
Composing distributions: mathematical
structures and their linguistic interpretation

Mohan Ganesalingam*

University of Cambridge
Aurelie Herbelot†

Universität Potsdam

The goal of this paper is to consider the mathematical operations proposed in the literature for
composing distributional vectors using mixture models, and assess their linguistic plausibility
by looking at various aspects of their behaviour. We explore representational issues related to
the space in which distributional vectors live, and to the ways composition operations affect
that space. Having generally argued in favour of pointwise operations, we investigate which
of those allow for full recursivity and conclude with an extensive discussion of additive and
multiplicative models. Our claims are supported both by experimental results from the literature
on distributional compositionality and linguistic considerations on the representation of lexical
meaning.

1. Introduction

Often presented as a complement to model-theoretic semantics, distributional semantics
aims to represent some aspect of lexical meaning as a function of the contexts in which a
given word appears. The idea of meaning being partially provided by linguistic context
is usually credited to Harris (1954), who stated that words which are similar in meaning
occur in similar contexts. Following this idea, some work in computational linguistics,
starting with Harper (1965), has been devoted to building and evaluating models which
represent words as distributions, i.e., vectors in a multidimensional space where each
dimension corresponds to a potential context for a lexical item (Curran 2003; Turney
and Pantel 2010; Clark 2012; Erk 2012).

More recently, it has been suggested that in order to integrate distributional
semantics with model-theoretic formalisms, methods should be found to compose
the distributions of single words (Clark and Pulman 2007). Indeed, while it is clear
that the representation of carnivorous mammal in formal semantics can be written as
λx[carnivorous′(x) ∧mammal′(x)], it is less clear how the lexical semantics of the phrase
should be described in distributional terms. Several composition operations have been
proposed in the literature, ranging from simple pointwise multiplication to variations
on the tensor product, and extensively evaluated on a range of tasks (Mitchell and
Lapata 2008, 2010; Guevara 2010, 2011; Baroni and Zamparelli 2010; Widdows 2008;
Grefenstette and Sadrzadeh 2011; Giesbrecht 2009; Socher et al. 2012). The linguistic
implications of using particular distributional models for representing meaning are
however only just starting to be discussed (Baroni, Bernardi, and Zamparelli 2012; Erk
2013), and many questions remain unanswered. For instance, is it reasonable to fully
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regard distributional semantics as a (physical) geometrical system? Is it meaningful to
use composition operations which transform the vector basis used for single words?
How does vector composition behave with respect to recursivity? Etc.

The main goal of this paper is to start analysing the various mathematical oper-
ations suggested for composing distributions in the light of the requirements which
we feel are necessary for a sensible linguistic interpretation of distributional represen-
tations. In order to do this, we will rely heavily on the experimental results reported
so far in the literature – primarily, those of Mitchell and Lapata (2010), who provided
results on a wide range of functions and thereby supplied us with excellent data to
examine. By attempting to explain those results theoretically, we hope to get to a better
understanding of the properties needed by a distributional account to reflect linguistic
data.

Distributional systems are complex: they involve choices at many levels, from the
construction of an appropriate semantic space to the weighting function applied to
the components of the vectors, to the actual composition operation and the similarity
measure used for evaluation. This paper is by no means an attempt to cover all possible
interactions between those levels. In particular, we will leave out the complex question
of how dimensionality reduction techniques such as Latent Semantic Analysis (LSA,
Deerwester et al. (1990)) or topic models (Steyvers and Griffiths (2007)), the goal of
which is to compress the semantic space in a meaningful fashion, interact with compo-
sition. Further, our focus will be on ‘mixture’ models, i.e. functions that apply to two (or
more) column vectors (with or without scalar weighting). Models involving matrices
as functional operations will be mentioned when appropriate but we will leave their
analysis for further work1.

The paper is structured as follows. After a section on related work, we first consider
the issue of space in distributional systems. Specifically, we ask whether some vector
bases are more meaningful than others and how particular composition operations
affect distributional representations by transforming the space in which words live.
Having argued in favour of pointwise operations, we turn to the issue of modelling
recursivity and discuss the problems arising when weighting such operations. We
eventually restrict the field of meaningful composition functions to additive and multi-
plicative models and discuss both approaches as well as the related tensor framework
of Clark, Coecke, and Sadrzadeh (2008), highlighting their merits and disadvantages.

2. Related work

The composition of a phrase in distributional semantics is usually obtained by either
‘combining’ the vectors of the components of the phrase (in so-called ‘mixture models’ –
which we will focus on in this paper) or by treating some words as functions ‘acting’ on
other words. Various mathematical methods can be used to perform such compositions.
In this section, we review the main attempts so far, focusing on the papers that compare
different methods or introduce a new framework.

Mitchell and Lapata (2010) (henceforth M&L), expanding on Mitchell and Lapata
(2008), perform similarity experiments over a range of 8 different composition functions
and as such, provide particularly interesting data to comment on. Their system is
evaluated on pairs of frequent phrases covering three grammatical categories: adjective-

1For a linguistically-motivated discussion of distributional functions involving tensor spaces, see again
Baroni, Bernardi, and Zamparelli (2012).

2



Mohan Ganesalingam & Aurelie Herbelot Composing distributions

noun phrases (e.g. new information – further evidence), noun-noun compounds (e.g. party
official – opposition member) and verb-object constructions (e.g. write book – hear word).
Those phrase pairs (36 per categories) are annotated with similarity values by human
participants on a scale of 1 to 7. The goal of the system is then to produce similarity fig-
ures which correlate with human judgements. We will draw heavily on the findings of
M&L in the course of this paper and therefore will not provide a detailed description of
their experiments in this section. The main point to note is that pointwise multiplication
performs best across the three grammatical constructions.

Clark, Coecke, and Sadrzadeh (2008) and Coecke, Sadrzadeh, and Clark (2010), as
implemented in Grefenstette and Sadrzadeh (2011), introduce a tensor-based frame-
work which combines a categorial grammar with distributional representations. Their
proposal, which we describe in more detail in §5.3, has the benefit of taking syntax into
account when performing composition. It also considers the question of which semantic
space should be chosen to contain the meaning of sentences. Experimental results are
reported on similarity tasks which partially overlap with Mitchell and Lapata (2008).
The framework is shows to perform better than simple additive and multiplicative
models.

Widdows (2008) gives an overview of vector operations that he suggests may be
used for composing distributions. He describes small-scale experiments designed to
assess the strengths and weaknesses of some of the proposed operators: addition,
vector product, tensor product and convolution. Of relevance to our work, one of his
experiments concerns the similarity of verb-noun pairs (e.g. earn money against pay
wages). Widdows’ results suggest that tensor product performs better than addition and
vector product.

Guevara (2010, 2011) argues that different syntactic constructs will probably be
expressed by different composition operations and that, for each construction, it may
be possible to learn an appropriate function, representing the effect of one class of
words over its arguments. Accordingly, he experiments with models based on addition,
multiplication, circular convolution and partial least squares regression. One novelty of
his approach is the evaluation and, where appropriate, training of the models using
distributions of observed phrases (i.e. black composed with cat is evaluated against
black_cat). His experiments show that for adjective-noun pairs, the partial least squares
regression (PLSR) model performs best, while the additive model gives better results
on verb-noun pairs. It is worth noting that the PLSR model can be described as linear
combination with parameters learnt from actual adjective-noun phrases. As such, it is
essentially as an additive model of the form

p = Au+Bv

where A and B are matrices learnt via PLSR.
Also working on adjectives, Baroni and Zamparelli (2010) follow Guevara’s intu-

ition that an appropriate composition function can be learnt by observing actual phrases
in a large enough corpus. However, they go one step further in tailoring the function
to particular linguistic contexts and argue that a different operation should be learnt
for each adjective in their data. Additionally, they regard modification as a function
from noun meaning to noun meaning and propose to represent the adjective as a matrix
‘applying’ to the noun to produce another noun. Using partial least squares regression,
they learn each matrix individually and perform composition by multiplying this matrix
by the noun vector. Their model is therefore of the form
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p = Bv

where B is a matrix representing the adjective, learnt via PLSR. It outperforms both
addition and multiplication, as well as Guevara’s account.

Similarly, Socher et al. (2012) implement composition as function application, but
model all words as both a vector and a matrix. The vector encodes the lexical meaning
of the word while the matrix represents how it modifies the meaning of its argu-
ments (composition happens in the order given by the syntactic parse tree for the
phrase/sentence to be modelled). The model is trained using a neural network and
evaluated on two sentiment analysis tasks and the classification of semantic relation-
ships.

