semanticists’ practically-oriented approach to provide a mechanism for integrating
lexical and formal semantics. This will involve an alternative underpinning to formal semantics, but
one that enables us to keep intact most of the ideas that formal semantics has developed.

The hypothesis to be investigated here is that instead of talking about the set of all things in the
world denoted by, say, cat′, as in an extensional account, or using a Fregean notion of sense, we talk
about the context set for cat. In §2, we will introduce the idea of an ideal distribution, where we
consider all the contexts in which cat could occur. Each context corresponds to the logical form of a
sentence/utterance. For example, contexts where cat is the subject of sleep will be a subset of all
the contexts where cat occurs in subject position, which in turn will be a subset of all the contexts
in which cat occurs. We will show how this setup allows us to a) draw a direct correspondence
between distributions and the standard idea of denotation and b) re-define classical lexical semantics
notions and relations such as ‘sense’ or ‘hyponymy’ in terms of contexts.

Additionally, distributional context sets in our approach are specific to individual speakers. This
allows different individuals to have somewhat different models of lexical concepts. Something
may be a mug to one speaker and a cup to another. But speakers are also aware when concepts are
borderline and are generally able to accommodate different uses, especially in grounded contexts.
Someone may think of a particular object as clearly a cup, but if they are asked to ‘Pass the mug’ and
that object is the only ceramic drinking vessel visible, they will generally pass it without quibbling.
To allow for accommodation effects, we need to be able to compute similarity between lexemes,
and distributions support this.

We should clarify here that despite the unificatory advantages of such an approach, one aspect
of meaning remains unrepresented. Indeed, many utterances are directly grounded in that they refer
to a situation which is evident to the hearer. This would be true of much child-directed speech, for
instance. Thus we assume that some elements in the context set are paired with salient perceptual
data, and that at least some of the distributional predicates can be put into correspondence with real
world entities by the hearer. What we want to achieve via distributional semantics is an account of
how utterances can be understood which are either not immediately grounded at all or only partially
grounded. We would argue that this constitutes the vast majority of the utterances perceived by an
adult. Thus the role of distributional semantics is partially to relate ungrounded words to grounded
ones. For example, a hearer who has no prior knowledge of aardvarks should be able to relate
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aardvark◦ to known concepts without ever seeing an aardvark. We cannot (currently) simulate
grounding experimentally, but if we assume some concepts are grounded, we can investigate whether
our distributional techniques could result in a new ungrounded word being suitably categorised.
Operations such as categorisation, similarity and paraphrase are possible (to some extent) with
systems that capture relationships between words but do not emulate anything approaching real
understanding, which we accept requires grounding.

In this paper, we will lay some groundwork for the idea of a context set and what it might
correspond to. In the next section, we introduce the notion of the ideal distribution, which allows us
to link distributional accounts directly with model theoretic accounts. We also introduce a couple of
operations which, applied to context sets, will let us formally define a number of lexical relations
(§3). In §4, we outline how various phenomena of lexical semantics might be analysed in our
approach. In section §5, we turn to empirically observed distributions and discuss how they can be
utilised. We also explain why a new type of corpus would eventually be required to build the types
of models we are interested in. This discussion lets us then relate our approach to a well-known
account of lexical semantics, the Generative Lexicon (Pustejovsky 1995, §6). Finally, in §7, we
provide a brief survey of some of the current computational work on distributional techniques and
related topics.

2 Ideal distributions

In order to make an explicit comparison with model-theoretic semantics, we will consider the
hypothetical case of complete distributional information with respect to some microworld. We
refer to this as an ideal distribution, and the particular class of ideal distributions discussed in this
section as lc0 distributions. These will be defined so that we can obtain a simple correspondence
with a (first-order) notion of extension.

2.1 Ideal distributions and context sets

We will consider very simple examples with situations where the available lexemes are the adjectives
white, black, the nouns sphere, cube, object, the verbs jiggle, rotate and the determiner a. We will
initially consider the situation S1 where there is a jiggling black sphere and a rotating white cube.
We will call the sphere s, the jiggling event es, the cube c and the rotating event ec.2

First we can consider the traditional approach where the denotation of predicates corresponding
to the lexemes is defined in terms of sets of entities and tuples. The predicates and their denotation
in S1 are:

black′ = {s}
white′ = {c}
sphere′ = {s}
object′ = {s,c}
cube′ = {c}
jiggle′ = {〈es,s〉}
rotate′ = {〈ec,c〉}

We have the usual notion of truth, so black′(s) is true and black′(c) is false, for instance.

2 Note that we are assuming a neo-Davidsonian account, whereby all verbal predicates have events as the first argument.
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a sphere jiggles
a black sphere jiggles
a cube rotates
a white cube rotates
an object jiggles
a black object jiggles
an object rotates
a white object rotates

Figure 1 Sentences associated with situation S1

For lc0 distributions we take all possible truthful assertions using only the limited vocabulary,
excluding cases where there is logical redundancy within the sentence.3 The possible utterances
corresponding to S1 using the specified lexemes are shown in Figure 1. The “logical redundancy”
condition is intended to exclude examples such as a white white cube rotates.

In Figure 2, we show the context sets paired with the situation described (i.e., all the utterances
are grounded by S1).

We will first discuss the form of the context sets shown in Figure 2. In our approach, the
context sets for a lexeme are described in terms of logical forms (LF), one per sentence in which
the lexeme occurs. We will assume relatively shallow LFs here, of the type that can be extracted
reasonably efficiently and accurately from an automatic parser. In fact, we will base our analyses
on those produced by the English Resource Grammar (ERG: Flickinger 2000), but simplify them
for expository purposes. We distinguish between the predicate symbols corresponding to a word
in the LF only if they correspond to entries which can be distinguished on syntactic grounds. For
instance, we assume a single predicate including both the financial and geographic nominal senses
of bank. Our lexemes may thus correspond to multiple word senses, even multiple homonyms.
We are working with a version of Minimal Recursion Semantics (MRS: Copestake, Flickinger,
Sag & Pollard 2005) representation under the general ‘slacker semantics’ assumption that the
representation captures the information available from syntax but does not make distinctions that
syntax cannot resolve.4 MRS representations may be underspecified for certain ambiguities which
are not resolved by syntax, such as scope ambiguity. An MRS structure consists of implicitly
conjoined elementary predications consisting of a predicate and its arguments (e.g., rotate′(e,x)).
In this section, for simplicity, we assume a ‘quantifier-free’ fragment of MRS, where the arguments
to predicates are to be taken as constants. For instance, the sentence a white cube rotates results in
the LF:

a(x4),white◦(x4),cube◦(x4), rotate◦(e4,x4)

Note that we use different argument identifiers in each LF (i.e., for each sentence): we will refer
to the objects and events thus referred to as linguistic entities. We will discuss the grounding
of the linguistic entities with respect to the actual entities in the situation below. Unlike normal

3 Concentration on assertions here is motivated by the aim of showing a correspondence with the standard notion of
extension. However, we believe the exclusive use of assertions is generally valid for discussion of distributional
techniques, since very few words have substantially different behaviour in other speech act contexts.

