Distributional semantics for linguists
Lecture 1b

Aurelie Herbelot

Universität Potsdam
Department Linguistik

ESSLLI 2012
Models: which choices must be made when designing a distributional semantics system?

Building the system: step-by-step example.

Looking at real distributions.

Issues: corpus choice, polysemy, fixed expressions.
Outline

1. Overview
2. Models
3. Getting distributions from text
4. ‘Real’distributions
5. Issues with the representation
6. Conclusion
The general intuition

- **Distributions** are vectors in a multidimensional semantic space, that is, objects with a magnitude (length) and a direction.
- The **semantic space** has dimensions which correspond to possible contexts.
- For our purposes, a distribution can be seen as a point in that space (the vector being defined with respect to the origin of that space).
- *cat* [...dog 0.8, eat 0.7, joke 0.01, mansion 0.2, zebra 0.1...]

Herbelot, Aurelie (Universität Potsdam) Distributional semantics for linguists ESSLLI 2012 5 / 31
The notion of context

- **Context**: if the meaning of a word is given by its context, what does ‘context’ mean?
 - Word windows (unfiltered): \(n \) words on either side of the lexical item under consideration (unparsed text).
 Example: \(n=2 \) (5 words window):

 ... *the prime minister* acknowledged that ...

 - Word windows (filtered): \(n \) words on either side of the lexical item under consideration (unparsed text). Some words are not considered part of the context (e.g. function words, some very frequent content words). The stop list for function words is either constructed manually, or the corpus is POS-tagged.
 Example: \(n=2 \) (5 words window):

 ... *the prime minister* acknowledged that ...

The notion of context

- Dependencies: syntactic or semantic. The corpus is converted into a list of directed links between heads and dependents. Context for a lexical item is the dependency structure it belongs to. The length of the dependency path can vary according to the implementation (Padó and Lapata, 2007).
Parsed vs unparsed data: examples

word (unparsed)

- meaning_n
- derive_v
- dictionary_n
- pronounce_v
- phrase_n
- latin_j
- ipa_n
- verb_n
- mean_v
- hebrew_n
- usage_n
- literally_r

word (parsed)

- or_c+phrase_n
- and_c+phrase_n
- syllable_n+of_p
- play_n+on_p
- etymology_n+of_p
- portmanteau_n+of_p
- and_c+deed_n
- meaning_n+of_p
- from_p+language_n
- pron_rel+_utter_v
- for_p+word_n
- in_p+sentence_n
Context weighting

- Binary model: if context c co-occurs with word w, value of vector \vec{w} for dimension c is 1, 0 otherwise.

 ... [a long long long example for a distributional semantics] model... (n=4)

 ... {a 1} {dog 0} {long 1} {sell 0} {semantics 1}...

- Basic frequency model: the value of vector \vec{w} for dimension c is the number of times that c co-occurs with w.

 ... [a long long long example for a distributional semantics] model... (n=4)

 ... {a 2} {dog 0} {long 3} {sell 0} {semantics 1}...
Context weighting

- Characteristic model: the weights given to the vector components express how characteristic a given context is for w. Functions used include:
 - Pointwise Mutual Information (PMI), with or without discounting factor.
 \[pmi_{wc} = \log\left(\frac{f_{wc} \times f_{total}}{f_w \times f_c}\right) \]
 - Derivatives such as Mitchell and Lapata’s (2010) weighting function (PMI without the log).
What semantic space?

- Entire vocabulary.
 - + All information included – even rare, but important contexts
 - - Inefficient (100,000s dimensions). Noisy (e.g. 002.png/thumb/right/200px/graph_n)

- Top n words with highest frequencies.
 - + More efficient (5000-10000 dimensions). Only ‘real’ words included.
 - - May miss out on infrequent but relevant contexts.
Singular Value Decomposition (LSA – Landauer and Dumais, 1997): the number of dimensions is reduced by exploiting redundancies in the data. A new dimension might correspond to a generalisation over several of the original dimensions (e.g. the dimensions for *car* and *vehicle* are collapsed into one).

- Very efficient (200-500 dimensions). Captures generalisations in the data.
- SVD matrices are not interpretable.

Other, more esoteric variants...
Douglas Adams, *Mostly harmless*

The major difference between a thing that might go wrong and a thing that cannot possibly go wrong is that when a thing that cannot possibly go wrong goes wrong it usually turns out to be impossible to get at or repair.

Example: Produce distributions using a word window, frequency-based model
The major difference between a thing that might go wrong and a thing that cannot possibly go wrong is that when a thing that cannot possibly go wrong goes wrong it usually turns out to be impossible to get at or repair.