Finally, we should mention models which cannot be directly described as composi-
tion operations but attempt to represent the meaning of a word in context by modifying
its corpus-wide vector. Erk and Padó (2008) is an example of such line of work.

3. Considerations on distributional spaces

In this section, we will investigate the implications that particular composition functions
have for the semantic space in which their arguments live. Focusing on column vector
distributions, we will argue for distributional representations which are informative
at the component level and, using as evidence for our claims the experimental results
reported so far in the literature, suggest that linguistically transparent vector spaces
contribute to better models of phrasal meaning.

3.1 Geometry and basis-independence

Distributional models can be interpreted geometrically: words are ‘vectors’ in a ‘space’
and distance measures applicable to geometrical systems can be used to query the
semantic relatedness of lexical items. In this section, we will consider this interpretation
with regard to a particular geometrical property: basis-independence.

M&L draw a distinction between basis-dependent and basis-independent opera-
tions, and introduce one operation, which they term ‘dilation’, precisely because it is
a basis-independent analogue of another operation they consider. They find however
that one basis-dependent operation, namely pointwise multiplication of vectors, was
consistently as effective or more effective than basis-independent operations.

There is one central context in which basis independence of vectors is indispensable.
In the physical world, there are no privileged axes; that is, there are no canonical
directions which can be labelled ‘X’, ‘Y’ and ‘Z’, i.e., there is no canonical basis. One
consequence of this is that physical theories need to make sense when interpreted with
respect to any (suitably orthogonal) basis. This in turn means that operations on vectors
which yield different physical vectors in different bases are simply nonsensical: they
cannot possibly form part of reasonable physical theories. This point is so central to
physics that to a physicist or applied mathematician, the term ‘vector’ denotes an object
which is by definition basis-independent; such an object is not itself in, list of numbers,
but can be converted into a list of numbers given a basis.

In the linguistic context, we are not dealing with a physical vector: a distribution
vector does not represent a physical quantity. It is therefore worth trying to understand
what basis independence might mean from a linguistic perspective and to determine
whether it is appropriate here. When doing this, it will be useful to have a illustrative
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numerical example at hand. We will borrow such an example from M&L: the following
are example vectors for the word ‘practical’ and ‘difficulty’:2

music solution economy craft reasonable
practical ( 0 6 2 10 4 )
difficulty ( 1 8 4 4 0 )

Here ‘6’ measures the propensity of ‘practical’ to occur near ‘solution’ in texts, and
so on. What does it mean to transform this vector into a different basis? The question
is most easily answered by choosing a particularly simple transformation, namely a
rotation by 45◦ in two axes which leaves the other three axes untouched. The change of
basis matrix for this transformation is as follows:


1/
√
2 1/

√
2 0 0 0

1/
√
2 −1/

√
2 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


Accordingly, the components of the vector in the transformed basis are as follows:

music+solution√
2

music−solution√
2

economy craft reasonable
practical ( 6/

√
2 −6/

√
2 2 10 4 )

difficulty ( 9/
√
2 −7/

√
2 4 4 0 )

The first component of the first of these vectors measures the tendency of ’practical’
to occur near both ‘music’ and ‘solution’; the second component measures the tendency
of practical to occur near ‘music’ more often than it occurs near ‘solution’. This is of
course a particularly simple example; with a general rotation, components will mix
information about the propensity of ‘practical’ to occur with five words (‘music’, ‘so-
lution’, ‘economy’, ‘craft’ and ‘reasonable’).

A basis-independent operation is an operation that can be applied to rotated vectors
just as easily as to the original vectors. For example, consider pointwise multiplication.
When applied to the vectors in the original basis, it will yield the following vector for
‘practical difficulty’:

music solution economy craft reasonable
( 1 48 8 40 0 )

If this combined vector is transformed into the rotated basis, we obtain:

music+solution√
2

music−solution√
2

economy craft reasonable
( 49/

√
2 −47/

√
2 8 40 0 )

(1)

2It would be more conventional to write these as column vectors, but row vectors are equally valid and
considerably more compact.
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When applied to the vectors measured relative to the rotated basis, it will yield:

music+solution√
2

music−solution√
2

economy craft reasonable
( 27 21 8 40 0 )

(2)

Since the vectors of (1) and (2) are not the same, it follows that pointwise multipli-
cation is not a basis-independent operation.

Generally, if we object to an operation on the grounds that it is basis-dependent,
what we are objecting to is precisely the fact that the operation cannot be applied to
vectors measured in terms of music+solution√

2
, etc. In a physical system, this kind of con-

straint is completely natural. For the linguistic system we are dealing with, we would
contend that this is not the case: there seems to be no reason to require operations to be
naturally applicable to vectors measured in terms of music+solution√

2
, etc. In consequence,

we do not believe that basis independence is a natural desideratum for operations on
distribution vectors.

M&L’s argument in favour of using basis independence is that it has the benefit
of being applicable to vectors in their original form and in a reduced semantic space.
Whether the results of an operation performed on a full vector space and the equivalent
reduced space should be identical is a nontrivial question which we are unable to
answer here. But even if we subscribe to this view, it should be noted that not all
dimensionality reduction techniques relate to a change in basis. Principal Component
Analysis (PCA) is essentially just a change of basis, so basis-independent methods are
likely to perform as well with PCA as without. We are not however aware of any results
stating that topic model methods such as Latent Dirichlet Allocation, for instance, is
related to change of basis. Without such a result there is no reason to prefer a basis-
independent method.

M&L’s results confirm that the operation does not bring any significant improve-
ment and performs, in fact, slightly worse than the multiplicative model on a full vector
space. Our view is therefore that, although some properties of (physical) geometrical
systems can be put to good use in distributional semantics, some others are not linguis-
tically relevant and can even harm the representation.

3.2 Basis-transforming operations: tensor product and circular convolution

We now consider two operations with basis-transforming properties: tensor product
and circular convolution. M&L found that composition of distribution vectors via point-
wise multiplication outperformed composition using the tensor product, and that both
of these significantly outperformed vector composition via circular convolution. In fact,
circular convolution was found to be substantially worse than every other model in
every category considered. In this section, we will attempt to explain these experimental
findings.

3.2.1 Tensor product. It may be useful to begin by giving an overview of the tensor
product. As in the previous section, this is best done with the aid of an example; once
again, we will borrow the example vectors of M&L:
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music solution economy craft reasonable
practical ( 0 6 2 10 4 )
difficulty ( 1 8 4 4 0 )

The simplest description of the tensor product of these two vectors is as follows: it
contains the product of every component of the first vector with every component of the
second vector. Each vector has 5 components; consequently the tensor product has 25
components. It is convenient (though not obligatory) to write down the tensor product
in the form of a matrix:



music solution economy craft reasonable
music 0× 1 0× 8 0× 4 0× 4 0× 0
solution 6× 1 6× 8 6× 4 6× 4 6× 0
economy 2× 1 2× 8 2× 4 2× 4 2× 0
craft 10× 1 10× 8 10× 4 10× 4 10× 0
reasonable 4× 1 4× 8 4× 4 4× 4 4× 0


In other words, the tensor product is:



music solution economy craft reasonable
music 0 0 0 0 0
solution 6 48 24 24 0
economy 2 16 8 8 0
craft 10 80 40 40 0
reasonable 4 32 16 16 0


For illustrative purposes, let us fix on one element of this tensor product, say the ‘6’
marked in bold. This element is the product of the propensity of ‘practical’ to occur
near ‘solution’ and the propensity of ‘difficulty’ to occur near ‘music’.

M&L always measure the similarity of two vectors using the cosine of the angle
between them.3 In the case of tensor products, they (presumably) follow the same ap-
proach, by treating each tensor as a single long vector. In our example above, ‘practical
difficulty’ would be represented by the following vector (with 25 elements):

(0 0 0 0 0 6 48 24 24 0 2 16 8 8 0 10 80 40 40 10 4 32 16 16 0)

One can find the angle between this vector and another 25-element vector (obtained
from another tensor product, representing another two-word phrase) in the usual fash-

3Due to space restrictions, as well as our focus on explaining the results of M&L, we will not consider
any other similarity measure in this paper. We leave the exhaustive study of particular interactions between
composition and similarity operations for further work.
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ion, using the following formula:

cosine of angle between a and b =
a.b√

(a.a)(b.b)

It is difficult to directly obtain an intuitive sense of what this angle in a high-
dimensional space means in linguistic terms. Fortunately, through the use of a math-
ematical identity, we can obtain a much more natural, and comprehensible, perspective
on the situation. The relevant identity has very short proof using the summation con-
vention (Einstein 1916), but we prefer to present a more easily understood proof using
a concrete example.4 We will temporarily restrict ourselves to illustrating the situation
using three-component vectors, rather than five-component vectors, in order to keep
the relevant equations to a reasonable length.