4 For computational purposes, it is also relevant that there is a variant of MRS, Dependency MRS (DMRS), which can be
represented as a graph. However, we will not discuss this further here.
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sphere◦ ≡ { < [x1], [a(x1), jiggle◦(e1,x1)],S1 >,
< [x2], [a(x2),black◦(x2), jiggle◦(e2,x2)],S1 >}

cube◦ ≡ { < [x3], [a(x3), rotate◦(e3,x3)],S1 >,
< [x4], [a(x4),white◦(x4), rotate◦(e4,x4)],S1 >}

object◦ ≡ { < [x5], [a(x5), jiggle◦(e5,x5)],S1 >,
< [x6], [a(x6),black◦(x6), jiggle◦(e6,x6)],S1 >,
< [x7], [a(x7), rotate◦(e7,x7)],S1 >,
< [x8], [a(x8),white◦(x8), rotate◦(e8,x8)],S1 >}

jiggle◦ ≡ { < [e1,x1], [a(x1),sphere◦(x1)],S1 >,
< [e2,x2], [a(x2),black◦(x2),sphere◦(x2)],S1 >,
< [e5,x5], [a(x5),object◦(x5)],S1 >,
< [e6,x6], [a(x6),black◦(x6),object◦(x6)],S1 >}

rotate◦ ≡ { < [e3,x3], [a(x3),cube◦(x3)],S1 >,
< [e4,x4], [a(x4),white◦(x4),cube◦(x4)],S1 >,
< [e7,x7], [a(x7),object◦(x7)],S1 >,
< [e8,x8], [a(x8),white◦(x8),object◦(x8)],S1 >}

black◦ ≡ { < [x2], [a(x2),sphere◦(x2), jiggle◦(e2,x2)],S1 >,
< [x5], [a(x5),object◦(x5), jiggle◦(e5,x5)],S1 >}

white◦ ≡ { < [x4], [a(x4),cube◦(x4), rotate◦(e4,x4)],S1 >,
< [x8], [a(x8),object◦(x8), rotate◦(e8,x8)],S1 >}

Figure 2 Ideal context sets for S1
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MRS, we notate the predicates corresponding to the open-class lexemes in this sentence using the
notation P◦. In general, we will assume a distributional interpretation for open class words and a
non-distributional meaning for closed class words (a in this example).5

We define the context set for a lexeme l in terms of the logical forms which contain an elementary
predication corresponding to l. 6 We will refer to the set of such logical forms as LF(l). An element
in the context set for l derived from a logical form lf which is a member of LF(l) consists of a pair
of a distributional argument tuple and a distributional LF < args,dlf > where the distributional
arguments args are the arguments associated with the elementary predication corresponding to l in
lf, and dlf is lf with that elementary predication removed. In the case of the sentence a white cube
rotates, this gives the context set element

< [x4], [a(x4),cube◦(x4), rotate◦(e4,x4)]>

in the distribution white◦. For the grounded utterances, we pair the context set elements with the
corresponding situations, giving:

< [x4], [a(x4),cube◦(x4), rotate◦(e4,x4)],S1 >

The full context set contains all the elements corresponding to the lexeme l. As should be evident
from Figure 2, a single sentence will generally correspond to multiple context set elements, one for
each open class lexeme which it contains.

2.2 Context sets and extensions

There is a very straightforward correspondence between the lc0 context sets and the standard
notion of extension under the assumption that the equalities between the constants corresponding to
distributional arguments are known. For instance, consider the distributional arguments for sphere◦

and object◦ and assume that we know x1 =rw x2 =rw x5 =rw x6 =rw s and that x7 =rw x8 =rw c
(where =rw stands for real world equality):

sphere◦ ≡ { < [s], [a(s), jiggle◦(es,s)],S1 >,
< [s], [a(s),black◦(s), jiggle◦(es,s)],S1 >}

object◦ ≡ { < [s], [a(s), jiggle◦(es,s)],S1 >,
< [s], [a(s),black◦(s), jiggle◦(es,s)],S1 >,
< [c], [a(c), rotate◦(ec,c)],S1 >,
< [c], [a(c),white◦(c), rotate◦(ec,c)],S1 >}

Thus the distributional arguments of P◦ in lc0 correspond to P′.
The condition for this correspondence is that for each situation entity z, for every predicate

P′ for which P′(z) is true, we have a logical form for a sentence in the lc0 distribution containing
an elementary predication equivalent to P◦(z). We do not actually need all the sentences shown
in Figure 1 to establish the equivalence. However, we want to use the idea of “all sentences

5 This is an approximation: for instance, there are arguments for treating prepositions distributionally in some contexts.
However, we will not explore this further here.

6 For simplicity here, we will only consider the cases where there is just one such elementary predication in the LF.
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a cube rotates
a black cube rotates
an object rotates
a black object rotates

Figure 3 Sentences corresponding to the situation S2

corresponding to a situation S” rather than talk about truth conditions as in a conventional model-
theoretic approach because we want the lc0 concept to be intuitively meaningful by itself and not to
rely on the standard notion of denotation.

Linking the linguistic entities to the entities in the situation requires some knowledge of the
relationship between the utterances and situations but does not require that the hearer has full
knowledge of lexical meaning. Assume that a language learner perceives S1 and the associated
sentences, is capable of producing the LFs but is not aware of the meaning of the open class
lexemes. We also assume that the learner can distinguish objects from events and has an expectation
that different nouns refer to different entities unless they have evidence to the contrary, which is
consistent with the psycholinguistic evidence on language learning (see, e.g., Carey 2009). Under
these assumptions, given the context sets in Figure 2, the learner will always assign x1 =rw x2 =rw
x5 =rw x6, e1 =rw e2 =rw e5 =rw e6, x3 =rw x4 =rw x7 =rw x8 and e3 =rw e4 =rw e7 =rw e8 but
might assign the groups to the wrong entities and events.
Correct assignment:

x1 =rw x2 =rw x5 =rw x6 =rw s
e1 =rw e2 =rw e5 =rw e6 =rw es
x3 =rw x4 =rw x7 =rw x8 =rw c
e3 =rw e4 =rw e7 =rw e8 =rw ec

Incorrect assignment:
x1 =rw x2 =rw x5 =rw x6 =rw c
e1 =rw e2 =rw e5 =rw e6 =rw ec
x3 =rw x4 =rw x7 =rw x8 =rw s
e3 =rw e4 =rw e7 =rw e8 =rw es

However, the correct assignment can be identified if further information is available. Consider
an additional situation S2 where there is a black cube (c1) which is rotating (ec1). The sentences
corresponding to S2 are shown in Figure 3. Figure 4 shows the combined lc0 distributions for
the two situations. Given that there is only one entity and one event in S2, the identities x9 =rw
x10 =rw x11 =rw x12 =rw c1 and e9 =rw e10 =rw e11 =rw e12 =rw ec1 are trivially established.
Now assuming only that the ec1 event is perceptually more similar to ec than to es, the learner can
identify the correct assignment in S1. The distributions and the identification of the linguistic entities
with the ‘real world’ entities can thus proceed via comparison without any sort of explicit meaning
being associated with the lexemes. These properties are attractive for an account of semantics which
supports a realistic model of language learning.

It is straightforward to derive distributions for phrases, such as black_sphere◦ by treating them
in the same way as lexemes. It should be clear that the distribution for black sphere can also be
related to the intersection of the context sets for black◦ and sphere◦. Note that this does not rely on
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sphere◦ ≡ { < [x1], [a(x1), jiggle◦(e1,x1)],S1 >,
< [x2], [a(x2),black◦(x2), jiggle◦(e2,x2)],S1 >}

cube◦ ≡ { < [x3], [a(x3), rotate◦(e3,x3)],S1 >,
< [x4], [a(x4),white◦(x4), rotate◦(e4,x4)],S1 >,
< [x9], [a(x9), rotate◦(e9,x9)],S2 >,
< [x10], [a(x10),black◦(x10), rotate◦(e10,x10)],S2 >}

object◦ ≡ { < [x5], [a(x5), jiggle◦(e5,x5)],S1 >,
< [x6], [a(x6),black◦(x6), jiggle◦(e6,x6)],S1 >,
< [x7], [a(x7), rotate◦(e7,x7)],S1 >,
< [x8], [a(x8),white◦(x8), rotate◦(e8,x8)],S1 >,
< [x11], [a(x11), rotate◦(e11,x11)],S2 >,
< [x12], [a(x12),black◦(x12), rotate◦(e12,x12)],S2 >}

jiggle◦ ≡ { < [e1,x1], [a(x1),sphere◦(x1)],S1 >,
< [e2,x2], [a(x2),black◦(x2),sphere◦(x2)],S1 >,
< [e5,x5], [a(x5),object◦(x5)],S1 >,
< [e6,x6], [a(x6),black◦(x6),object◦(x6)],S1 >}

rotate◦ ≡ { < [e3,x3], [a(x3),cube◦(x3)],S1 >,
< [e4,x4], [a(x4),white◦(x4),cube◦(x4)],S1 >,
< [e7,x7], [a(x7),object◦(x7)],S1 >,
< [e8,x8], [a(x8),white◦(x8),object◦(x8)],S1 >,
< [e9,x9], [a(x9),cube◦(x9)],S2 >,
< [e10,x10], [a(x10),black◦(x10),cube◦(x10)],S2 >,
< [e11,x11], [a(x11),object◦(x11)],S2 >,
< [e12,x12], [a(x12),black◦(x12),object◦(x12)],S2 >}

black◦ ≡ { < [x2], [a(x2),sphere◦(x2), jiggle◦(e2,x2)],S1 >,
< [x6], [a(x6),object◦(x6), jiggle◦(e6,x6)],S1 >,
< [x10], [a(x10),cube◦(x10), rotate◦(e10,x10)],S2 >,
< [x12], [a(x12),object◦(x12), rotate◦(e12,x12)],S2 >}

white◦ ≡ { < [x4], [a(x4),cube◦(x4), rotate◦(e4,x4)],S1 >,
< [x7], [a(x7),object◦(x7), rotate◦(e7,x7)],S1 >}

