Ann Copestake and Aurélie Herbelot

Computer Laboratory, University of Cambridge and Department Linguistik, Universität Potsdam

August 2012

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Distributional and compositional semantics

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Ideal distributions

Actual distributions

Distributional and compositional semantics

Outline.

Distributional and compositional semantics

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Ideal distributions

Actual distributions

Distributional and compositional semantics

Starting points

- Compositional semantics is relatively well understood: e.g., generalised quantifiers.
- Reasonably efficient broad-coverage computational grammars with compositional semantics are available for a number of languages.
 - DELPH-IN: grammars using MRS for English, Japanese, German, Norwegian, Spanish, Portuguese: small grammars for all major language families (Emily Bender, Grammar Matrix)
- But conventional notions of denotation (*cat* is cat' etc) are not satisfactory.
- Can distributional semantics give an alternative, without completely rethinking composition?

Logical representation in MRS

```
Some big angry dog barks loudly
```

 $\exists x4[\mathsf{big}'(x4) \land \mathsf{angry}'(x4) \land \mathsf{dog}'(x4) \land \mathsf{bark}'(e2, x4) \land \mathsf{loud}'(e2)]$

I1:a1:_some_q, BV(a1,x4), RSTR(a1,h5), BODY(a1,h6), I2:a2:_big_a(e8), ARG1(a2,x4), I2:a3:_angry_a(e9), ARG1(a3,x4), I2:a4:_dog_n(x4), I4:a5:_bark_v(e2), ARG1(a5,x4), I4:a6:_loud_a(e10), ARG1(a6,e2), $h5 =_q I2$

Logical representation in MRS

```
Some big angry dog barks loudly
```

 $\exists x4[\operatorname{big}'(x4) \land \operatorname{angry}'(x4) \land \operatorname{dog}'(x4) \land \operatorname{bark}'(e2, x4) \land \operatorname{loud}'(e2)]$

I1:a1:_some_q, BV(a1,x4), RSTR(a1,h5), BODY(a1,h6), I2:a2:_big_a(e8), ARG1(a2,x4), I2:a3:_angry_a(e9), ARG1(a3,x4), I2:a4:_dog_n(x4), I4:a5:_bark_v(e2), ARG1(a5,x4), I4:a6: loud a(e10), ARG1(a6,e2), $h5 =_a I2$

Logical representation in MRS

```
Some big angry dog barks loudly
```

 $\exists x4[\operatorname{big}'(x4) \land \operatorname{angry}'(x4) \land \operatorname{dog}'(x4) \land \operatorname{bark}'(e2, x4) \land \operatorname{loud}'(e2)]$

I1:a1:_some_q, BV(a1,x4), RSTR(a1,h5), BODY(a1,h6),
I2:a2:_big_a(e8), ARG1(a2,x4),
I2:a3:_angry_a(e9), ARG1(a3,x4),
I2:a4:_dog_n(x4), I4:a5:_bark_v(e2), ARG1(a5,x4),
I4:a6: loud_a(e10), ARG1(a6,e2), h5 =_a l2

Distributional and compositional semantics

Quantifier-free MRS (this talk)

```
Some big angry dog barks loudly
```

Full RMRS:

```
I1:a1:_some_q, BV(a1,x4), RSTR(a1,h5), BODY(a1,h6),
I2:a2:_big_a(e8), ARG1(a2,x4),
I2:a3:_angry_a(e9), ARG1(a3,x4),
I2:a4:_dog_n(x4), I4:a5:_bark_v(e2), ARG1(a5,x4),
I4:a6:_loud_a(e10), ARG1(a6,e2), h5 =_q I2
```

Simplified MRS:

```
some_q(x4), big_a(x4),
angry_a(x4),
dog_n(x4), bark_v(e2,x4),
loud_a(e2)
```

Distributional and compositional semantics

A longer example

Very few of the Chinese construction companies consulted were even remotely interested in entering into such an arrangement with a local partner.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Distributional and compositional semantics

A longer example

Very few of the Chinese construction companies consulted were even remotely interested in entering into such an arrangement with a local partner.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 I_3 :part_of(x_4 {PERS 3, NUM pl}, x_5 {PERS 3, NUM pl}),

 I_6 :udef_q(x_4, h_7, h_8),

 $I_3:_very_x_deg(e_9,e_{10}{SF prop}),$

 $I_3:_few_a(e_{10}, x_4),$

 $I_{11}:$ _the_q(x_5 , h_{13} , h_{12}),

 l_{14} :compound(e_{16} {SF prop, TENSE untensed, MOOD indicative, PROG -, PERF -}, x_5, x_{15}), l_{17} :udef_q(x_{15}, h_{18}, h_{19}),