Let us therefore suppose that we are comparing two adjective-noun pairs. The first
adjective and noun will be represented by vectors a = (a1, a2, a3) and n = (n1, n2, n3),
and the second adjective and noun by vectors A = (A1, A2, A3) and N = (N1, N2, N3).
The two relevant tensor products, a⊗ n and A⊗N, are therefore:a1n1 a1n2 a1n3a2n1 a2n2 a2n3

a3n1 a3n2 a3n3

 and

A1N1 A1N2 A1N3

A2N1 A2N2 A2N3

A3N1 A3N2 A3N3


Or, represented as vectors:(

a1n1 a1n2 a1n3 a2n1 a2n2 a2n3 a3n1 a3n2 a3n3
)

and (
A1N1 A1N2 A1N3 A2N1 A2N2 A2N3 A3N1 A3N2 A3N3

)
To take the dot product of these vectors, we simply multiply the corresponding compo-
nents and add in the usual fashion to obtain:

(a⊗ n).(A⊗N) = a1n1A1N1 + a1n2A1N2 + a1n3A1N3

+ a2n1A2N1 + a2n2A2N2 + a2n3A2N3

+ a3n1A3N1 + a3n2A3N2 + a3n3A3N3

Simply by shuffling the order of terms in products, we find that this is equal to:

a1A1n1N1 + a1A1n2N2 + a1A1n3N3

+a2A2n1N1 + a2A2n2N2 + a2A2n3N3

+a3A3n1N1 + a3A3n2N2 + a3A3n3N3

4The end result of this proof is briefly mentioned by e.g. Widdows (2008) or again Giesbrecht (2009) but
we find it helpful to spell all steps out, to convince the reader of our subsequent argument.
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Collecting common factors shows that this in turn is equal to:

a1A1(n1N1 + n2N2 + n3N3)

+a2A2(n1N1 + n2N2 + n3N3)

+a3A3(n1N1 + n2N2 + n3N3)

= (a1A1+a2A2 + a3A3)(n1N1 + n2N2 + n3N3)

But a1A1 + a2A2 + a3A3 is just a.A, and n1N1 + n2N2 + n3N3 is just n.N. So the dot
product of tensor products can be computed using the following simple formula:

(a⊗ n).(A⊗N) = (a.A)(n.N)

Although we have only deduced this identity for vectors of length 3, it holds for
vectors of arbitrary length. As noted above, this can be proved very compactly using
the summation convention:

(a⊗ n).(A⊗N) = (a⊗ n)(i,j)(A⊗N)(i,j)

= (ainj)(AiNj)

= aiAinjNj = (a.A)(n.N)

By the exact same calculation we performed above, we can also deduce that

(a⊗ n).(a⊗ n) = (a.a)(n.n) = |a|2|n|2

and

(A⊗N).(A⊗N) = (A.A)(N.N) = |A|2|N|2

Using these identities, we find that the cosine of the angle between a⊗ n and A⊗N is:

(a⊗ n).(A⊗N)√
((a⊗ n).(a⊗ n))((A⊗N).(A⊗N))

=
(a.A)(n.N)√
|a|2|n|2|A|2|N|2

=
(a.A)(n.N)

|a||n||A||N|

=
(a.A)

|a||A|
× (n.N)

|a||N|

But this is simply the product of the direction cosine of a and A and the direction cosine
of n and N. So by using the tensor product, one is simply computing the similarity of
a to A, independently computing the similarity of n and N, and then multiplying the
two. Or in more informal terms, one is independently comparing adjective to adjective
and noun to noun.
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Now that we have a handle on what it actually means to compare tensor products,
we are in a position to explain the results of M&L. The relevant data is as follows (see
§2 for a short description of the evaluation task):

Model Adjective-Noun Noun-Noun Verb-Object
Multiplicative

Full vector space 0.46 0.49 0.37
Tensor product

Full vector space 0.41 0.36 0.33

Table 1
M&L Precision figures for the multiplication and tensor product models (similarity task)

There are in fact two separate points to explain here. First, the tensor product is
generally weaker than pointwise multiplication. Second, the tensor product approach
performs particularly badly when applied to noun-noun compounds in the full vector
space. The explanation for the first point is that independently comparing, say, adjec-
tives a and A and nouns n and N disregards the possibility that a might be similar to N,
or A to n. For example, consider the phrases ‘musical friend’ and ’friendly musician’.
Insofar as ‘musical’ is unrelated to ‘friendly’, and ‘friend’ unrelated to ‘musician’, the
tensor product approach will predict that these items are highly dissimilar. By contrast,
pointwise multiplication combines the information from adjectives and nouns before
comparison, and should therefore rate ‘musical friend’ and ’friendly musician’ as very
similar. This effect may have caused the tensor product system to rate pairs such as
better job – economic problem on the low side while overrating pairs such as new language –
modern technology (because of the presumably high similarity between new and modern).

Turning to the second point, the reason that this effect is particularly pronounced
with noun-noun compounds is that the elements in the two positions are of the same
kind, i.e. that they are both nouns. It is more likely that a noun will be similar to another
noun than that it will be similar to another adjective. Together with a degree of flexibility
in the ordering of elements in noun-noun phrases, this means that in the noun-noun
case, it is more likely that one has similarity between the first element in phrase A and
the second element in phrase B (or vice versa). Pairs such as assistant manager – board
member may consequently be rated lower than they should be by the model.

Our conclusion is therefore that the combination of tensor product and cosine
measure in a similarity task does not evaluate the composition operation itself, and
the results obtained from such a setup will depend on the evaluation data. The fact
that Widdows (2008) reports contrary results to M&L can be taken, we believe, as an
artefact of the test data. We will thus not attempt to make claims about the performance
of the tensor product as a composition operation. We will however note that, as in the
case of some rotations (see §3.1), the space produced by the operation does not have a
straightforward linguistic interpretation (we will expand on this point at the end of the
next section).

To finish our discussion of the tensor product, we should note that one of its
drawbacks is that the dimensionality of the composed vector (n2 for a two-word phrase
in a vector space with n dimensions) makes it difficult to compare phrases of different
lengths (Washtell 2011). Circular convolution has been suggested in the literature as an
operation which overcomes this issue (Jones and Mewhort 2007) so we will now turn to
it.
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3.2.2 Circular convolution. Circular convolution computes a highly compressed version
of the tensor product. Once again, we will use our familiar example:



music solution economy craft reasonable
music 0 0 0 0 0
solution 6 48 24 24 0
economy 2 16 8 8 0
craft 10 80 40 40 0
reasonable 4 32 16 16 0



The components of the convolution are simply obtained by summing elements
along with diagonals of the tensor product. If one ‘runs off’ the bottom (resp. right
hand side) of the matrix before obtaining five values, one ‘wraps around’ to the top
(resp. left hand side) of the matrix. So, for example, the first element of the circular
convolution of the matrix above is obtained by summing the elements along the main
diagonal, 0 + 48 + 8 + 40 + 0 = 96. Another element is obtained by summing the five
entries marked in bold, 10 + 32 + 0 + 24 + 0 = 66.

As elsewhere in this paper, our aim is to interpret the linguistic significance of this
mathematical operation. As in previous cases, we will try to illustrate this with the help
of a concrete example. Let us focus on the diagonal marked in bold in the matrix above.
We may start by recalling the significance of the elements in the tensor product. The
‘10’ represents the tendency of ‘practical difficulty’ to have its first element occurring
near ‘craft’ and its second element occurring near ‘music’, computed by multiplying
the appropriate measures for ‘practical’ , and ‘difficulty’. Schematically, we might write:

practicalcraft = 10

difficultymusic = 1

practical difficulty(craft,music) = 1× 10 = 10

The other elements of the relevant diagonal are as follows:

practical difficulty(reasonable,solution) = 32

practical difficulty(music,economy) = 0

practical difficulty(solution,craft) = 24

practical difficulty(economy,reasonable) = 0

11
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The element of the circular convolution obtained by summing these is

practical difficulty(craft,music)

+practical difficulty(reasonable,solution)

+practical difficulty(music,economy)

+practical difficulty(solution,craft)

+practical difficulty(economy,reasonable) = 66

This represents the propensity of ‘practical difficulty’ to have its first element oc-
curring near ‘craft’ and its second element occurring near ‘music’, or to have its first
element occurring near ‘reasonable’ and its second element occurring near ‘solution’,
or its first element occurring near ‘music’ and its second element occurring near ‘econ-
omy’, or etc. We are unable to assign any linguistic significance to this quantity. The
dimensions of the obtained vector are a) not interpretable as a linguistically relevant
basis b) not directly comparable to those found in a phrase of different length (because
the basis differs). Further, it should be clear at this point that the actual elements of a
circular convolution are highly dependent on the base chosen. If we had used the basis
(solution, music, economy, craft, reasonable) instead of (music, solution, economy, craft,
reasonable), we would have obtained a completely different vector. There does not seem
to be any particular linguistic requirement for having a basis with a particular ordering
of dimensions.

