Distributional semantics for linguists: 3b

Ann Copestake and Aurélie Herbelot

Computer Laboratory, University of Cambridge
and
Department Linguistik, Universität Potsdam

August 2012
Outline

Distributional and compositional semantics

Ideal distributions

Actual distributions
Outline.

Distributional and compositional semantics

Ideal distributions

Actual distributions
Starting points

- Compositional semantics is relatively well understood: e.g., generalised quantifiers.
- Reasonably efficient broad-coverage computational grammars with compositional semantics are available for a number of languages.
 - DELPH-IN: grammars using MRS for English, Japanese, German, Norwegian, Spanish, Portuguese: small grammars for all major language families (Emily Bender, Grammar Matrix)
- But conventional notions of denotation (*cat* is *cat’* etc) are not satisfactory.
- Can distributional semantics give an alternative, without completely rethinking composition?
Logical representation in MRS

Some big angry dog barks loudly

\[\exists x_4 [\text{big'}(x_4) \land \text{angry'}(x_4) \land \text{dog'}(x_4) \land \text{bark'}(e_2, x_4) \land \text{loud'}(e_2)] \]

\[
\begin{align*}
l_1: & \text{a1: } _\text{some}_q, \text{ BV}(a1,x_4), \text{ RSTR}(a1,h5), \text{ BODY}(a1,h6), \\
l_2: & \text{a2: } _\text{big}_a(e_8), \text{ ARG1}(a2,x_4), \\
l_2: & \text{a3: } _\text{angry}_a(e_9), \text{ ARG1}(a3,x_4), \\
l_2: & \text{a4: } _\text{dog}_n(x_4), l4:a5: _\text{bark}_v(e_2), \text{ ARG1}(a5,x_4), \\
l_4: & \text{a6: } _\text{loud}_a(e_10), \text{ ARG1}(a6,e_2), h5 =_q l2
\end{align*}
\]
Logical representation in MRS

Some big angry dog barks loudly

$$\exists x[\text{big}'(x) \land \text{angry}'(x) \land \text{dog}'(x) \land \text{bark}'(e, x) \land \text{loud}'(e)]$$

l1:a1:_some_q, BV(a1,x), RSTR(a1,h5), BODY(a1,h6),
l2:a2:_big_a(e8), ARG1(a2,x),
l2:a3:_angry_a(e9), ARG1(a3,x),
l2:a4:_dog_n(x), l4:a5:_bark_v(e), ARG1(a5,x),
l4:a6:_loud_a(e10), ARG1(a6,e), h5 = q l2
Logical representation in MRS

Some big angry dog barks loudly

\[\exists x4[\text{big}'(x4) \land \text{angry}'(x4) \land \text{dog}'(x4) \land \text{bark}'(e2, x4) \land \text{loud}'(e2)] \]

l1:a1:_some_q, BV(a1,x4), RSTR(a1,h5), BODY(a1,h6),
l2:a2:_big_a(e8), ARG1(a2,x4),
l2:a3:_angry_a(e9), ARG1(a3,x4),
l2:a4:_dog_n(x4), l4:a5:_bark_v(e2), ARG1(a5,x4),
l4:a6:_loud_a(e10), ARG1(a6,e2), h5 =_q l2

_some_q _big_a _angry_a _dog_n _bark_v* _loud_a

ARG1/EQ ARG1/NEQ ARG1/EQ

ARG1/EQ

RSTR/H
Quantifier-free MRS (this talk)

Some big angry dog barks loudly

Full RMRS:

l1:a1:_some_q, BV(a1,x4), RSTR(a1,h5), BODY(a1,h6),
l2:a2:_big_a(e8), ARG1(a2,x4),
l2:a3:_angry_a(e9), ARG1(a3,x4),
l2:a4:_dog_n(x4), l4:a5:_bark_v(e2), ARG1(a5,x4),
l4:a6:_loud_a(e10), ARG1(a6,e2), h5 =q l2