Figure 4 Ideal context sets for Situations 1 and 2
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grounding the linguistic entities. While there is much recent work in computational linguistics on
appropriate vector space models for phrases, which we briefly discuss in §7, we do not need these
for our theoretical account of meaning for compositional phrases.7

Because the conventional concept of logical denotation can be derived from the lc0 distributions,
we can define a standard notion of logical inference. Quantifiers can be defined in terms of the real
world entities. But we can also see how some inferences are possible on the basis of the distributions
alone. Hyponymy relationships correspond to a subset relationship between context sets modulo
argument renaming: e.g., cube◦ is a subset of object◦ in Figure 4. Synonyms would have equal
context sets (again, modulo argument names). Note that, in order to get such inclusion relationships
with full quantified LFs, we must process quantified statements before adding them to the ideal
distribution. We discuss these matters in more detail in Sections 3.2 (on quantifiers) and 4 (on
lexical relations).

2.3 Linguistic entities and reference

Before going into details of how our notion of context set is related to more usual accounts
of distribution, we will elaborate a little on our notion of a linguistic entity, in which we are
essentially following the approach advocated by Hobbs (1985). The level of indirection provided by
distinguishing between linguistic entities and real world entities has a number of advantages from
our viewpoint, as illustrated by the example we gave of a learner distinguishing between sphere and
cube. In fact, although we sometimes loosely use the term ‘real world entities’ instead of ‘referent’,
we are not interested in whether the situation grounding an utterance corresponds to the real world
or a fictional one. There is no issue of whether something actually exists in the real world or not at
the distributional level: unicorns have the same status as cats.

Our notion of intension corresponds to the context sets of lexemes in the ideal distributions.
This implies that there will be multiple linguistic concepts which are real world identical. This
allows us to dodge (or postpone) many standard puzzles. The Morning Star and Evening Star will be
different linguistic concepts, and a speaker may or may not be aware that these map to the same real
world entity. Mappings to real world concepts may change without affecting the linguistic concepts
substantially: for instance, the distribution of tiger will not substantially change if it suddenly turns
out they are all Martian robots. If Kim, who is both judge and hangman, is on strike as a judge, we
would not necessarily expect the hangman is on strike to occur in the ideal distribution. Finally,
speakers do not necessarily appreciate logical consequences of mappings to the real world. This
general approach naturally gives rise to a different set of difficulties, in particular how an individual
develops and updates concepts, but the attraction is that these problems relate much more clearly to
research on psychology (e.g., Carey 2009). In fact, this line may be of interest even in highly formal
uses of language: Ganesalingam (2009) suggests that modelling concept change may be crucial to
analysing the language of mathematics. Of course, making this argument properly would require
a detailed discussion: the point we want to make here is just that we believe that distinguishing
between linguistic entities and referents is more than just a convenient computational linguistics
hack.

7 Multiword expressions (MWEs) require a different approach. Our notion of LF for the context sets is based on the
assumption that non-compositional multiword expressions have their own lexical entries and can be treated as giving rise
to a single predicate symbol. For instance, a verb-particle such as run up in Kim ran a large bill up would correspond to
run_up ◦.
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sphere jiggles black cube rotates white object
sphere − 1 1 0 0 0 0
jiggles 1 − 1 0 0 0 1
black 1 1 − 0 0 0 1
cube 0 0 0 − 1 1 0
rotates 0 0 0 1 − 1 1
white 0 0 0 1 1 − 1
object 0 1 1 0 1 1 −

Figure 5 Binary distributional vectors derived from sentences in Figure 1.

sphere jiggles black cube rotates white object
sphere − 2 1 0 0 0 0
jiggles 2 − 2 0 0 0 2
black 1 2 − 0 0 0 1
cube 0 0 0 − 2 1 0
rotates 0 0 0 2 − 2 2
white 0 0 0 1 2 − 1
object 0 2 1 0 2 1 −

Figure 6 Basic distributional vectors with counts derived from sentences in Figure 1.

2.4 Contexts and vectors

We now turn to discussing how the context can be treated in terms of vectors, as in more standard
approaches to distributional semantics. The most basic approach to distributional semantics uses
a vector representation of the context expressed in terms of individual words (or lexemes). For
instance, assuming that the context is the individual sentence in which a word appears, the sentences
shown in Figure 1 would give the binary vector shown in Figure 5 (the vector elements record the
presence or absence of a word in the context) or the integer vector in Figure 6 (elements record
the counts). We have omitted a/an, as it is usual to exclude some very common words from the
distributions. There is a large range of possible representations described in the computational
literature, which we will not attempt to summarise here.

In our approach, the elements of the vector are components of the context sets, but there are a
number of options as to exactly what the components are. If we take all the individual predications
in the context set (the elementary predications in MRS terms), the components include predications
which are not directly related to the term under consideration, as in the simplest approaches
to distributional semantics. For example, the distribution for ‘jiggle’ based on the context set
corresponding to ‘the ball on the table jiggled’ would include table′(x). On the other hand, we
might only be interested in predications which directly relate to an entity corresponding to the word
under consideration. In this case, table′(x) would be omitted, since it would not be directly related
to a jiggling event. Of course, we could decide to include predications which are related by paths of
predications of up to a certain length, or only include paths of a particular type (cf Padó & Lapata
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a(x) black◦(x) white◦(x) jiggle◦(e,x) rotate◦(e,x) sphere◦(x) cube◦(x) object◦(x)
sphere◦ 1 1 0 1 0 0 0 0
cube◦ 1 0 1 0 1 0 0 0
object◦ 1 1 1 1 1 0 0 0
black◦ 1 0 0 1 0 1 0 1
white◦ 1 0 0 0 1 0 1 1

Figure 7 Vectors corresponding to context sets for S1

2007). We also have a choice as to what level of decomposition we apply, since we could make
the elements of the vector correspond to single predications only (e.g., black◦(x)) or also include
groupings of predications (e.g., black◦(x), jiggle◦(e,x)).

Vectors corresponding to the ideal context sets for S1 are shown in Figure 7 (which should
be compared to Figure 2). For this example, we have assumed single predications which directly
relate to the lexeme being considered. To make the figure more readable, we have omitted the
context sets for the verbs and predications relating to events (e.g., [e]jiggle◦(e,x)) and assumed
all predications relate to x (in the full representation, this has to be explicit and there will be
two components corresponding to ‘jiggle’ for instance: [e]jiggle◦(e,x) and [x]jiggle◦(e,x)). The
components in the vector correspond to simple predications. The ‘flat’ MRS representation means
that the decomposition of the semantic representation into elementary predications is trivial. We are
glossing over the precise formulation of the transformation of the context sets into vectors here, but
will return to this issue in §3.

The vector representation is a way of generalising over the elements in the context sets. If
directly-connected predications are assumed, then the elements can be thought of as correspond-
ing to a very fine-grained notion of semantic feature. The more general words, such as object,
provide a way of generalising over the more specific features. In this very contrived setting, for
instance, black◦ and white◦ only share the a and object contexts. If we had included move in the
vocabulary as a generalisation of jiggle and rotate, the vector would provide a means of separating
movable and immovable entities. Further generalisations would be possible with the use of a more
decomposed logical form, with an explicit representation of roles. For example, we could have
jiggle◦(e),ARG1(e,x) instead of jiggle◦(e,x): this style of representation would allow a separation
to be made between entities which occurred in subject position and those that did not.