We should note that the component computed from the main diagonal is mean-
ingful. This component measures the propensity of the two words in the phrase being
considered (e.g. ‘practical’ and ‘difficulty’) to occur near the same words, and thus gives
a measure of the similarity of the two words. However, if one is working with vectors of
a realistic length, the information in this one component will have a negligible effect on
the overall result. We would therefore predict that a vector constructed using circular
convolution will perform badly in tasks focusing on phrasal meaning. This is confirmed
by the results of M&L.

3.3 Desiderata for a distributional space

We have so far expressed two desiderata with regard to distributional spaces and the
vectorial representations associated with them:

1. The dimensions of a distributional space should be linguistically
interpretable.

2. Phrases of various lengths should be comparable.

These desiderata can be satisfied by a) having a sensible distributional space for
single words and b) choosing composition operations which leave that space intact.

This brings us to a representational point. Distributional models are often evaluated
with regard to their ability to simulate semantic similarity. In such evaluations, the
general shape of the distributional vector is what matters, and the precise values of the
vector components – or for that matter, what those components represent – are not vital.
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If we are to claim that distributions are a general representation of (at least some aspects
of) lexical meaning, though, it seems important to ask whether they are fit to model
information which we might consider to be part of lexical semantics. This, we argue,
involves asking what we mean when we say that vector ~v has value p along dimension
d.

Let us first consider the fact that distributions approximate the kind of informa-
tion given by so-called ‘feature norms’ (Devereux et al. 2009; Andrews, Vigliocco, and
Vinson 2009), i.e. they are able to identify which features are salient for a particular
concept. By choosing appropriate linguistic dimensions, this approximation holds: in
the simplest vector space models, where each dimension corresponds to a word or a
syntactic/semantic construct, we can say for instance that mouse accounts for a large
proportion of the lexical meaning of cat because the cat vector has a high value along
the (linguistically meaningful) dimension mouse. 5

Another way in which the basis of a distributional vector can be said to be lexically
informative is by comparing different vectors: by saying, for instance, that mouse is more
associated with cat than it is with dog, we establish the respective positions of cat and
dog in the semantic space and thereby account for their difference in meaning. This
models both conceptual similarities and characteristics in a transparent, explanatory
fashion. Again, this information is only available because we have chosen a vector space
in which dimensions correspond to linguistic entities.

Retaining a sensible vector space after composition will allow us to ascertain, for
instance, what is similar about black cat and white owl, and crucially, to also compare
black cat and cat along particular dimensions. So our general claim is that we should
prefer operations which are not basis-transforming or to the least, be able to return to a
linguistically meaningful vector space from whichever basis the composition has taken
us to (which, arguably, operations such as circular convolution only allow in a very
lossy fashion).

The above is of course a representational point, but representation and system
performance are tightly linked and there is no reason to believe that a model based
on non-linguistic features should provide better results than one based on naturally
occurring linguistic entities. In fact, the results reported by M&L show that transparent
bases are likely to perform better in experimental setups. In the next section, we follow
up on this, bringing into play ‘compositionality’ itself.

3.4 Pointwise Operations

Our discussion in the previous section points us towards a general point about opera-
tions on distribution vectors. In that discussion, we computed a number of quantities
like:

X Y(economy,reasonable) = Xeconomy × Yreasonable

This quantity is computed from the ‘economy’ component of the vector for X and
the ‘reasonable’ component of the vector for Y. It measures the tendency of a two-word

5We also consider ‘linguistically meaninful’ certain models of reduced vector spaces, like LSA or topic
models, which attempt to group semantically compatible contexts in one dimension (at least from a theoretical
point of view).
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phrase ‘X Y’ to have its first element occur near instances of ‘economy’ and its second
element occur near instances of ‘reasonable’. Based on linguistic intuitions, we would
not expect this combination to carry much useful information. M&L’s findings provide
empirical confirmation of this intuition.

The root cause of the lack of information here seems to be that combining different
components of two different vectors simply does not seem to be a natural semantic
operation. That is, the fact that the two parts of a phrase occur near ‘economy’ and
‘reasonable’ respectively would not, intuitively speaking, seem to tell us very much at
all about the meaning of the phrase itself. Note by contrast that combining the same
component of two different vectors is certainly meaningful. For example,

X Y(economy,economy) = Xeconomy × Yeconomy

should give a reasonable estimate of the tendency of the phrase ‘X Y’ to occur near
the word ‘economy’; this is clearly highly informative.

One might respond to this point by noting that while the particular quantity de-
scribed has little significance, other quantities from the same class might be of some
use. For example, given that ‘dog’ and ‘hound’ are in many ways similar, one might
expect

X Y(dog,hound) = Xdog × Yhound

to carry more semantic information: it gives us some measure of the propensity of the
phrase as a whole to occur near ‘dog’-like words. This is a reasonable observation, but it
is difficult to actually make use of it to construct operations for composing distribution
vectors. The key point here is that if we are adhering to compositionality, we simply
have to write down a mathematical function that takes two vectors and produces
another vector; such a function cannot utilise any source of information about simi-
larities of different ‘components’. Our models have no source of information that tells
us whether a given pair is potentially informative (like (dog,hound)) or uninformative
(like (economy, reasonable)). As a result, if we try to admit the informative pairs into
our model, we will inevitably end up admitting the uninformative pairs as well. Because
relatively few pairs will be informative, we will find that the noise obtained from the
uninformative pairs tends to swamp the actual information from the informative pairs.
Indeed, it is arguable that this happened in the circular convolution example we gave
above: ‘music’ and ‘craft’ are sufficiently similar that

practical difficulty(craft,music)

may have contained useful information — but this quantity was combined with four
clearly uninformative quantities (practical difficulty(economy,reasonable), etc.), and in that
process any useful information would have been drowned by noise.

This situation might lead one to consider abandoning the principle of composition-
ality, and allowing extra sources of information to play a role in the composition — or
better, ‘combination’ — of distribution vectors.6 In this way one might be able to make
use of meaningful combinations like (dog,hound) without being forced to also use the

6Indeed, some approaches proposed in the literature, such as that of Kintsch (2001), do exactly this.
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meaningless combinations. Setting aside the serious methodological problems involved
in abandoning compositionality, there is a very practical reason not to follow such an
approach.

That reason is as follows. If one believes that the similarity of ‘dog’ to ‘hound’
is important and needs to be taken into account when working with distributions of
vectors, then one should utilise that fact not only during composition, but also when
measuring the similarity of distribution of vectors. More specifically, if one is attempting
to compute the similarity of vectors x and y, one needs to take into account the similarity
of xdog to yhound and the similarity of xhound to ydog. The most widely used measure of
similarity of distribution vectors, the direction cosine, does not do this.

Thus attempting to utilise similarity of components during composition is unsat-
isfactory in that it is addressing one surface manifestation of a problem, rather than
the problem itself. A more satisfactory solution affects not just composition, but also
measurements of similarity. In our view, the most natural operations of this kind involve
adjusting the actual vectors at the point of measurement and this is the approach
taken when using dimensionality reduction techniques such as LSA or topic models
(Deerwester et al. (1990), Steyvers and Griffiths (2007)).

Our position is therefore that attempting to combine information from different
components of two distribution vectors during composition is likely to be ineffective.
As noted above, this theoretical prediction is borne out by the findings of M&L.

It will be useful to introduce some terminology to distinguish operations that do
and do not combine different components of distribution vectors. Following the usual
convention in mathematics, we will say that an operation � on distribution vectors is
pointwise if each component of x� y is computed from corresponding components of
the input vectors x and y. That is, � is pointwise if (x� y)music is computed from xmusic
and ymusic (only), (x� y)solution is computed from xsolution and ysolution (only), and so on.
Any operation which is not of this kind will be described as non-pointwise.