Simplified MRS:

some_q(x4), big_a(x4),
angry_a(x4),
dog_n(x4), bark_v(e2,x4),
loud_a(e2)
A longer example

Very few of the Chinese construction companies consulted were even remotely interested in entering into such an arrangement with a local partner.
A longer example

Very few of the Chinese construction companies consulted were even remotely interested in entering into such an arrangement with a local partner.
Distributional semantics for linguists: 3b

3: part_of(\(x_4\{\text{PERS 3, NUM pl}\}, x_5\{\text{PERS 3, NUM pl}\})

6: udef_q(\(x_4, h_7, h_8\))

3: _very_x_deg(\(e_9, e_{10}\{\text{SF prop}\})

3: _few_a(\(e_{10}, x_4\))

11: _the_q(\(x_5, h_{13}, h_{12}\))

14: compound(\(e_{16}\{\text{SF prop, TENSE untensed, MOOD indicative, PROG -, PERF -}\}, x_5, x_{15}\)

17: udef_q(\(x_{15}, h_{18}, h_{19}\))

20: _chinese_a_1(\(e_{21}\{\text{SF prop, TENSE untensed, MOOD indicative}\}, x_{15}\)

20: _construction_n(x_{15})

14: _company_n(x_5)

3: _consult_v_1(\(e_{24}\{\text{SF prop, TENSE untensed, MOOD indicative, PROG -, PERF -}\}, p_{25}, x_4\)

27: _even_a_1(\(e_{28}, e_2\{\text{SF prop, TENSE past, MOOD indicative, PROG -, PERF -}\})

27: _remotely_x_deg(\(e_{29}\{\text{SF prop, TENSE untensed, MOOD indicative, PROG -, PERF -}\}, e_2\)

27: _interested_a_in(\(e_2, x_4, x_{30}\{\text{PERS 3, NUM sg, GEND n}\})

31: udef_q(\(x_{30}, h_{32}, h_{33}\))

34: _enter_v_1(\(e_{35}\{\text{SF prop, TENSE untensed, MOOD indicative, PROG +, PERF -}\}, p_{36}\)

37: nominalization(\(x_{30}, h_{34}\))

34: _into_p(\(e_{38}, e_{35}, x_{39}\{\text{PERS 3, NUM sg, IND +}\})

40: _such+a_q(\(x_{39}, h_{42}, h_{41}\))

43: _arrangement_n_1(x_{39})

37: _with_p(\(e_{44}x_{30}, x_{45}\{\text{PERS 3, NUM sg, IND +}\})

46: _a_q(x_{45}, h_{48}, h_{47})

49: _local_a_1(\(e_{50}\{\text{SF prop, TENSE untensed, MOOD indicative}\}, x_{45}\)

49: _partner_n_1(x_{45})
LF assumptions and slacker semantics

Slacker assumptions:

1. don’t force distinctions which are unmotivated by syntax
2. keep representations ‘surfacy’

Main points:

▶ Word sense distinctions only if syntactic effects: don’t even distinguish traditional bank senses.
▶ Underspecification of quantifier scope etc
▶ Eventualities, (neo-)Davidsonian.
▶ Equate entities (i.e., x1 etc) only according to sentence syntax: linguistic entities.
▶ Separate step of equating to real world entities.
Lexicalised compositionality (LC)

- Combining compositional and distributional techniques, based on existing approaches to compositional semantics.
- Replace (or augment) the standard notion of lexical denotation with a distributional notion. E.g., instead of cat', use cat°: the set of all linguistic contexts in which the lexeme cat occurs.
- Contexts are expressed as logical forms.
- Primary objective: better models of lexical semantics combined with compositional semantics.
Distributions and semantics

- Conventional distributions fail to capture semantic ideas:
 - Full vs near synonymy, homonymy, antonymy.
 - Quantification.
 - Senses (perhaps).

 What’s missing is any notion of an individual entity.