2.5 Context set subspaces

We establish context sets at the level of lexemes, with each lexeme being represented by a full
context set, as illustrated in Figures 2 and 4. We can also consider various subspaces of the context
set by considering different parts of the vectors. In theory, any subspace can be distinguished in a
distribution but most have no linguistic relevance and are therefore of no interest to us. However,
some subspaces relate to standard linguistic concepts. In particular, the conventional notion of a
word sense should correspond to a relatively homogeneous subspace of a lexeme’s context set,
although we would argue that it is generally impossible to precisely delimit such subspaces. For
instance, the distributional subspaces that are part of bank◦ would be distinguished because the
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other predicates contained in the distributional LF differ. The financial bank might be associated
with lend, overcharge and bankrupt while the geographical feature is associated with sandy, picnic
and otter. A range of approaches to deriving sense clusters from distributions have been described
in the computational linguistics literature (see, e.g., Schütze 1998, Lin & Pantel 2002, Thater,
Fürstenau & Pinkal 2011). In general, clear cases of homonymy, such as the bank example, give
rise to relatively discrete clusters.

We note here that in our approach these subspaces will be associated with sets of linguistic
entities with negligible overlap. Although there are some predicates which are associated with
both senses of bank (e.g., collapse), we would not expect to find utterances where e.g., sandy
and overcharge are applied to the same linguistic entity. In section §6, we will contrast this with
examples such as book, where predicates that relate to intuitively different subspaces can both be
used of the same entity.

Individual entities will correspond to finer-grained subspaces. In Figure 4, cube◦ contains
subspaces corresponding to two different referents: one denoted by the constants x3 and x4, which
correspond to the entity we called c, and one denoted by x9 and x10, which we called c1. So, for
instance, the distribution of cat in the sense of a small furry animal contains many subspaces which
correspond to various individual cats, each one with its own distribution; selecting one entity out of
the cat-meaning-animal subspace means selecting one of those distributions.

In the trivial examples shown, we have only discussed singular terms. We can extend these ideas
to plurals by assuming that a plurality is a sum of individuals, as described by Link (1983). We
assume a Linkian view of plurals as join-semi-lattices where each point at the bottom of the lattice
corresponds to one entity and all other points are sums of singular entities, or sums of sums.8 So a
plurality corresponds to a subspace which comprises two or more entities which are themselves
subspaces of that plurality. Note that in general, we cannot say that the distribution of a plurality is
the union of the distributions of its individual entities. A plural distribution will also include contexts
that apply only to the sum of individuals and not to the individuals themselves (i.e., collective, as
opposed to distributive, contexts).

In this section, we have argued that distributions could potentially form the basis of a general
approach to word meaning. Of course, this notion of an ideal distribution is a largely hypothetical
exercise. We will not, for instance, see a subset relationship between cube◦ and object◦ in real
data. However, we think that ideal distributions have a psychological reality in that they refer to the
‘linguistic potential’ of an individual, that is, the utterances that they might produce in response to a
stimulus given their knowledge of the situation (they may not know that the rotating cube is hiding
a motionless sphere), the vocabulary available to them and their linguistic beliefs (e.g., whether
they describe objects of a particular shape as mug or cup). We also think that the notion can act as a
guide in considering how we model the relationship between what an individual is exposed to (the
actual distributions) and the individual’s internal language model. We explore this in more detail
in Section 5.

3 Operations on ideal distributions

Having introduced the notion of ideal distribution, we will consider some phenomena of traditional
lexical semantics and their translation in LC. Building formal definitions for those phenomena,

8 We will not discuss mass terms here, but in principle, we accept Chierchia’s revision of Link’s view (Chierchia 1998),
where mass terms consist of minimal parts.
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however, implies the ability to perform certain operations over ideal context sets. In what follows,
we will introduce two such operations: a) how to reduce ideal distibutions to an underspecified form
and b) how to deal with quantified logical forms.

3.1 Underspecified context sets

Context sets as described in §2 include information about instances and situations. By reducing a
context set to a representation that includes logical forms only, we get a derived distributional form
which is more akin to the linguistic objects typically assumed by computational linguists, but which
preserves some of the of the properties of the ideal distribution – crucially, what we will call its
information saturation property (i.e. the fact that there is a logical form for each event/relation in
the world under consideration).

Consider the following three contexts in the distribution of cat and assume x1 =rw x11 but
x1 6=rw x2:

< [x1], [a(x1),sleep◦(e1,x1)],S1 >
< [x11], [a(x11),sleep◦(e2,x11)],S2 >
< [x2], [a(x2),sleep◦(e3,x2)],S3 >

It is possible to underspecify those contexts with respect to entities and situations by writing:

< [x], [a(x),sleep◦(e,x)],S >
< [x], [a(x),sleep◦(e,x)],S >
< [x], [a(x),sleep◦(e,x)],S >

The above contexts tell us that we have three distinct entity tuples involving some cat instance
with some sleeping event in some situation. It is unknown whether it is the same cat involved in all
events, or three cats, or two, and how many sleeping events and situations are implied.

Generally, we can define the underspecified form of an ideal context set l◦ as a set U (l) of
tuples (l f ,arg1...n,S), where l f is a logical form, S is a situation and arg1...n are l f ’s arguments.
Knowing the correspondence between e1...n and the distributional arguments in l◦, and between S
and the situations in l◦, allows to return to the fully specified form of the ideal context set.

We will refer to the underspecified form of l◦ as l◦U .

3.2 Quantification: unpacking distributions

Our notion of ideal distribution presupposes a direct correspondence to set-theoretical models where
each distributional argument for a logical form corresponds to one, and only one, individual in
the world under consideration, i.e. to a point in a set, and is accordingly singularly quantified in
the logical form. This implies that plurally quantified statements must be appropriately converted
before being included in an ideal context set.

We define the process of unpacking as the translation of a logical form containing non-
individually quantified arguments into several logical forms, one for each element in the set denoted
by the quantified argument:

For instance, in cat◦ we might have:
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< [x1][three(x1),sleep◦(e1,x1)],S1 >= { < [x11][one(x11),sleep◦(e11,x11)],S1 >,
< [x12][one(x12),sleep◦(e12,x12)],S1 >,
< [x13][one(x13),sleep◦(e13,x13)],S1 >}

In the unpacked representation, the quantifier becomes redundant so we can simply write:

< [x1][three(x1),sleep◦(e1,x1)],S1 >= { < [x11][sleep◦(e11,x11)],S1 >,
< [x12][sleep◦(e12,x12)],S1 >,
< [x13][sleep◦(e13,x13)],S1 >}

We have defined the ideal distribution as a case where, with respect to a world, we have complete
distributional information. In that case, it is no more difficult to unpack a universal quantifier than
it is to unpack a cardinal. Unpacking simply consists of constructing the relevant distributional
equality between a logical form and the set of singularly quantified logical forms containing the
relevant arguments. Note that, quantifier aside, all logical forms are supposed to be identical and
the plurally quantified argument denotes the same plurality as the set of all singularly quantified
arguments. For instance, in a world with four cats:

< [x1][all(x1),sleep◦(e1,x1)],S1 >= { < [x11][sleep◦(e11,x11)],S1 >,
< [x12][sleep◦(e12,x12)],S1 >,
< [x13][sleep◦(e13,x13)],S1 >,
< [x14][sleep◦(e14,x14)],S1 >}

We can proceed similarly for all quantifiers that express a ratio with respect to the universal
quantifier. In the ideal distribution, we know which individuals are quantified over by most or few.
For the case of collective statements, we consider the collective as a single entity.