Given this terminology, our empirically testable position can simply be stated as
follows: we expect effective ways of combining distribution vectors to be pointwise,
or to be highly similar to a pointwise operation. This position, of course, need some
qualifications. It is perfectly possible to take an essentially pointwise operation and
wrap it up in a way that makes it look non-pointwise. For example, as we found in
§3.2 above, the tensor product approach used in M&L appears at first sight to be a
non-pointwise operation, but by the use of an appropriate identity it can be reduced
to independent pointwise operations on the parts of a two-element phrase. Equally, it
will be perfectly possible to take a pointwise operation and alter it slightly to obtain
something that is comparably effective; we would not consider operations of this kind
to invalidate our prediction.

4. Recursive Rules

The aim of M&L and other similar investigations (see §2) is to investigate methods for
compositionally constructing distribution vectors for phrases or sentences. The exper-
iments in these investigations have largely been restricted to methods for determining
distribution vectors for two-element compounds, such as ‘industrial area’ or ‘encourage
[a] child’. While this is an eminently sensible place to start investigating the composition
of distribution vectors, consideration of larger phrases brings to light some constraints
that narrow the space of reasonable composition strategies. More specifically, certain
strategies that seem to be very reasonable when applied to two-element phrases turn out
to have severe drawbacks when applied to larger phrases. The purpose of this section
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is to present these issues and to describe which strategies ‘scale’ beyond two-element
phrases.

The key source of difficulty when dealing with large phrases relates to recursive
syntactic rules, such as the following:

N ′ ⇒ AP N ′

In a classical theory of compositional semantics, there will be a semantic composition
rule associated with the syntactic one just given (Montague 1973). The rule will be
different for different classes of adjective (Partee 1994). The underlying aim of attempts
to extend the compositional approach to distribution vectors is to give semantic com-
position rules of just this kind, albeit rules which operate on distribution vectors, rather
than on logical representations. For example, M&L propose the following rules for
combining a distribution vector u for an adjective (phrase) and a distribution vector
v for a noun (or nominal projection):

p = αu+ βv.

α and β are scalar parameters which are empirically optimised on a training set; M&L
obtain the values α = 0.88 and β = 0.12.

So, for example, if our vector for ‘black’ is vblack and our vector for ‘cat’ is vcat, this
compositional approach would obtain the vector αvblack + βvcat for ‘black cat’.

Now, because the syntactic rule we are considering is recursive, it can be applied
repeatedly to analyse phrases which consist of a number of adjectives (or adjective
phrases) followed by a noun. For example, the phrase ‘scrawny angry black cat’ can
be analysed as follows:

N′

AP

scrawny

N′

AP

angry

N′

AP

black

N′

cat
By repeatedly applying our semantic composition rule, we can determine the dis-

tribution vectors for this phrase. As above, the vector for ‘black cat’ is

αvblack + βvcat.

The vector for ‘angry black cat’ is

αvangry + β(αvblack + βvcat) = αvangry + αβvblack + β2vcat.

And so the vector for ‘scrawny angry black cat’ is

αvscrawny + β(αvangry + αβvblack + β2vcat)

= αvscrawny + αβvangry + αβ2vblack + β3vcat.
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To get a sense of what this might mean, we can try substituting the actual parameters
obtained by M&L, namely α = 0.88 and β = 0.12. The result is :

vscrawny angry black cat = 0.88vscrawny + 0.106vangry + 0.0126vblack + 0.00152vcat

This model predicts that the contribution of ‘scrawny’ to the meaning of the phrase is
around eight times larger than the contribution of ‘angry’, and that it is around seventy
times larger than the contribution of ‘black’. Indeed, the contributions of ‘black’ and
‘cat’ are negligible.

Since this particular result is clearly influenced by the rather extreme values for α
and β obtained in M&L, let us try some more moderate value — say α = β = 0.5. In this
case, we obtain:

vscrawny angry black cat = 0.5vscrawny + 0.25vangry + 0.125vblack + 0.0625vcat

Even with these moderate values, we find that the contribution of ‘scrawny’ is twice
as large as the contribution of ‘angry’, and four times as large as the contribution of
‘black’. This is clearly not compatible with the underlying linguistics of the situation:
for example, we would expect the meaning of ‘scrawny angry black cat’ to be very
similar to the meaning of ‘angry scrawny black cat’. Indeed, to a first approximation,
given a phrase consisting of many adjectives followed by a noun, we would expect
the adjectives to make an equal contribution to the meaning of the whole phrase.
The equation just derived is also incompatible with the classical compositional model
(Partee 1994): in that approach, the order of intersective adjectives is irrelevant, so that
‘scrawny angry black cat’ means exactly the same as ‘angry scrawny black cat’.

The line of criticism given in this section does not only apply to the ‘weighted
addition’ model; it applies equally to a number of other models proposed by M&L.
Indeed, of those models, only the multiplication, addition, tensor product approaches
(and the baseline ‘head-only’ approach) behave reasonably when applied to phrases
with more than two words. It is striking that the models which are immune to criticism
are some of the simplest models proposed. We do not believe this means that complex
mathematical models of composition are invariably inappropriate; rather the correct
conclusion to draw is that more complicated models need to be carefully tailored to the
situation at hand, taking into account linguistic insights.

The weighted addition model is in fact unusual in that it is possible to rehabilitate
it with a minor change. As before, we will use the adjective-noun case for illustration.
First, recall that we had

vscrawny angry black cat = αvscrawny + αβvangry + αβ2vblack + β3vcat.

and that we needed the various adjectives to have the same weight. All that one needs
for this is β = 1; the value of α is irrelevant. (In general, the requirement is that the
coefficient corresponding to the recursive category is 1.) So the model given by

p = αu+ v

is not vulnerable to the criticism given in this section.
If one has a model with β 6= 1, it is easy to remedy the problem by multiplying

by a constant factor. For example, consider the model the actual parameters obtained
by M&L for adjective-noun combination: p = 0.88u+ 0.12v. Scaling up by a factor of
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1/0.12 shows that this is equivalent to p = 7.33u+ v.7 If this scaled model is applied to
the ‘scrawny angry black cat’, then we obtain a result in which the adjectives contribute
equally:

vscrawny angry black cat = 7.33(vscrawny + vangry + vblack) + vcat.

Although we will not show this in detail here, it should be noted that very similar
considerations apply to models where the weighting factors are matrices. So the model
proposed by Guevara (2010, 2011) is not appropriate when it comes to recursivity.
This comment, we should clarify, does not apply to Baroni and Zamparelli (2010):
there, it is not the weighting factors which are matrices, but the representations for
adjectives themselves. In that model one will still obtain different distribution vectors
for, say, ‘scrawny angry’ cat and ‘angry scrawny’ cat, because matrix multiplication is
not commutative. But depending on the actual matrices used, the distribution vectors
may be suitably close.

Before closing this section, we should note that the remarks made here do not apply
directly to composition of distribution vectors for a verb and for an object noun phrase
to form a distribution vector for a verb phrase. Thus we cannot directly rule out the
possibility of using an exotic model for verb-object composition. We would however
suggest that when any such model is proposed, it is worth examining the potential
effect of that model on longer phrases. Of particular significance are phrases with a
number of adjectives inside the object (‘saw a scrawny angry black cat’) and phrases
with a nested relative clause involving a verb and object (‘saw a cat chasing mice’).
Considering phrases of this kind also makes it clear that one cannot indefinitely consider
models for different kinds of composition (adjective-noun, verb-object, etc.) in isolation;
ultimately it is necessary to examine their interaction with each other, at least if one
is aiming to construct a model of composition that works on any but the simplest
phrases. We are inclined to believe that considering such interactions will show that the
combination of exotic models for e.g. verb-object composition with simple models for
e.g. adjective-noun comparison will have unexpected, and linguistically inappropriate,
side-effects, unless the exotic models are carefully based on linguistic insights in the
fashion described above.

5. Additive and multiplicative models

We noted in the previous section that all of the approaches proposed by M&L other
than addition, modified weighted addition, multiplication and tensor products behaved
inappropriately when applied to long phrases. We also noted in §3.2 that the tensor
product approach was equivalent to independently comparing the first and second
elements of two-word phrases. Also, for analytical purposes, the modified version of
weighted addition is extremely similar to addition itself. This means that the additive
and multiplicative models are of particular interest.

7The relative weighting of adjective to noun here seems implausibly high; we suspect that this is a quirk
of the particular experimental setup used.
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5.1 Pointwise addition and multiplication

In this section, we will discuss and explain the relative performance of pointwise
addition and multiplication in different tests, and also present a more general discussion
of the strengths and weaknesses of the two approaches and the circumstances in which
each is appropriate.