*I*₂₀:_chinese_a_1(*e*₂₁{SF *prop*, TENSE *untensed*, MOOD *indicative*}, *x*₁₅),

 I_{20} :_construction_n(x_{15}),

 I_{14} :_company_n(x_5),

 I_3 :_consult_v_1(e_{24} {SF prop, TENSE untensed, MOOD indicative, PROG -, PERF -}, p_{25} , x_4), I_{27} :_even_a_1(e_{28} , e_2 {SF prop, TENSE past, MOOD indicative, PROG -, PERF -}),

 I_{27} :_remotely_x_deg(e_{29} {SF prop, TENSE untensed, MOOD indicative, PROG -, PERF -}, e_2), I_{27} :_interested_a_in(e_2 , x_4 , x_{30} {PERS 3, NUM s_g , GEND n}),

 I_{31} :udef_q(x_{30}, h_{32}, h_{33}),

 $I_{34}:=$ nter_v_1($e_{35}\{SF\ prop, TENSE\ untensed, MOOD\ indicative, PROG\ +, PERF\ -\},\ p_{36}), I_{37}:$ nominalization($x_{30},\ h_{34}),$

 $I_{34}:$ _into_p(e_{38}, e_{35}, x_{39} {PERS 3, NUM sg, IND +}),

 I_{40} :_such+a_q(x_{39}, h_{42}, h_{41}),

 I_{43} :_arrangement_n_1(x_{39}),

 $I_{37}:$ _with_p($e_{44}x_{30}, x_{45}$ {PERS 3, NUM sg, IND +}),

 $I_{46}:_a_q(x_{45}, h_{48}, h_{47}),$

 $I_{49}:$ local_a_1(e_{50} {SF prop, TENSE untensed, MOOD indicative}, x_{45}),

 I_{49} :_partner_n_1(x_{45}), $h_{48} =_q I_{49}$, $h_{42} =_q I_{43}$, $h_{32} =_q I_{37}$, $h_{18} =_q I_{20}$, $h_{13} =_q I_{14}$, $h_7 =_q I_3$

LF assumptions and slacker semantics

Slacker assumptions:

- 1. don't force distinctions which are unmotivated by syntax
- 2. keep representations 'surfacy'

Main points:

- Word sense distinctions only if syntactic effects: don't even distinguish traditional *bank* senses.
- Underspecification of quantifier scope etc
- Eventualities, (neo-)Davidsonian.
- Equate entities (i.e., x1 etc) only according to sentence syntax: linguistic entities.
- Separate step of equating to real world entities.

Distributional and compositional semantics

Lexicalised compositionality (LC)

- Combining compositional and distributional techniques, based on existing approaches to compositional semantics.
- Replace (or augment) the standard notion of lexical denotation with a distributional notion. e.g., instead of cat', use cat°: the set of all linguistic contexts in which the lexeme *cat* occurs.
- Contexts are expressed as logical forms.
- Primary objective: better models of lexical semantics combined with compositional semantics.

Distributional and compositional semantics

Distributions and semantics

- Conventional distributions fail to capture semantic ideas:
 - Full vs near synonymy, homonymy, antonymy.
 - Quantification.
 - Senses (perhaps).

What's missing is any notion of an individual entity.

- So, 'deeper' distributional semantics (cf Clark and Pulman 2007)
- We start with an idealized notion of a distribution ...

http://www.cl.cam.ac.uk/~aac10/papers/lc1-0web.pdf

- Ideal distributions

Outline.

Distributional and compositional semantics

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Ideal distributions

Actual distributions

Ideal distribution with grounded utterances

Microworld S_1 : A jiggling black sphere (a) and a rotating white cube (b)

Possible utterances (restrict lexemes to *a*, *sphere*, *cube*, *object*, *rotate*, *jiggle*, *black*, *white*) and no logical redundancy in utterance):

(日) (日) (日) (日) (日) (日) (日)

a sphere jiggles a black sphere jiggles a cube rotates a white cube rotates an object jiggles a black object jiggles an object rotates a white object rotates

- Ideal distributions

LC context sets

Logical forms in simplified MRS: a sphere jiggles: a(x1), sphere $\circ(x1)$, jiggle $\circ(e1, x1)$ a black sphere jiggles: a(x2), black $\circ(x2)$, sphere $\circ(x2)$, jiggle $\circ(e2, x2)$

Context set for *sphere* (paired with S_1): sphere $\circ = \{ < [x1][a(x1), jiggle \circ (e1, x1)], S_1 >,

<math>< [x2][a(x2), black \circ (x2), jiggle \circ (e2, x2)], S_1 > \}$ Context set: pair of distributional argument tuple and distributional LF.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Ideal distribution for S_1