- So, ‘deeper’ distributional semantics (cf Clark and Pulman 2007)

- We start with an idealized notion of a distribution . . .

http://www.cl.cam.ac.uk/~aac10/papers/lcl-0web.pdf
Outline.

Distributional and compositional semantics

Ideal distributions

Actual distributions
Ideal distribution with grounded utterances

Microworld S_1: A jiggling black sphere (a) and a rotating white cube (b)

Possible utterances (restrict lexemes to a, sphere, cube, object, rotate, jiggle, black, white) and no logical redundancy in utterance):

- a sphere jiggles
- a black sphere jiggles
- a cube rotates
- a white cube rotates
- an object jiggles
- a black object jiggles
- an object rotates
- a white object rotates
LC context sets

Logical forms in simplified MRS:
- a sphere jiggles: \(a(x_1), \text{sphere} \circ (x_1), \text{jiggle} \circ (e_1, x_1) \)
- a black sphere jiggles:
 \(a(x_2), \text{black} \circ (x_2), \text{sphere} \circ (x_2), \text{jiggle} \circ (e_2, x_2) \)

Context set for \textit{sphere} (paired with \(S_1 \)):
\[
\begin{align*}
\text{sphere} \circ &= \{ \langle [x_1][a(x_1), \text{jiggle} \circ (e_1, x_1)], S_1 \rangle, \\
&\quad \langle [x_2][a(x_2), \text{black} \circ (x_2), \text{jiggle} \circ (e_2, x_2)], S_1 \rangle \}\end{align*}
\]

Context set: pair of distributional argument tuple and distributional LF.
Ideal distribution for S_1

sphere° = \{ < [x1][a(x1), jiggle°(e1, x1)], S_1 >,
< [x2][a(x2), black°(x2), jiggle°(e2, x2)], S_1 > \}

cube° = \{ < [x3][a(x3), rotate°(e3, x3)], S_1 >,
< [x4][a(x4), white°(x4), rotate°(e4, x4)], S_1 > \}

object° = \{ < [x5][a(x5), jiggle°(e5, x5)], S_1 >,
< [x6][a(x6), black°(x6), jiggle°(e6, x6)], S_1 >,
< [x7][a(x7), rotate°(e7, x7)], S_1 >,
< [x8][a(x8), white°(x8), rotate°(e8, x8)], S_1 > \}

jiggle° = \{ < [e1, x1][a(x1), sphere°(x1)], S_1 >,
< [e2, x2][a(x2), black°(x2), sphere°(x2)], S_1 >,
< [e5, x5][a(x5), object°(x5)], S_1 >,
< [e6, x6][a(x6), black°(x6), object°(x6)], S_1 > \}
Ideal distribution for S_1, continued

$$
\text{rotate}^\circ = \left\{ \begin{array}{l}
< [e3, x3][a(x3), \text{cube}^\circ(x3)], S_1 >, \\
< [e4, x4][a(x4), \text{white}^\circ(x4), \text{cube}^\circ(x4)], S_1 >, \\
< [e7, x7][a(x7), \text{object}^\circ(x7)], S_1 >, \\
< [e8, x8][a(x8), \text{white}^\circ(x8), \text{object}^\circ(x8)], S_1 >
\end{array} \right\}
$$

$$
\text{black}^\circ = \left\{ \begin{array}{l}
< [x2][a(x2), \text{sphere}^\circ(x2), \text{jiggle}^\circ(e2, x2)], S_1 >, \\
< [x5][a(x5), \text{object}^\circ(x5), \text{jiggle}^\circ(e5, x5)], S_1 >
\end{array} \right\}
$$

$$
\text{white}^\circ = \left\{ \begin{array}{l}
< [x4][a(x4), \text{cube}^\circ(x4), \text{rotate}^\circ(e4, x4)], S_1 >, \\
< [x8][a(x8), \text{object}^\circ(x8), \text{rotate}^\circ(e8, x8)], S_1 >
\end{array} \right\}
$$
Relationship to standard notion of extension

For a predicate P, the distributional arguments of P in $\mathcal{I}c_0$ correspond to P', assuming real world equalities.