4 Lexical semantics and ideal distributions

Traditional lexical semantics allows us to define a number of standard relations in terms of exten-
sion. For instance, full synonymy implies set identity while hyponymy can be translated into a set
inclusion relation (we provide more detail on this in what follows). In contrast, it is difficult to for-
mally (or even less formally) describe such relations in a distributional setting. Some attempts have
been made to extract hyponyms from distributions, or distinguish near-synonyms from antonyms
(see Section 7). Such work, however, often relies on heuristics which, although they are still in
some sense distributional (i.e. they use patterns found in real text), do not define actual relations
between distributions. Attempts to do so make use of machine learning techniques which, although
successful (Baroni, Bernardi, Do & Shan 2012), do not result in a formal definition of the relation
they are extracting but in a classifier-dependent prototypical pattern.

In this section, we will describe how standard relations in lexical semantics can be formally
expressed using our notion of ideal distributions. It should be intuitively clear that, because of
the direct relation between ideal distributions and extension, it is possible to retain all classical
definitions of lexical relations, but we will now explicitely show how, and give formalisations in
terms of LC distributions.

In what follows, we assume unpacked ideal distributions, partitioned into appropriate subspaces
(see §2.5): when we talk of cube◦, we talk of the distribution of a particular subspace, or ‘sense’ in
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the classical account, of cube. The subspace we intend should be obvious from the context. We
also regard fixed expressions as words with spaces, which have separate distributions from their
components. We assume, for example, that for an individual who understands to kick the bucket
as to die, the phrase only belongs to bucket◦ in its compositional meaning of hitting a bucket with
one’s foot.

4.1 Similarity

Before discussing the LC definitions of standard lexical relations, we will briefly account for the
phenomenon underlying them all, i.e. similarity. Although a vague notion, similarity has been found
to be a meaningful concept in psycholinguistics experiments. Miller & Charles (1991), for instance,
repeating part of an experiment initially devised by Rubenstein & Goodenough (1965), showed that
humans agree strongly when asked to rate the similarity of word pairs.

We define the following two notions:

• The shared distribution of two lexical items, A◦ and B◦, which may be underspecified or
not:

(1) S(A◦,B◦) = A◦∩B◦

• The characteristic distribution of one lexical item with respect to another one:

(2) C(A◦/B◦) = A◦− (A◦∩B◦)

We can give numerical values corresponding to these relations. Let us define Sn(A◦,B◦), which
expresses the degree to which A and B share contexts. Such value can be computed in a variety of
ways, the simplest approach being perhaps the Jaccard metric:

(3) Sn(A◦,B◦) =
|A◦∩B◦|
|A◦∪B◦|

Similarly,

(4) Cn(A◦/B◦) =
|A◦− (A◦∩B◦)|
|A◦∪B◦|

We follow Harris (1954) in his claim that lexical items that appear in the same type of contexts
are semantically similar. However, due to the nature of our distributions, which include specific
information about instances and situations, we must qualify this statement further.

Consider, for instance, the concepts of cat and dog. They are fairly similar, but they are never
substitutable in any given existentially quantified context: we cannot point to a cat and say This is a
dog. In fact, their shared distribution S(cat◦,dog◦) is the empty set and Sn(cat◦,dog◦) is 0. The
overlap S(cat◦U ,dog◦U ) of their underspecified context sets, however, can be expected to be high.
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The point illustrated here is that we must differentiate between a certain notion of contextual
similarity, (the one implied by Harris), which is related to selectional preference and intension, from
full linguistic substitutability, which is related to real-world entities, or extension. The latter can be
captured from full ideal context sets while the former must be defined in terms of underspecified
context sets. The broad concept of similarity investigated by Rubenstein & Goodenough (1965) and
Miller & Charles (1991) is the one also intended by Harris and we will therefore write the similarity
of two lexical items A◦ and B◦ as:

(5) Sim(A◦,B◦) = Sn(A◦U ,B◦U ).

4.2 Synonymy

Synonymy can be defined both via contextual similarity and substitutability. If two words, in a
particular sense, can be substituted for each other (in both directions), in all contexts relevant to
the sense under consideration, they can be called synonyms. Naturally, they are also contextually
similar.

Synonymy is to some extent gradable: some words share a lot of their meaning but not all of
it and are therefore not fully substitutable (for example off and rancid, where the latter is only
applicable to fatty food). Sometimes words are definitionally substitutable but they present a
difference in meaning which is more stylistic or emotive: see for instance policeman/policewoman
versus cop. In the following, we will distinguish between true synonyms like aubergine/eggplant,
which share their whole meanings, and near-synonyms like rancid/off. We will simply talk of
synonyms to encompass both types.

4.2.1 True synonymy

True synonymy is a relation that must be defined using full context sets rather than underspecified
context sets. In the model-theoretic framework, true synonyms are words which denote the same
entities in a world (and not separate entities that happen to be extremely similar). Consequently,
it is not sufficient to say that two synonyms have the same underspecified context sets: they must
apply to the same situations. In our ideal setting with full distributional information, real synonymy
corresponds to the complete overlap of two full context sets.

A and B are true synonyms iff

(6) A◦ = B◦

By extension,

S(A◦,B◦) = A◦ = B◦(7)
C(A◦/B◦) =C(B◦/A◦) = /0(8)
Sn(A◦,B◦) = 1(9)

Cn(A◦/B◦) =Cn(B◦/A◦) = 0(10)

Intuitively, we can say that in a given situation sk involving an instance ak of A, ak can equally
be referred to using either A or B, and thus any logical form describing ak in sk will be contained in
both the distributions of A and B.
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Note that according to this definition, policeman and cop are full synonyms. The difference in
their intension is not expressed in terms of ideal context sets. It could however be captured in terms
of ‘actual’ distributions (see §5 for more details).

From our definition, it naturally follows that:

S(A◦U ,B◦U ) = A◦U = B◦U(11)
C(A◦U /B◦U ) =C(B◦U /A◦U ) = /0(12)
Sn(A◦U ,B◦U ) = 1(13)

Cn(A◦U /B◦U ) =Cn(B◦U /A◦U ) = 0(14)

4.2.2 Near-synonyms

Near-synonymy is a phenomenon more related to similarity than to synonymy itself. In simple
terms, it expresses ‘high similarity’. Therefore, we define it using underspecified context sets.

If A and B are near-synonyms, then

(15) Sn(A◦U ,B◦U )> δ where δ is ‘large’ (i.e. close to 1).

A and B are near-synonyms iff Equation 15 holds and A and B are not antonyms (see antonymy
definitions in §4.4).

4.3 Hyponymy

Hyponymy, or hyperonymy, is usually described in terms of the relationship between a more
general and a more specific term: for instance, poodle and dog are two terms that can be used
to describe the same entity but the former is more specific than the latter. We can also say that
the extension of the more general term includes the extension of the more specific one (the set of
all poodles is included in the set of all dogs). Conversely, the intension of dog is included in the
intension of poodle: i.e., everything that can be said of a dog can be said of a poodle. It has been
remarked, however, that the intensional definition is only applicable in an essentialist framework,
where ‘dogness’ can be reduced to some essential features. What those features should be remains
a puzzle: Geeraerts (2010) illustrates the issue by showing that flying cannot be an essential feature
of birds if we want penguins to be birds.

We have already seen in Section 2 that in ideal distributions, an inclusion relationship can be
observed between hypernyms and hyponyms. For instance, we assume cube◦ to be a subset of
object◦ (see Figure 4). Intuitively, any entity can be described in terms of its hypernyms so any
predicate in a logical form can be substituted for the corresponding hypernym and the full context
set of the hypernym includes all logical forms found in its hyponyms. Generally, A is a hyponym of
B iff:

A◦ ⊂ B◦(16)

It follows that:

A◦U ⊂ B◦U(17)
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4.4 Antonymy

Geeraerts (2010), following Lyons (1977) and Lehrer (2002), distinguishes between three basic
types of antonymy: gradable, non-gradable and multiple antonyms. The gradable type refers to
pairs of terms that describe opposite ends of a scale, for instance cold and hot. Such terms can
be modified with adverbs of intensity such as very or slightly. Non-gradable antonyms are those
that express a discrete, binary opposition like dead and alive. No scale is involved (we can’t
express various degrees of ‘deadness’, at least in the main use of dead) and modification is therefore
unfelicitous. The last class, multiple antonyms, refers to terms that denote several discrete points
on a non-gradable, discontinuous scale: traditional British academic positions (lecturer, reader,
professor) are an example of such a scale.