The first and most important point to make is that it only makes sense to speak of
’the additive model’ or ’the multiplicative model’ with respect to a particular measure-
ment, i.e. a particular way of computing entries of vectors. M&L note that they use the
ratio of the probability of the context word given the target word to the probability of
the context word overall, computed according to the following equation:

vi(t) =
p(ci|t)
p(ci)

=
freqci,t · freqtotal

freqt · freqci

The quantities in this equation represent the following:

freqci,t frequency of the context word ci with the target word t
freqtotal total count of word tokens
freqt frequency of the target word t
freqci frequency of the context word ci

The context window is taken to include five words on either side of the target word.
There is a subtlety worth noting here. Suppose that one simply considers a context

word to occur ‘with’ the target word if it occurs within the target window, and computes
the frequency freqci,t by adding up the number of times a given context word occurs
within the window. In this situation, any given word will be counted as part of the
target window of ten different target words, and so will contribute a total of ten to∑

t

freqci,t

It will however only be counted once in freqci . Accordingly,

freqci,t
freqt

will not be the probability p(ci|t) of the context word given the target word; it will be
ten times that quantity. This consistent scaling of vector entries by the length of the
context window would in fact makes little difference to empirical studies like M&L,
which only treat two-word phrases. However, such a scaling makes it harder to interpret
the vector entries in linguistically meaningful terms, and it also leads to problems when
considering longer phrases. We will therefore assume that the appropriate correction
for the length of the context window has been made.8 Under this assumption, vector

8We have glossed over a subtlety here. In cases where the corpus is split into sentences, the length of the
context window can vary because certain target words will occur near one edge of the sentence, so that we
will not always be overestimating by a factor of ten. The easiest way to obtain legitimate measurements is to
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entries will genuinely measure the probability of the context word given that the target
word is ‘nearby’ to the probability of the context word overall. Thus we have:

vi(t) =
p(ci|t)
p(ci)

=
p(ci, t)

p(ci)p(t)

The interpretation of this quantity may be aided by some examples. If vi(t) = 2,
then ci is twice as likely to occur near t as it is in the corpus as a whole. If vi(t) = 0.5,
then ci is one half as likely to occur near t as it is in in the corpus as a whole. And if
vi(t) = 1, then ci is exactly as likely to occur near t as it is in in the corpus as a whole.
In a sense, 1 is the ‘neutral’ least informative value, which vi(t) can take; if v(t) were a
vector consisting entirely of 1s, then knowing that t occurred in a certain position would
not give us any information about what words occurred nearby.

Given this discussion of the actual measurement in use, we are in a position to
return to the main point, which is that models only make sense with respect to a
specific measurement. The importance of this point may be highlighted by considering
a different measurement, which has been widely experimented with in the literature on
distributions (see e.g. Terra and Clarke (2003), Pantel and Ravichandran (2004), Evert
(2004), Mitchell and Lapata (2008), Thater, Fürstenau, and Pinkal (2010)). The pointwise
mutual information (PMI) of ci given t is defined as

pmi(ci; t) = log
p(ci|t)
p(ci)

= log
p(ci, t)

p(ci)p(t)

That is, PMI is precisely the logarithm of the measurement v(•) discussed above. The
key point is that pointwise addition of PMIs corresponds to pointwise multiplication of
v(•) as defined above.

So the multiplicative model of M&L would be an additive model for any investiga-
tors using PMI. (Note that it makes no sense to multiply PMIs, as they may be negative;
correspondingly there is no multiplicative model with respect to PMIs.)

Digressing briefly, we may note that the logarithmic relationship just noted is quite
useful, in that it lets us convert compositional methods for PMI into vector composition
methods for vi(t). For example, weighted addition of PMI, according to pi = αui + βvi
turns into a form of ‘weighted multiplication’ for vi(t):9 pi = uαi v

β
i . Recalling the remark

about 1 being the ‘neutral, least informative’ value above may help in interpreting this
equation. If x > 0, then for α > 1, xα will be further away from 1 than x; so xα is more
informative than x. Conversely, if α < 1, xα will be closer to 1 than x; so xα is less
informative than x. The effect of this equation is quite simple: it allows one to vary
the relative contributions of u and v, just as the weighted addition model does. It is
also analytically true that the weighted multiplication model will perform at least as
well as the multiplication model, for the simple reason that one can always take α =

tally freqci,t directly, and then to compute the other quantities via the following equations:

freqci =
∑
t

freqci,t freqt =
∑
ci

freqci,t freqtotal =
∑
ci,t

freqci,t

9The constraints given in §4 apply equally here. For example, if one is dealing with adjective-noun
combination, one must take β = 1.
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β = 1.10,11 Given that the multiplicative model consistently performs well, the weighted
multiplication model is therefore potentially quite attractive.

For the remainder of this paper, we will take ‘additive model’ and ‘multiplicative
model’ to be shorthand for ‘additive model with respect to vi(t)’ and ‘multiplicative
model with respect to vi(t)’, except where otherwise specified.

A second point which we need to make before turning to the actual analysis of
the two models is that the additive model will tend to increase the values found in
distribution models. The easiest way to see this is to consider the combination of two
‘maximally uninformative’ vectors, both consisting entirely of 1s. In the multiplicative
model, these will combine to give another vector consisting entirely of 1s. In the additive
model, these will combine to give a vector consisting entirely of 2s.12 This effect is not
distortive or problematic, so long as one is using a measure of vector similarity that is
insensitive to scaling of vectors, i.e. a measure that satisfies d(v,w) = d(λv, µw) for any
λ, µ > 0.13 We will however need to be careful in the analysis below, since if v(t) is a
vector produced by adding two (directly measured) distributional vectors, we can no
longer interpret vi(t) = 2 as meaning that ci is twice as likely to occur near t as it is in
the corpus as a whole.

Next we turn to the question of why the multiplicative model outperformed the
additive model in M&L as well as Mitchell and Lapata (2008). Our comments, we should
note, are very tentative. Indeed, the additive model has been found to outperform the
multiplicative model in other tasks (Baroni and Zamparelli 2010; Guevara 2010), where
the evaluation is performed by comparing the composed vector to the distribution of
the corresponding phrase, as directly observed in a corpus. It is fair to assume that the
requirements of the evaluation task will favour one operation or another. The following
should therefore be seen as general reflections on how various composition methods
affect different semantic phenomena.

There may be a number of contributing factors which affected the results in M&L;
but one that stands out as particularly likely to be significant relates to word sense
ambiguity. As elsewhere in the paper, we will try and illustrate this with the use of an
example. Let us consider the word ‘wave’. This word has several senses: it can refer to a
ridge over a body of water, a sudden occurrence of something, a movement of the hand,
etc. Suppose that we are trying to compositionally compute semantics for ‘offensive
wave’, meaning an attack in a military context. We need to combine the distribution
vectors for ‘offensive’ and for ‘wave’. In the context in which the word is used, it is clear
which sense of ‘wave’ is meant. If our model of composition can pick out the relevant
sense during composition, it will be much more effective in capturing the meaning of
the composite phrase.

Now, the directly measured vectors for the words ‘offensive’ and ‘wave’ will reflect
information from all word senses. So, for example, our system (described in the ap-
pendix) outputs that wavebeach = 28.6052, indicating that we are 28 times as likely to find
‘beach’ near ‘wave’ as we are to find it in general language. By contrast, for ‘offensive’,

10The same is true of weighted addition and addition; when M&L found that weighted addition under-
performed addition, this indicated that either the training data, the evaluation data, or both were unrepresen-
tative.

11This is not to say that weighted multiplication is strictly preferable to multiplication; if two models
perform comparably well, one should prefer the one that involves fewer parameters.

12This is not an incidental effect; it is precisely because the additive model produces increasingly large
vectors that it is able to escape the criticism of 4.

13Loosely speaking, under the additive model, the length of a vector measures the amount of information
in it, whereas the direction encodes all the distributional information.
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we have offensivebeach = 3.04177x10−05. Now let us consider the way in which the two
different models combine these values. In the multiplicative model, we have:

offensive wavebeach = offensivebeach ×wavebeach = 8.70104× 10−04

In the additive model, we have

offensive wavebeach = offensivebeach + wavebeach = 28.60523

Recall that values in the additive model (applied to two directly measured vectors) are
twice as large as one might expect, so that the value 28.60523 corresponds (roughly)
to a 14.3 in a directly measured vector. Nevertheless, the additive model has produced
a much larger value for offensive wavebeach than the multiplicative model, and so has
been much less effective in filtering out the irrelevant sense of ‘wave’. This is a general
phenomenon: the key point is that multiplying by a sufficiently small number can yield
a result that is much smaller than the original, whereas averaging with a small number
can never reduce the original by more than a factor of two.