$sphere^\circ = \{ < [x1][a(x1), \text{jiggle}^\circ(e1,x1)], S_1 >, < [x2][a(x2), \text{black}^\circ(x2), \text{jiggle}^\circ(e2,x2)], S_1 > \}$

distributional arguments $x1, x2 =_{rw} a$ (where $=_{rw}$ stands for real world equality):

$object^\circ = \{ < [x5][a(x5), \text{jiggle}^\circ(e5,x5)], S_1 >, < [x6][a(x6), \text{black}^\circ(x6), \text{jiggle}^\circ(e6,x6)], S_1 >, < [x7][a(x7), \text{rotate}^\circ(e7,x7)], S_1 >, < [x8][a(x8), \text{white}^\circ(x8), \text{rotate}^\circ(e8,x8)], S_1 > \}$

distributional arguments $x5, x6 =_{rw} a, x7, x8 =_{rw} b$
Context sets as vectors

<table>
<thead>
<tr>
<th></th>
<th>jiggle °(e,x)</th>
<th>rotate °(e,x)</th>
<th>sphere °(x)</th>
<th>cube °(x)</th>
<th>object °(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sphere°</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>cube°</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>object°</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>black°</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>white°</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- One way of generalising over the context sets.
- Variant semantic representations allow more possibilities.
Ideal distribution properties

- Logical inference is possible.
- Lexical similarity, hyponymy, (denotational) synonymy in terms of context sets.
- Word ‘senses’ as subspaces of context sets.
- Given context sets, learner can associate lexemes with real world entities on plausible assumptions about perceptual similarity.
- Ideal distribution is unrealistic, but a target to approximate (partially) from actual distributions.
Ideal and actual distributions

- Ideal distributions: all the things a speaker could say about the situation.
- Can (perhaps) be thought of in terms of a speaker’s competence.
- Speaker dependent: *cup* or *mug*?
- Actual distributions correspond to things a speaker says and hears.
- Ideal distributions are primarily expansions of actual distributions: e.g., *sphere* implies *object*.
- Frequency is relevant to actual distributions but not to ideal distributions.
Lexicalised compositionality: status and plans

- Investigation of various semantic phenomena from the ideal distribution perspective.
- Pilot experiments (Aurélie, Friday)
- Experiments with child language data?
- Build distributions based on predicates applied to particular entities: requires anaphora resolution etc.
Outline.

Distributional and compositional semantics

Ideal distributions

Actual distributions
Actual distributions and corpora

- LC actual distributions are an individual’s experience, but this is highly problematic with existing corpora.
- Google-scale models MAY approximate real world knowledge, but not representative of individual’s word use.
 - We don’t even know how many words ‘typical’ individuals hear in a day . . .
 - For low-to-medium frequency words, individuals’ experiences must differ.
 - e.g., 100 million word BNC very roughly equivalent to 5 years exposure but quite unlike any individual’s experience.
- In BNC, *rancid* occurs 77 times: frequent for some people and almost unknown for others?
- A different type of corpus is essential to model individual differences, negotiation of meaning.
Actual distributions

- Collect data based on known individuals’ experience.
- Ideally, all language heard and read, spoken and written over a period of time.
- Some (not all) contexts involve perceptual grounding: some indication of this would be useful.
- Technologically feasible, legally complex!
- Approximations: e.g., web data with known authorship?
- Not just for LC!
Individuated, situation-annotated corpora

- Collect data based on known individuals’ experience.
- Ideally, all language heard and read, spoken and written over a period of time.
- Some (not all) contexts involve perceptual grounding: some indication of this would be useful.
- Technologically feasible, legally complex!
- Approximations: e.g., web data with known authorship?
- Not just for LC!
Summary

- LC: one of a number of attempts to look at combining distributional and compositional semantics.
- Current aim: provide a theoretical account which has the necessary properties.
- Full-scale experiments would require new corpora, but pilot experiments now.