< [e6, x6][$a(x6), black^{\circ}(x6), object^{\circ}(x6)$], $S_1 >$ }

Ideal distribution for S_1 , continued

$$\begin{array}{ll} \mbox{rotate}\,^\circ\,=&\{&<[e3,x3][a(x3),\mbox{cube}\,^\circ(x3)],\,S_1>,\\ &<[e4,x4][a(x4),\mbox{white}\,^\circ(x4),\mbox{cube}\,^\circ(x4)],\,S_1>,\\ &<[e7,x7][a(x7),\mbox{object}\,^\circ(x7)],\,S_1>,\\ &<[e8,x8][a(x8),\mbox{white}\,^\circ(x8),\mbox{object}\,^\circ(x8)],\,S_1>\} \end{array}$$

white
$$^{\circ} = \{ < [x4][a(x4), cube^{\circ}(x4), rotate^{\circ}(e4, x4)], S_1 >, < [x8][a(x8), object^{\circ}(x8), rotate^{\circ}(e8, x8)], S_1 > \} \}$$

Relationship to standard notion of extension

For a predicate P, the distributional arguments of P $^{\circ}$ in *lc*₀ correspond to P', assuming real world equalities.

distributional arguments $x_1, x_2 =_{rw} a$ (where $=_{rw}$ stands for real world equality):

Context sets as vectors

	jiggle °(e,x)	rotate °(e,x)	sphere $^{\circ}(x)$	cube °(x)	object ° (x)
sphere °	1	0	0	0	0
cube °	0	1	0	0	0
object °	1	1	0	0	0
black °	1	0	1	0	1
white $^{\circ}$	0	1	0	1	1

- One way of generalising over the context sets.
- Variant semantic representations allow more possibilities.

(ロ) (同) (三) (三) (三) (○) (○)

Ideal distribution properties

- Logical inference is possible.
- Lexical similarity, hyponymy, (denotational) synonymy in terms of context sets.
- Word 'senses' as subspaces of context sets.
- Given context sets, learner can associate lexemes with real world entities on plausible assumptions about perceptual similarity.
- Ideal distribution is unrealistic, but a target to approximate (partially) from actual distributions.

Ideal and actual distributions

- Ideal distributions: all the things a speaker could say about the situation.
- Can (perhaps) be thought of in terms of a speaker's competence.
- Speaker dependent: *cup* or *mug*?
- Actual distributions correspond to things a speaker says and hears.
- Ideal distributions are primarily expansions of actual distributions: e.g., sphere implies object.
- Frequency is relevant to actual distributions but not to ideal distributions.

Lexicalised compositionality: status and plans

- Investigation of various semantic phenomena from the ideal distribution perspective.
- Pilot experiments (Aurélie, Friday)
- Experiments with child language data?
- Build distributions based on predicates applied to particular entities: requires anaphora resolution etc.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Actual distributions

Outline.

Distributional and compositional semantics

Ideal distributions

Actual distributions

-Actual distributions

Actual distributions and corpora

- LC actual distributions are an individual's experience, but this is highly problematic with existing corpora.
- Google-scale models MAY approximate real world knowledge, but not representative of individual's word use.
 - We don't even know how many words 'typical' individuals hear in a day ...
 - For low-to-medium frequency words, individuals' experiences must differ.

e.g., 100 million word BNC very roughly equivalent to 5 years exposure but quite unlike any individual's experience.

- In BNC, rancid occurs 77 times: frequent for some people and almost unknown for others?
- A different type of corpus is essential to model individual differences, negotiation of meaning.

- Actual distributions

Individuated, situation-annotated corpora

- Collect data based on known individuals' experience.
- Ideally, all language heard and read, spoken and written over a period of time.
- Some (not all) contexts involve perceptual grounding: some indication of this would be useful.
- Technologically feasible, legally complex!
- Approximations: e.g., web data with known authorship?

(日) (日) (日) (日) (日) (日) (日)

Not just for LC!

-Actual distributions

Individuated, situation-annotated corpora

- Collect data based on known individuals' experience.
- Ideally, all language heard and read, spoken and written over a period of time.
- Some (not all) contexts involve perceptual grounding: some indication of this would be useful.
- Technologically feasible, legally complex!
- Approximations: e.g., web data with known authorship?

(日) (日) (日) (日) (日) (日) (日)

Not just for LC!

-Actual distributions

Summary

- LC: one of a number of attempts to look at combining distributional and compositional semantics.
- Current aim: provide a theoretical account which has the necessary properties.
- Full-scale experiments would require new corpora, but pilot experiments now.

(日) (日) (日) (日) (日) (日) (日)