Another perspective on this issue is given by the following observation: addition
does not discriminate between small values. For example, it treats 0.2, 0.1 and even 0.01
as essentially the same. In the context we are considering, there is a large informational
difference between them: if offensivebeach = 0.01, then we can be very certain that ‘offen-
sive’ does not relate to ‘beach’. This is not so clear cut with a value of 0.3, say. So addition
is sensitive to information stating that a particular context word tends to co-occur with
the target word, and insensitive to information stating that a particular context word
tends not to co-occur with the target word.

Addition being less effective in separating word senses means that it will be less
effective at picking out the meanings of adjective-noun, noun-noun and verb-object
combinations, which may account for its relatively poor performance in M&L. We
should emphasise that this does not mean that addition is always an inappropriate
mechanism for combining distribution vectors. The sum of distribution vectors for tar-
get words t, t′ is an effective measure of those contexts words which relate to either t or t′.
There are contexts in which this is exactly the desired behaviour. For example, addition
seems like a reasonable candidate to model the semantics of disjunction, and may even
be appropriate for certain kinds of conjunction, especially sentential conjunction.14 The
more general point here is that different operations may be suited to different kinds of
composition (cf. Guevara (2010)).

Before moving on, we should note that there is a straightforward empirical test
that would confirm or invalidate our account of the difference in effectiveness between
addition and multiplication. If the difference is indeed due to the effectiveness of mul-
tiplication in word sense disambiguation, then applying an independent method for
word sense disambiguation before computing distribution vectors should close the gap
between addition and multiplication. (We emphasise that we are not suggesting this as
a general method to produce distributions, but only as a way to verify our hypothesis.)

14This should not be taken as asserting that addition is the only model suited to these contexts; taking
the pointwise maximum (resp. minimum) of the two vectors is an alternative and very natural way to model
disjunction (resp. conjunction, albeit conjunction of objects rather than sentences). The different approaches
have their own theoretical strengths and weaknesses, which we do not have space to discuss here.
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We finish this section with a warning. The discussion above may make it seem as if
the multiplicative model is a panacea. While it is extremely attractive, it has a particular
weakness, which has not been brought out by the empirical studies. We will discuss this
weakness in the next section.

5.2 Confidence

The multiplicative model is extremely sensitive to small values in the input vectors. For
example, if one vector contains an entry of 0.01, the impact on the result will be very
large. Insofar as the entry is accurate, this is appropriate: as we noted in the previous
section, if offensivebeach = 0.01, then we can be very certain that ‘offensive’ does not relate
to ‘beach’. The problem is that smaller values will also tend to be more inaccurate,
because they are based on a smaller amount of input data. To give an illustrative
example, if we expect to see ‘offensive’ occur next to ‘beach’ 300 times, then we can
be reasonably confident that the number actually observed in the corpus is close to this;
it might be 270 or 330, but it is unlikely to be 150.15 So we can be confident that the
proportional deviation from the true value will be reasonably small. By contrast, if we
expect to see ‘offensive’ occur next to ‘beach’ 3 times, then it is quite possible that the
observed value is 1, or 6, or even 0. So the proportional deviation may well be quite
large. Translated into values vi(t), this means that an expected value of 1 is likely to
correspond to an observed value close to 1 (perhaps 0.9 or 1.1), but that an expected
0.01 may well be measured as 0.003 or even 0.

The issue with multiplication, then, is that a single inaccurate small entry can have
a large effect on the corresponding entry in the result vector. In the worst case, if we
find a 0 in one input vector (where we expect a small value), we are guaranteed to have
a 0 in the output vector, regardless of the size of the corresponding entry in the other
input vector. In the case of two-element phrases, this effect will be relatively minor. As
one starts to compositionally apply multiplication to longer and longer phrases, such
as a string of adjectives followed by a noun, the effect will become more and more
pronounced. Only one of the words in a phrase needs to have a 0 entry, or a highly
distorted small entry, for the corresponding entry in the result to be inaccurate. The
central issue here is that our models do not utilise, or even keep track of, any notion of
how confident we are about the entries in our distribution vectors.

We should emphasise that the issue just discussed affects some, but not all, models.
For example, it will have little effect on similarity measurements using the additive
model.

At this point, the obvious question to ask is, how does one minimise the impact
of this issue? There are a range of strategies available. One very simple approach is as
follows: one picks a minimum value which the ratio of probabilities is allowed to take.
That is, we effectively stipulate that

vi(t) =
p(ci|t)
p(ci)

15Here ‘expect’ is meant in the formal sense of ‘expectation’: the actual measurement is a measurement of
a random variable, and ‘expectation’ refers to the expected value of that random variable.
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is never allowed to take a value smaller than some fixed constant η. For example, if we
were to take η = 0.01, then we would never have vi(t) < 0.01. (The actual value of η is
best determined empirically.)

The simplest way of implementing this is to rule that

vi(t) = max

(
p(ci|t)
p(ci)

, η

)

One potential downside of this approach is that vi(t) is, strictly speaking, no longer a
ratio of probabilities. This becomes significant if one wants to use p(ci|t), etc., to com-
pute anything other than vi(t). For example, there are various techniques, for example
related to entropy, that one might use to compute the ‘amount of information’ in a
given distribution vector. In such cases, one needs to adjust the raw frequencies before
computing probabilities.

It may be worth noting that this ‘minimum value’ strategy is quite simplistic and,
from a mathematical perspective, artificial. One can find more natural strategies by
turning to Bayesian techniques; however, describing these would take us beyond the
scope of this paper.

5.3 Tensor Framework

Having discussed the multiplicative model at length, we turn to a variant proposed
by Clark, Coecke, and Sadrzadeh (2008). This paper introduces a general tensor-based
framework for composing distribution vectors, which has two notable strengths. First,
it can compositionally assign semantics-representing vectors to complex sentences in a
way which fully respects their syntactic structure. Second, vectors computed from all
sentences live in the same space, regardless of the internal structure of said sentences.
Grefenstette and Sadrzadeh (2011) report two experiments within this framework. The
first of these considers (noun+intransitive verb) composition, and performs comparably
to the multiplicative model discussed above. The second considers (noun + transitive
verb + noun) combination, and performs slightly better than the natural generalisation
of the multiplicative model.

We will begin by focusing on the first experiment. Distribution vectors for nouns are
directly computed, after the fashion of M&L. Distribution vectors for whole sentences
live in the same vector space as distribution vectors for nouns. This vector space is called
N , and is taken to have a basis −→n1,−→n2, . . .−→nk. Distribution vectors for intransitive verbs
are elements of the tensor product vector space N ⊗N .

The mechanism for computing the actual verb tensor is not part of the core frame-
work of Clark, Coecke, and Sadrzadeh (2008), but follows a method given in Coecke,
Sadrzadeh, and Clark (2010). That paper provides detailed equations for the case of the
transitive verb; we will begin by giving the analogous equations for the intransitive
case, using the same tensorial notation as the original.

To compute the representation for a given intransitive verb, one starts by listing all
the nouns which occur as subjects of that verb; let us call these S1, S2, . . . Sk. The Si
are counted according to multiplicity; that is, if a particular noun occurs twice with the
verb, it occurs twice in the list. One then takes the distribution vectors of each noun in
the list; let us call the resulting vectors −→v1 ,−→v2, . . .−→vk . The vector for the verb is specified
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to be:

−−→
verb =

∑
i,j

Cij(
−→ni ⊗−→nj)

where

Cij =

{∑
l〈
−→vl |−→ni〉 if i = j

0 otherwise

(Recall that −→n1,−→n2, . . .−→nk form the basis of N .)
The vector for an actual sentence is computed using the ‘inner product’ map εN :

N ⊗N → R:

−−−−−−−→
subject verb = (εN ⊗ 1N )(

−−−−→
subject⊗

−−→
verb)

= (εN ⊗ 1N )

−−−−→subject⊗

∑
i,j

Cij(
−→ni ⊗−→nj)


=
∑
i,j

Cij((εN ⊗ 1N )(
−−−−→
subject⊗−→ni ⊗−→nj))

=
∑
i,j

Cij〈
−−−−→
subject|−→ni〉−→nj

It may be worth reformulating this material in more familiar terms. We will use the
language of vectors and matrices; vectors will be written in boldface, i.e. as v rather
than −→v , following the usual convention.