- **We assume that we only keep content words in the semantic space.**

- **Dimensions:**

 - difference
 - get
 - go
 - goes
 - impossible
 - major
 - possibly
 - repair
 - thing
 - turns
 - usually
 - wrong
The major difference between a thing that might go wrong and a thing that cannot possibly go wrong is that when a thing that cannot possibly go wrong goes wrong it usually turns out to be impossible to get at or repair.

Counts:

- difference 1
- get 1
- go 3
- goes 1
- impossible 1
- major 1
- possibly 2
- repair 1
- thing 3
- turns 1
- usually 1
- wrong 4
Douglas Adams, *Mostly harmless*

The major difference between a thing that might go wrong and a thing that cannot possibly go wrong is that when a thing that cannot possibly go wrong goes wrong it usually turns out to be impossible to get at or repair.

- Ø Ø the major difference
- Ø the **major** difference between
- the major **difference** between a
- major difference **between** a thing
- ...

Herbelot, Aurelie (Universität Potsdam)

Distributional semantics for linguists

ESSLLI 2012 17 / 31
Distribution for \textit{wrong}

\textbf{Douglas Adams, \textit{Mostly harmless}}

The major difference between a thing that [might go wrong and a] thing that cannot [possibly go wrong is that] when a thing that cannot [possibly go [wrong goes wrong] it usually] turns out to be impossible to get at or repair.

\textbf{Distribution (frequencies)}:

- difference 0
- get 0
- go 1
- goes 2
- impossible 0
- major 0
- possibly 1
- repair 0
- thing 0
- turns 0
- usually 1
- wrong 2
Douglas Adams, *Mostly harmless*

The major difference between a thing that [might go wrong and a] thing that cannot [possibly go wrong is that] when a thing that cannot [possibly go [wrong goes wrong] it usually] turns out to be impossible to get at or repair.

Distribution (PMIs):

- difference 0
- get 0
- go 0.22184875
- goes 1
- impossible 0
- major 0
- possibly 0.397940009
- repair 0
- thing 0
- turns 0
- usually 0.698970004
- wrong 0.397940009
Outline

1. Overview
2. Models
3. Getting distributions from text
4. ‘Real’distributions
5. Issues with the representation
6. Conclusion
Corpus description

- Obtained from the entire English Wikipedia.
- Corpus parsed with the English Resource Grammar (Flickinger, 2000) and converted into DMRS form (Copestake, 2009).
- Dependencies considered include:
 - For nouns: head verbs (+ any other argument of the verb), modifying adjectives, head prepositions (+ any other argument of the preposition).
 e.g. cat: chase_v+mouse_n, black_a, of_p+neighbour_n
 - For verbs: arguments (NPs and PPs), adverbial modifiers.
 e.g. eat: cat_n+mouse_n, in_p+kitchen_n, fast_a
 - For adjectives: modified nouns; rest as for nouns (assuming intersective composition).
 e.g. black: cat_n, chase_v+mouse_n
System description

- Semantic space: top 100,000 contexts.
- Weighting: normalised PMI (Bouma 2007).

\[
\text{pmi}_{wc} = \frac{\log\left(\frac{f_{wc} f_{total}}{f_{w} f_{c}}\right)}{-\log\left(\frac{f_{wc}}{f_{total}}\right)}
\]
An example noun

- **language:**

 0.541816::other+than_p()+English_n
 0.525895::English_n+as_p()
 0.523398::English_n+be_v
 0.48977::english_a
 0.481964::and_c+literature_n
 0.476664::people_n+speak_v
 0.468399::French_n+be_v
 0.463604::Spanish_n+be_v
 0.463591::and_c+dialects_n
 0.452107::grammar_n+of_p()
 0.445994::foreign_a
 0.445071::germanic_a
 0.439558::German_n+be_v
 0.436135::of_p()+instruction_n

 0.435633::speaker_n+of_p()
 0.423595::generic_entity_rel_+speak_v
 0.42313::pron_rel_+speak_v
 0.42294::colon_v+English_n
 0.419646::be_v+English_n
 0.418535::language_n+be_v
 0.4159::and_c+culture_n
 0.410987::arabic_a
 0.408387::dialects_n+of_p()
 0.399266::part_of_rel_+speak_v
 0.397::percent_n+speak_v
 0.39328::spanish_a
 0.39273::welsh_a
 0.391575::tonal_a
An example adjective

- academic:

0.517031::Decathlon_n
0.512661::excellence_n
0.449711::dishonesty_n
0.445393::rigor_n
0.426142::achievement_n
0.421246::discipline_n
0.397311::vice_president_n+for_p()
0.391978::institution_n
0.38937::credentials_n
0.378062::journal_n
0.373727::journal_n+be_v
0.372052::vocational_a
0.371873::student_n+achieve_v
0.361359::athletic_a

0.356562::reputation_n+for_p()
0.354674::regalia_n
0.353712::program_n
0.351601::freedom_n
0.347751::student_n+with_p()
0.34621::curriculum_n
0.342008::standard_n
0.34151::at_p()+institution_n
0.340271::career_n
0.337857::Career_n
0.329923::dress_n
0.329358::scholarship_n
0.329281::prepare_v+student_n
0.328009::qualification_n
Outline

1. Overview
2. Models
3. Getting distributions from text
4. ‘Real’distributions
5. Issues with the representation
6. Conclusion
Issues with the representation

Corpus choice

- As much data as possible?
 - British National Corpus (BNC): 100 m words
 - Wikipedia: 897 m words
 - UKWac: 2 bn words
 - ...