Regardless of the type considered, we can define antonymy as having the following two features:
firstly, it is not possible to apply antonyms to the same entity in the same situation (for instance,
in S, it is not possible to utter Cube X rotates clockwise and Cube X rotates anticlockwise), so in
terms of extension, antonyms are fully exclusive, and secondly, antonyms concern a certain concept
(temperature, life and academic career in the examples above) and are therefore related in terms of
intension.

In LC, if A and B are antonyms, then

S(A◦,B◦) = /0(18)
C(A◦/B◦) = A◦(19)
C(B◦/A◦) = B◦(20)
Sn(A◦,B◦) = 0(21)

Cn(A◦/B◦) =Cn(B◦/A◦) = 1(22)

The above formulas are, however, not sufficient to define antonymy. cat◦ and dog◦ satisfy
those conditions without being antonyms. We must add a constraint on the intension of A and B to
complete the definition:

Sim(A◦U ,B◦U )> δ where δ is ‘large’ (i.e. close to 1).(23)

This constraint is identical to the one used to define near-synonymy.
Note that our definition, which relies on distributions where instances and situations are clearly

marked, provides a clear opposition between true synonymy and antonymy.

5 Actual distributions

Having sketched out some properties of ideal distributions with respect to classical lexical semantics
relations, we turn to observable data, that is, to those distributions which can be gained from
gathering real world utterances. In our account, actual distributions correspond to all the utterances
that have been perceived by an individual. Like the ideal distributions, actual distributions are based
on logical forms for those utterances. They will not refer to neat microworlds, but they do include a
notion of the context or situation associated with an utterance. Some of the utterances an individual
is exposed to will refer to linguistic entities which are directly perceptually grounded but such
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grounding is not available in many cases. It is thus obvious that actual distributions will be very
different from the ideal distributions which we have been discussing. We nevertheless hypothesize
that the utterances that are the basis of the ideal distributions could be produced for a microworld by
a native speaker (given enough time!) and that it is possible to produce some approximation to ideal
distributions on the basis of actual distributions. That is, while ideal distributions are an abstraction,
we assume that the properties we are interested in (inference, modelling of polysemy and so on),
could be derived by a language learner on the basis of the actual distributions. Specifically, we
assume a) that the learner uses the actual distributions to update their own internal language model,
b) that this gives the language model some of the properties of the ideal distribution, and c) that
the language model would allow a speaker to produce the utterances that the ideal distribution is
based on for any given situation. The speaker also has access to probabilistic information derived
from actual distributions. The ideal distributions can perhaps be thought of as corresponding
to a speaker’s semantic competence, while the actual distributions both act as the data source
for acquiring competence and provide probabilistic information which could be taken to be an
aspect of performance. We assume, for instance, that stylistic expectations (e.g. when to us
policeman/policewoman vs cop) are learnt from the latter.9

It is clear that psychologically realistic distributions should correspond to a single person’s
experience. Unfortunately corpora from which we could derive such distributions in practical
experiments are not currently available, except to a very limited extent with child language or
artificial contexts. While it may turn out that balanced corpora or even newspaper data can substitute
in some experiments for an individuated corpus, this is very unclear, since, as far as we can tell,
there is really no empirical evidence that addresses this issue. In fact, there is almost no data on
individual adults’ exposure to language. We have not even been able to find reliable estimates
of how many words someone might be expected to hear/read per day. Our back-of-the-envelope
calculations suggest a figure of perhaps 50,000 words per day, which would mean that the British
National Corpus, generally regarded as very small by modern standards in computational linguistics,
actually corresponds to around 5 years exposure. One consequence is that even words which
we might intuitively think of as reasonably familiar to a native speaker are actually encountered
relatively infrequently. For instance, rancid occurs 77 times in the BNC and rancorous only occurs
20 times.10 This is consistent with our intuitions that individuals use different vocabulary items
with very different frequencies and very different contexts, but we do not currently have any way of
determining the degree to which this is true. Experiments frequently show large differences between
distributions extracted from different corpora, but creating distributions from a very large corpus
based on many different genres would lead to differences in use being obscured. Such corpora are,
of course, essential for modern lexicography, because they allow the lexicographer to specify the
range of meanings of a word in different contexts, explaining uses outside the experience of the
dictionary user. However, they do not allow us to model the way in which humans acquire and
negotiate meanings.

The second problem is that we have little corpus data available with which we could simulate

9 We will not discuss the possible relationships between our notion of a language model and the way that language works
in the human brain here, but we should note that the neural basis of the language model must have some similarities
with the notion of a distribution. In particular, the Hebbian learning principle often paraphrased as “Neurons that fire
together wire together” is entirely consistent with the idea that frequent relationship between lexemes will lead to strong
associations between their functional webs (Pulvermüller 2002).

10 These counts are from Kilgarriff’s web page http://www.kilgarriff.co.uk/bnc-readme.html.
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grounding. While most utterances perceived by an adult do not directly correspond to perceptual
data, we would still like detailed information about the situations which speakers are in to be
available as corpus annotation. The only corpora which would (partially) allow for specification of
situations are relatively small and are nearly all based on artificial contexts.

A more minor point, but one of considerable practical importance, is that most very large scale
corpora contain a considerable proportion of noisy data. For example, a newspaper corpus may
contain lists or tables which are not intended to be read in their entirety. Corpora derived from
the web are usually much worse in this respect. There is, of course, some vagueness in our notion
of an actual distribution in that we have not specified exactly what we mean by ‘perception of an
utterance’, but we intend to exclude cases where the text or speech cannot be understood at all (by
an adult).

Thus the corpora in use for distributional semantics within computational linguistics are very
different from our notion of an actual distribution. This currently restricts the possibilities for
detailed experimentation on the actual/ideal distributions interface. In general, for real investigation
of psychologically plausible approaches to distributional semantics, a very large-scale corpus
collection effort would be necessary (which we believe would be worthwhile even though the extent
to which we could practically simulate grounding would be limited). We are therefore advocating
a long-term research program. Nevertheless, we think there are some conclusions to be drawn
from theory alone, as we have discussed in §4. Further, we do not exclude that certain types
of investigation can be conducted using standard corpora. The fundamental difference between
such corpora and individuated data, however, should be born in mind when analysing a system’s
behaviour.

6 Lexicalised Compositionality and the Generative Lexicon

Having sketched out the notion of actual distribution, we will now turn to the relationship between
Lexicalised Compositionality and a well-known approach to lexical semantics: the Generative
Lexicon (GL: Pustejovsky 1995). Lexicalised Compositionality shares several of GL’s aims and
assumptions: in particular, we assume that the lexicon is not just an unstructured list, but that lexical
entries are intrinsically interconnected. While a detailed account of the relationship between the
approaches would be too lengthy for this paper, here we outline some of the ways in which LC
might treat some of the phenomena considered by GL.

The first phenomenon we will consider is regular polysemy. Certain word classes share polysemy
patterns, such as, in English, nouns denoting animals also being used for the meat, as mass terms,
e.g., rabbit, lamb, turkey, haddock. Native speakers readily generate such uses for previously
unknown meat types (e.g., They ate crocodile!), but in some cases the mass usage is generally
blocked by an alternative term (e.g., cow, referring to the meat, is blocked by beef, pig by pork).
There is a range of evidence that this process is conventionalised: in particular, different languages
have somewhat different polysemy patterns. Copestake & Briscoe (1995) developed an account
of regular polysemy in terms of lexical rules, which could stand in a hierarchical relationship to
one another. For instance, the animal/meat rule is a conventionalised subcase of a general grinding
process.