To begin with, saying that the representation of the verb is an element of N ⊗N
is essentially the same as saying that it is a matrix. More specifically, if nouns and sen-
tences are represented by length m vectors, verbs are represented by m-by-m matrices.
An element

−→
a ⊗
−→
b of N ⊗N is just the matrix abT .16 Thus −→ni ⊗−→nj is the matrix ninj

T .
Since −→ni or ni is the vector with a ‘1’ in its ith entry and ‘0’ elsewhere, −→ni ⊗−→nj or

ninj
T is just the matrix which has a ‘1’ in the ith row and jth column, and ‘0’ everywhere

else.17 Thus ∑
i,j

Cij(
−→ni ⊗−→nj)

is just the matrix with Cij in its ith row and jth column; we would normally express this
matrix as (Cij) or just C.

16Note that this is not the same as aTb, which is the dot product a.b.
17For example, in R3 we have that

n1n2
T =

 1
0
0

( 0 1 0
)
=

 0 1 0
0 0 0
0 0 0

 .
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Now we turn to the equation definingCij . Because−→ni is the ith basis vector, we have
that 〈−→vl |−→ni〉 is just the ith component of the vector vl, usually written (vl)i. So we have

Cij =

{∑
l((vl)i) if i = j

0 otherwise

This tells us that C is a diagonal matrix, whose ith entry is equal to
∑
l(vl)i, or equiva-

lently to (∑
l

vl

)
i

In other words, the ith entry in C is ith component of the sum of the noun vectors.
To compose representations for a noun and an intransitive verb, one simply multi-

plies the verb matrix by the noun vector:

vsentence = Cverbvnoun

Since the matrix C here is diagonal, we have:

(vsentence)i =

(∑
l

vl

)
i

(vnoun)i

In other words, vsentence is obtained by pointwise multiplication of the noun vector
and a vector

∑
l vl which represents the verb.18 So the tensor-based model of Grefen-

stette and Sadrzadeh (2011) is very similar to the multiplicative model of M&L; the only
difference lies in the way in which the verb vector was constructed. This provides the
first part of our promised explanation of why the accuracy of the tensor-based model
here is so close to the accuracy of the multiplicative model.

The second part of the explanation involves the two different ways of constructing
the verb vector. In the original multiplicative model, the verb vector is directly estimated
from the context in the same way that the subject noun vector is. In the tensorial
model, the verb vector is constructed by summing the vectors for all the nouns that
occur as subjects of the verb. Note that since the direction cosine of vectors is length-
independent, this is equivalent to averaging the vectors for all such nouns.

Averaging in this way results in (at least) two distinct and competing effects. On
the one hand, verb vectors calculated by averaging are based on much more data than
directly computed verb vectors. Indeed, if a given verb occurs N times in the corpus,
the vector computed by averaging subjects will be based on N times as much data.
Consequently we can be much more confident about the accuracy of the entries in the
averaged vector (cf. §5.2). On the other hand, the relationships encoded in the averaged
vector will be more distant than those in the directly computed vector: they are two-step
relationships rather than direct relationships. (The verb is related to a subject noun, and

18Note that there is no standard notation for expressing pointwise multiplication of vectors; the reason is
that, as emphasised in §3.1, pointwise multiplication is not a basis-independent operations and thus is not
meaningful in physical contexts.
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the subject noun to a lexical item.) As such, the information in the average vector will be
of a slightly lower quality than the information in the original. The fact that the tensor
model and the multiplicative model have essentially identical performance suggests
that these two effects may have comparable magnitudes, and that they are consequently
cancelling each other out. We should emphasise that this explanation is tentative: there
may be other effects in play, and in any case the magnitude of the relevant trends in the
data are too small to base solid conclusions on.

Before moving on, we have two final remarks about the tensorial model as applied
to (subject + intransitive verb) combinations. The first is that it has difficulty with a
certain class of verbs, namely those that have a strong tendency to take a pleonastic
pronoun. For example, ‘rains/rained’ will almost always occur with subject ‘it’ in a
system based on syntactic information.19 Accordingly, the verb vector for ‘rains’ will be
almost identical to the vector for ‘it’, as will the verb vector for ‘snows/snowed’. Such
vectors are clearly not appropriate. Verbs of this kind are sufficiently rare that there
should be no noticeable impact on empirical studies. From a theoretical perspective,
however, this is a noticeable weakness in the strategy of consistently constructing verb
representations from the nouns they occur with.

The second remark relates to a point we made in §5. The tensorial model, like the
original multiplicative model, has no way of altering the relative contributions of the
subject noun and verb. In §5, we constructed a ‘weighted multiplication’ model, which
overcame this deficiency. It is easy to make a corresponding adjustment to the tensorial
model:

(vsentence)i =

(∑
l

vl

)α
i

(vnoun)
β
i

As noted in §5, this model will provably perform at least as well as the original when
trained and evaluated on sufficient data. This is not to say that is always preferable: in
return for the introduction of extra parameters, we require a nontrivial improvement in
performance. From a linguistic standpoint, however, it seems very possible that there is
some room for improvement: there is no reason to believe that the verb and noun are
exactly as informative as each other.20

As for the second experiment in Grefenstette and Sadrzadeh (2011), which examines
transitive verbs, we believe that the authors are correct in saying that it outperforms the
simple multiplicative model because it can take account of subject-object asymmetry.
Again, it may be worth examining whether altering the relative weightings of subject,
verb and object can improve the performance; additionally the tensorial model should
be compared against a weighted multiplicative model to ensure that the gain in perfor-
mance persists.

6. Conclusion

Distributional semantics is often viewed as a ‘semantics of similarity’ and evaluated
as such: the emphasis is on the general shape of distributional vectors and how well

19This problem does not occur when building distributions from semantic parses.
20The weighted version of the equation no longer conforms with the framework of Coecke, Sadrzadeh,

and Clark (2010) — but in the absence of empirical data about performance, it is premature to discuss this
issue.
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they model that some words or phrases are more related than others. Little is said
about individual vector components. In this paper, we have argued that choosing a
linguistically transparent semantics space and a composition operation which preserves
it results not only in a model which is informative at the vector component level, but
also in a representation which performs better in similarity tasks themselves.

More specifically, we pointed out that mathematical features which may be viewed
as desirable in the domain of physics – for instance, basis independence – are not
necessary or even meaningful in the field of language. We also argued against basis-
transforming operations and in the process, noted the importance of considering the
interaction of several mathematical operations (e.g. composition and similarity func-
tions) when building a full distributional system. Following on these first thoughts,
we argued in favour of pointwise composition operations and discussed weighting of
such operations in the light of recursive phenomena. We also examined the issue of
confidence in statistical measurements and the effect it has on some operations. We hope
to have, in the process, shed light on some of the results reported in the literature.

Although we made a clear statement in favour of pointwise operations, we do not
feel we can rank addition- and multiplication-like functions. We have shown through-
out the paper that those two types of operations have different explanatory power.
We should however mention the weighted multiplication model suggested in §5 as an
operation which may potentially outperform the ones proposed in the literature so far.

Generally, we think there is a lot more work to be done in terms of interpreting the
mathematical structures that have been proposed in applied computational linguistics.
The number and variety of phenomena observable in language means that we have a
complex task verifying the plausibility of any operation or representation supposed to
model such an encompassing notion as ‘the lexicon’. This seems to be a worthwhile task,
however: we believe that by considering phenomena which are widespread in language
(recursivity) or perhaps not so widespread (pleonastic pronouns) we can very quickly
rule out functions or domains of application of functions.
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Appendix
An implementation of a distributional system

The implementation we suggest is close to the M&L system. As background data, we
use the British National Corpus (BNC) in lemmatised format. Each lemma is followed
by a part of speech according to the CLAWS tagset format (Leech, Garside, and Bryant
1994). For our experiments, we only keep the first letter of each part-of-speech tag, thus
obtaining broad categories such as N or V. Furthermore, we only retain words in the
following categories: nouns, verbs, adjectives and adverbs (punctuation is ignored).
Each article in the corpus is converted into a 11-word window format, that is, we are
assuming that context in our system is defined by the five words preceding and the five
words following the target.

To calculate co-occurrences, we use the equations suggested in Section 5.2:

freqci =
∑
t

freqci,t freqt =
∑
ci

freqci,t freqtotal =
∑
ci,t

freqci,t

The weight of each context term in the distribution is given by the function sug-
gested in M&L:

vi(t) =
p(ci|t)
p(ci)

=
freqci,t × freqtotal
freqt × freqci

(.3)

As in M&L, we use the 2000 most frequent words in our corpus as the semantic
space dimensions.

We experimented with setting a threshold for vi(t) as discussed in §5.2. As our
semantic space consists of very frequent contexts, however, no significant effect was
observed in the few results we report here.
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