- In general preferable, *but*:
 - More data is not necessarily the data you want.
 - More data is not necessarily realistic from a psycholinguistic point of view. We perhaps encounter 50,000 words a day. BNC = 5 years’ text exposure.
Corpus choice

- Distribution for unicycle, as obtained from Wikipedia.

```
0.448051::motorized_a
0.404372::pron_rel_+ride_v
0.238612::for_p()+entertainment_n
0.235763::half_n+be_v
0.235407::unwieldy_a
0.230275::earn_v+point_n
0.216627::pron_rel_+crash_v
0.190785::man_n+on_p()
0.186325::on_p()+stage_n
0.185063::position_n+on_p()
0.168102::slip_v
0.162611::and_c+1_n
0.159627::autonomous_a
0.155822::balance_v
0.133084::tall_a
0.124242::fast_a
0.106976::red_a
0.0714643::come_v
0.0601987::high_a
```
Polysemy

Distribution for *pot*, as obtained from Wikipedia.

- 0.566454::melt_v
- 0.442374::pron_rel_+smoke_v
- 0.434682::of_p()+gold_n
- 0.40773::porous_a
- 0.401654::of_p()+tea_n
- 0.39444::player_n+win_v
- 0.393812::money_n+in_p()
- 0.39444::player_n+win_v
- 0.39444::player_n+win_v
- 0.393812::money_n+in_p()
- 0.387198::of_p()+coffee_n
- 0.33117::amount_n+in_p()
- 0.329211::ceramic_a
- 0.326387::hot_a
- 0.325321::boil_v
- 0.313404::bowl_n+and_c
- 0.306324::ingredient_n+in_p()
- 0.301916::plant_n+in_p()
- 0.298764::simmer_v
- 0.292397::pot_n+and_c
- 0.284539::bottom_n+of_p()
- 0.28338::of_p()+flower_n
- 0.279412::of_p()+water_n
- 0.278914::food_n+in_p()
- 0.262501::pron_rel_+heat_v
- 0.260375::size_n+of_p()
- 0.25511::pron_rel_+split_v
- 0.254363::of_p()+money_n
- 0.2535::of_p()+culture_n
- 0.249626::player_n+take_v
- 0.246479::in_p()+hole_n
- 0.244051::of_p()+soil_n
- 0.243797::city_n+become_v
Fixed expressions

Distribution for *time*, as obtained from Wikipedia.

- 0.462949::of_p()+death_n
- 0.448965::same_a
- 0.446277::1_n+at_p(temp)
- 0.445338::Nick_n+of_p()
- 0.423542::spare_a
- 0.418568::playoffs_n+for_p()
- 0.405288::of_p()+retirement_n
- 0.405288::of_p()+release_n
- 0.397135::pron_rel_+spend_v
- 0.389886::sand_n+of_p()
- 0.385954::pron_rel_+waste_v
- 0.382816::place_n+around_p()
- 0.370464::world_n+at_p()
- 0.370464::world_n+at_p()
- 0.363982::and_c+space_n
- 0.363241::generic_entity_rel_+mark_v
- 0.361872::of_p()+introduction_n
- 0.357929::in_p()+year_n
- 0.357565::of_p()+appointment_n
- 0.356229::of_p()+trouble_n
- 0.355658::of_p()+merger_n
- 0.354794::on_p()+ice_n
- 0.353891::practice_n+at_p()
- 0.351994::of_p()+birth_n
- 0.351556::full_a
- 0.348029::of_p()+accident_n
- 0.34785::state_n+at_p()
- 0.347753::to_p()+time_n
- 0.345147::of_p()+election_n
- 0.345088::area_n+at_p()
- 0.342571::and_c+money_n
- 0.342113::time_n+after_p()
Outline

1. Overview
2. Models
3. Getting distributions from text
4. ‘Real’distributions
5. Issues with the representation
6. Conclusion
Conclusion

- Various models for distributional systems, with various consequences on the output.
- Known issues: corpus-dependence (which notion of concept is at play here?), word senses are collapsed (perhaps not such a bad thing...), fixed expressions create noise in the data.