We introduced the idea of spaces in LC distributions corresponding to word senses in §2. This
would imply, for instance, that there was some cluster of uses associated with rabbit animals and
another cluster associated with rabbit meat in both the ideal and actual distributions. This would also
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Figure 8 Schematic illustration of the LC account of regular polysemy: solid dots indicate
actual uses of lexemes (labelled as ANIMAL etc for the purposes of the figure),
open circles indicate unseen but hypothesised uses. Animal and meat uses are
found consistently across the class of lexemes, and hence a language learner can
hypothesise a regular relationship, but other uses, such as the verb rabbit meaning to
talk excessively, are idiosyncratic.

apply to lamb, turkey and so on. The LC account of regular polysemy is essentially that speakers
recognise such patterns from the actual distributions and use them when inducing meanings for
related words in novel contexts (i.e., when expanding the actual distributions). However, blocking
(preemption by synonymy) will occur when there is a well-known term already occupying the
relevant meaning space. Figure 8 illustrates this schematically. Thus, on the LC account, there is no
enumeration of senses, but lexical count/mass distinctions could nevertheless be said to exist in that
there are clusters of uses for a lexeme that are consistent either with count or mass contexts. Lexical
rules could be used to capture the interaction with syntax, as in the Copestake and Briscoe account,
but they need not be inherently directional.

We now turn to some more subtle meaning distinctions. Words like book, which can be viewed
as a physical object or as a content-containing entity, have been extensively discussed in GL. Some
authors, including Copestake and Briscoe, regard this as a somewhat different phenomenon from
regular polysemy, both because there is no syntactic difference between the usages of book and
because there are clear cases where both aspects of meaning are invoked with only one mention of
an entity, for instance in (24).

(24) Kim is reading a thick red book about syntax

There are, however, contexts in which there is ambiguity: (25) could refer either to works (if
Pratchett refers to the famous and prolific author) or physical objects (if Pratchett refers to an
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occasional user of eBay).

(25) Pratchett sold three books in 2000

But, crucially, (25) has no mixed readings, hence we cannot simply say that book is general with
respect to these dimensions of meaning. One mechanism available in GL to capture aspects of
meaning is qualia structure, whereby lexical entries for nouns include roles corresponding to their
form, composition, way of coming into being (agentive role) and their purpose (telic role). It is usual
to represent qualia in GL using feature structures. In some versions of the GL account, including
Copestake and Briscoe’s, the physical object versus contentful entity difference was regarded
as involving predicates accessing different parts of the qualia structure, although other versions,
including Pustejovsky (2005), utilise dot objects which combine types, e.g., PHYSICAL-OBJECT•
INFORMATION. In both cases, the intuition is that book can be seen as having multiple meaning
components and that the compositional semantics has to ensure that, for example, read selects one
aspect while thick selects another.

In the LC account, the actual distribution book◦ would contain both predicates that we would
expect to pick out physical characteristics (e.g. red◦) and predicates relating to its content (e.g.,
read◦), and in cases such as (24), the same linguistic entity is an argument to both types of predicate.
This contrasts with cases of homonymy, such as bank, discussed in §2.5. On this view, there
is no inherent ambiguity between the physical object and information carrier, and the contexts
where ambiguity does arise, such as (25), must involve different grounding possibilities, where the
linguistic entity can be equated to alternative possible (sets of) real world entities: either physical
objects or works. In support of the LC account, we note that a very similar effect also arises with
artifacts such as shirt or clock: it is possible to say, for instance, That shop sells twenty shirts with
the reading twenty types/designs of shirt. But in these cases, it is intuitively clear that there is no
necessary difference in real-world individuation between the physical and design aspects of an entity
(e.g., a public clock might well be the only clock built to a particular plan) whereas the (modern)
canonical use of book refers to a conventionally published entity with multiple copies. The LC
approach thus gives a somewhat different perspective on the problem, but we leave it as an open
question whether dot objects or similar devices would still be necessary to provide a full account of
book.

Another phenomenon extensively investigated in GL for which an LC account might be useful
is logical metonymy, as exemplified by sentences such as Kim began the cigar. On the GL account,
this can be interpreted (by default) as Kim began smoking the cigar because the smoking event is
supplied by the telic (purpose) role of cigar. Some difficulties with making this approach work
are summarised by Copestake (to appear). One problem is that the observed restrictions on logical
metonymy are not fully explained by the qualia hypothesis. For instance, the telic interpretation
with begin generally applies only to consumables and reading material: sentences such as Kim
began the tunnel are not found with the interpretation Kim began driving through the tunnel (as first
noted by Godard & Jayez 1993). It seems that this cannot be accounted for by general restrictions on
the telic role of tunnel, because it is possible to use after that tunnel to mean after driving through
that tunnel, for instance. The second problem is that the qualia values which might be involved
in logical metonymy do not appear to be generally usable in accounts of other lexical semantic
phenomena. For example, one might hope that qualia would be useful in determining the meaning
of compound nominals, but although there is a partial correspondence, many compounds involve
relationships which would not be predictable from likely qualia. Another example, discussed in
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Copestake (to appear), is the use of adjectives such as heavy and high meaning ‘large magnitude’
in examples such as heavy rain, heavy snow, high winds, high danger (and not high rain, heavy
danger and so on). Although some fine-grained semantic classes appear to be involved (e.g., heavy
is used with weather terms denoting some form of precipitation), there is considerable idiosyncrasy,
and it does not appear to be possible to develop an account on this basis alone.

In LC, the actual distribution of cigar indicates that it is frequently the object of smoke and
similarly that smoke is a plausible argument to begin. Hence the metonymic event could be
retrieved.11 This is essentially the approach that Lapata & Lascarides (2003) investigated with
corpus data which shows that it is possible to predict the metonymic event in this way with a
reasonable degree of accuracy. It is also possible to use distributions to predict the meaning of
compound nominals: see, for instance, Turney (2006) and Ó Séaghdha & Copestake (2009). As far
as we are aware, no comparable system based on a GL account has been demonstrated.

The GL account is more restrictive than a distributional approach, which could, of course, be an
advantage, but it does not seem to be sufficiently flexible to allow for the complexities/messiness
of the data. Furthermore, the nature of the fillers of the qualia roles is potentially problematic. If
there is a single filler, or a disjunction of a small number of values, it would seem that these would
have to correspond to sense-disambiguated concepts. This means the approach depends on making
sense distinctions, although it is a primary aim of GL to avoid enumeration of senses. In contrast,
in distributional accounts, the relationship is between undisambiguated lexemes. There will be a
cluster of usages in smoke◦ that relate to cigars (as opposed, for instance, to smoked fish), and it is
this cluster that contributes to the probability distribution used to predict the metonymic event, but
there is no requirement for sense enumeration to achieve this effect. Finally, the idea of qualia is an
abstraction over the type of events associated with nouns and, as such, would have to be somehow
derived from a language learner’s experience, while the LC account is directly based on the actual
distributions the learner is exposed to. This implies that GL would need an additional step to be a
plausible account of language learning. Of course, proper empirical verification of the LC approach
would require the type of individuated corpora we described in §5, but the computational accounts
that already exist make us optimistic that this will be possible.

Note that the LC account is only a replacement for the GL treatment with respect to the use of
qualia (or other method for representing the detailed make-up of the lexical semantics). It is still
necessary to have a representation of the syntax-semantics interface that specifies that begin takes
an event argument, for instance, and we could adopt this aspect of the GL approach in LC. The LC
account can be seen as an alternative to the strictly lexical semantic aspects of GL, but not to the
GL accounts of the syntax-semantics interface.

There are some more general points that we can make here about the contrast between feature
structures and distributional representations in modelling phenomena. Feature structures are
appropriate when we can define a small number of roles that are relevant in a particular context,
where the fillers of these roles can be isolated and where processes can be defined which access
the filler via the roles. For instance, it makes sense to use feature structures (or dependency
structures or trees or description logic), to represent the fact that the subject of the sentence the dog

11 The LC approach also allows individual entities to have associated distributions. For instance, if the distribution
associated with the particular cigar under consideration is incompatible with it being smoked, then another type of event
could be retrieved. This would imply a somewhat different approach to the interface between the lexicon and pragmatics
than that described in Lascarides & Copestake (1998). We will not discuss this further here and should emphasize that
we would not expect to be able to achieve this practically with any current broad-coverage computational system.
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sleeps is the dog. It would also make sense to use a feature structure to represent the fact that the
numeral classifier -hiki is appropriate for inu (dog) in Japanese, because there are a fixed number
of classifiers. In contrast, distributional representations are useful when one has a data source that
supports derivation of a distribution and where there is no fixed set of appropriate roles and role
fillers. Because there is no predetermined role/filler distinction, it is possible to create abstractions
over any concept in distributions, while it is essentially impossible to abstract over roles with feature
structure representations. Distributions may also be appropriate as an intermediate representation
from which a more abstract feature structure representation can be derived for a particular purpose:
this might be part of the process of learning appropriate classifiers, for instance. As discussed above,
interfaces between the two types of representation are also necessary to model particular types of
processing.12

7 Related work

The idea of representing meaning as vectors in a feature space was already proposed in the 1950s in
the work of psychologist Osgood (1952), though Harris (1954) is usually cited as the first linguist
to express the notion that ‘words that appear in similar contexts are semantically similar’. The
term ‘distributional semantics’ came into use by the early 1960s (e.g., Garvin 1962), with Harper
(1965) demonstrating what is, to our knowledge, the first actual implementation of the idea and
Sparck Jones (1967) first using a principled technique for comparing contexts. Related techniques
became widespread in Information Retrieval, but distributional semantics was mostly ignored in
computational linguistics until the early 1990s, when reasonably large-scale corpora first became
widely available to researchers. The representation of word meanings via distributions has received
considerable attention in recent research. Various proposals have been made as to how to choose
the most appropriate distributional space to model the semantics of lexical items (Lund & Burgess
1996, Schütze 1998, Landauer & Dumais 1997, Gallant 1998, Griffiths, Steyvers & Tenenbaum
2007, Padó & Lapata 2007). An overview of various methods can be found in Sahlgren (2006) and
Turney & Pantel (2010). The setting of the different parameters used in the construction of the
feature space is discussed in Bullinaria & Levy (2007).

Distributional techniques have been used extensively to capture various lexical relations. The
bulk of the work concerns the extraction of words pairs displaying general similarity (Grefenstette
1994, Turney 2006, Lin & Pantel 2002, Heylen, Peirsman, Geeraerts & Speelman 2008). The
general hypothesis for such research is that similarity is a function of the contextual overlap between
two words. The more contexts shared, the more similar the two items are. Some research, however,
focuses on particular relations: Hearst (1992, 1998) tackles the problem of hyponymy while Girju,
Badulescu & Moldovan (2006) investigates the extraction of meronyms and Lin, Zhao, Qin &
Zhou (2003), Turney (2008), or again Mohammad, Dorr & Hirst (2008) focus on the identification
of antonyms. Work focusing on particular lexical relations tends to be a combination of ‘pure’
distributional approaches (i.e. modelling lexical items as distributions) and pattern-based heuristics.
For instance, the extraction of antonyms might rely on finding out lexical patterns which indicate

12 Note that we do not think it helpful to refer to feature structure representations as symbolic and distributional represen-
tations as statistical. While it is usual to associate frequencies or probabilities with distributional representations, it is
not necessary to do so: for example, probabilities are only relevant to the lc0 distribution if we generalise over sets of
situations. Similarly, while feature structures etc are often used without probabilities, it is possible to use probabilities
in conjunction with feature structures, or (more usually) with rules operating on feature structures.
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an antonymy relation. One notable exception is the work of Baroni et al. (2012) which focuses on
automatically learning a classifier for the hyponymy relation using word distributions only.

As our approach naturally suggests that composition should be dealt in the traditional way of
formal semantics, we should mention proposals which, instead, argue for directly composing lexical
items (see Clark & Pulman 2007). That is, while our representation of black cat is black◦∧ cat◦,
such proposals attempt to build black_cat◦. The composition of distributions in phrases is usually
performed by ‘combining’ the vectors of the components of the phrase. Some proposals assume
a single composition operation for different types of constructions. Mitchell & Lapata (2010),
for instance, experiment with various functions expressed in terms of the two vectors and find
that point-wise vector multiplication gives best results in a phrase similarity task, not only for
adjective-noun phrases but also noun compounds and verb-noun constructions. Erk & Padó (2008)
also adopt a multiplicative approach on sets of vectors involving the selectional preference of the
relations associated with a word. Following on such experiments, Guevara (2010, 2011), point out
that it is unlikely that many syntactic constructs (e.g. adjective-noun phrases, verb phrases, etc)
would be semantically represented by the same operation and argues that, for each construction,
it may be possible to learn an appropriate function, representing the effect of one class of words
over its arguments. Baroni & Zamparelli (2010) go further, highlighting the potential problems in
having a single function for a given grammatical construct. They highlight that different adjective
subclasses have different model-theoretic formalisations (Partee 1994) and propose that adjectives
are matrices. They express the adjective-noun phrase as an operation of the adjective matrix on the
noun vector and learn a different matrix for each adjective in their data. The approaches taken by
Widdows (2008) and Grefenstette & Sadrzadeh (2011) are similar.

Our proposal is not antithetical to the direct compositional approach. In fact, we believe
that frequent phrases, for instance, may well be stored in the human language model as single
items. At this point, however, we prefer to be conservative with regard to which constructions, or
specific phrases, should be lexically composed into a single distribution. Note also that, in the ideal
distribution representation, different classes of lexical items can be described straightforwardly.
For instance, Partee’s intersective adjectives are described via the necessary redundancies in the
ideal distribution. That is, the presence of the sentence Kitty is a carnivorous mammal in the ideal
distribution for a particular situation implies that the sentences Kitty is carnivorous and Kitty is a
mammal can also be found in that distribution. By contrast, the sentence The former president spoke
at the meeting would not normally be accompanied by The president spoke at the meeting.

8 Conclusion

We have attempted to give a formalisation of distributional semantics which is compatible with
classical formal semantics. Our theory is based on distributions, not sets, but it is translatable into
model-theoretic terms. As such, it preserves the idea of extension (we can recover information
about which entities are in the world) but it also gives a formal interpretation of a notion of intension
by providing structures for lexical items (distributions) that distinguish between their meanings,
even when their extensions are identical. One major difference between our account and the
standard approaches is that we are assuming speaker-dependent models. An approach centred on
the individual seems to us necessary to model language learning, and explain why, for instance,
speakers sometimes disagree on the extension of a lexical item (‘This is not a cup, this is a mug!’).

We introduced the notion of ideal distribution as a theoretical tool for formalisation, but we
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believe that the concept is also plausible from a psychological point of view – it may be an
appropriate description of what we have called the ‘language model’ of a speaker, i.e. the semantic
competence that allows him or her to utter one out of many possible sentences in a certain situation.
Our treatment of lexical semantics covers formalisations for standard relations such as hyponymy
or antonymy. We also argue that the distributional approach may help to describe some phenomena
discussed in the Generative Lexicon theory.

The implementation of the notion of ideal distributions implies recovering ‘missing’ information
from actual distributions. We hypothesised that this process of inference takes place in humans,
with constant, radical restructuring of the language model in early learning, and with lesser effects
in adult life, the model being updated every time a new concept is learnt or a known concept is used
in a yet unobserved way.

To what extent this updating of the language model by actual distributions is reproducible without
access to grounded information is an open problem. We have argued that the corpora currently
available to computational linguists are very different from the concept of an actual distribution
corresponding to an individual speaker’s experience, even if we disregard grounding, but it would
require a considerable data collection effort to determine whether this was actually the case. We
contend that such an effort will ultimately be necessary to develop any psycholinguistically motivated
account of distributional semantics. However, our approach does suggest a range of experiments
which could be carried out using current corpora. In particular, our approach emphasizes the role
of (linguistic) entities in the model, both at a theoretical level and in the contexts of antonymy
(§4.4) and sense distinctions (§6). It should be feasible to experiment with distributions which are
built from predicates which are applied to the same entity, rather than using a window of words
or syntactic dependencies. This might give a motivated way of distinguishing antonyms (unlike
standard techniques) and might also give an insight into the aspects of meaning of words like book
(in contrast with homonyms, such as bank). Thus, while this paper is programmatic in nature, we
believe that it indicates promising avenues for future experiments in the short term as well as in the
longer term.
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