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Abstract

This paper explores the extraction of con-
ceptual clusters from a small corpus, given
user-defined seeds. We use the distribu-
tional similarity hypothesis (Harris, 1968)
to gather similar terms, using semantic
features as context. We attempt to pre-
serve both precision and recall by using
a bootstrapping algorithm with reliability
calculations proposed by Pantel and Pen-
nacchiotti (2006). Precision of up to
78% is achieved for our best query over a
16MB corpus. We find, however, that re-
sults are dependent on initial settings and
propose a partial solution to automatically
select appropriate seeds.

1 Introduction

The entailment task can be described as finding pairs
of words so that one (the entailed word) can replace
the other (the entailing word) in some contexts. Or
in other words, it consists in finding words in a hy-
ponym/hypernym relation. This is of course also
the task of ontology extraction when applied to the
is-a relationship. Hence, entailment tools such as
those based on the distributional similarity hypoth-
esis (Harris, 1968) can also be used in ontology ex-
traction, as shown by Pantel and Lin (2002) in a clus-
tering task.

The clustering method in ontology extraction was
pioneered by Caraballo (1999). She showed that
semantically-related words could be clustered to-
gether by mining coordinations and conjunctions.

Pantel and Lin (2002) followed in her path using
distributional similarity to extract large clusters of
related words from corpora.

The main advantage of the clustering method is
that it allows users to find hyponymic relations that
are not explicitly mentioned in the corpus. One
major drawback is that the extracted clusters must
then be appropriately named - a task that Pantel and
Ravichandran (2004) showed has no simple solu-
tion. Furthermore, although mining a corpus for all
its potential clusters may be a good way to extract
large amounts of information, it is not a good way to
answer specific user needs. For instance, if I wish to
compile a list of all animals, cities or motion verbs in
my corpus, I must mine the whole text, hope that my
query will be answered by one of the retrieved clus-
ters and identify the correct group. Finally, previous
work has suggested that clustering is only reliable
for large corpora: Pantel and Pennacchiotti (2006)
claim that it is not adequate for corpora under 100
million words.

This paper proposes a user-driven approach to
clustering where example seeds are given to the sys-
tem, patterns extracted for those seeds and similar
words subsequently returned, following the typical
entailment scenario. The obvious difficulty, from an
ontology extraction point of view, is to overcome
data sparsity without compromising precision (the
original handful of seeds might not produce many
accurate patterns). We therefore investigate the use
of bootstrapping on one hand in order to raise the
number of extractions and of semantic features with
reliability calculations on the other hand to help
maintain precision to an acceptable level.



The next section reviews relevant previous work
and includes a description of the piece of work
which motivated the research presented here. We
then describe our algorithm and experimental setup.
Results for the whole corpus (16MB) and a 10%
subset are presented and discussed. Problems re-
lating to initial setting sensitivity are noted, and a
partial solution proposed. We finally conclude with
avenues for future work.

2 Previous Work and Motivation

The clustering method represents so far a marginal
approach in a set of ontology extraction techniques
dominated by the lexico-syntactic pattern-matching
method (Hearst, 1992). Clustering was initially pro-
posed by Caraballo (1999) who used conjunction
and coordination to cluster similar words. She ob-
tained a precision of 33% on her hyponymy extrac-
tion task.

Pantel and Lin (2002), following from Cara-
ballo’s work, proposed their ‘clustering by com-
mittee’ algorithm, using distributional similarity to
cluster similar words. Their algorithm distinguishes
between various senses of a word. Pantel and
Ravichandran (2004) report that the algorithm has
a precision of 68% over a 3GB corpus (the figure
is calculated over the relation between clusters and
their automatically generated names.)

On the entailment front, Geffet and Dagan (2005)
also used distributional similarity over an 18 million
word corpus and obtained up to 74% precision with
a novel feature weighting function (RFF) and an In-
clusion Testing algorithm which uses the the k char-
acteristic features common to two words in an en-
tailment relation.

Our own investigation derives from a
previous ontology extraction project (Her-
belot and Copestake, 2006) on Wikipedia
(http://www.wikipedia.org/). That
project focused on uncovering taxonomic rela-
tionships in a corpus consisting of over 12,000
Wikipedia pages on animals. We extracted a
semantic representation of the text in RMRS form
(Copestake, 2004) and manually defined patterns
characteristic of the taxonomic relationship, also
in RMRS format. Matching those patterns to the
text’s semantics allowed us to return hyponymic re-

lationships which were filtered for taxonomic pairs.
(The filtering simply consisted in checking whether
the hyponym and hypernym were animal names,
using a list compiled from Wikipedia article titles.)
A careful evaluation was performed, both manually
on a subset of the results and automatically on the
whole extracted file using the NCBI1 taxonomy. We
reported a precision of 88.5% and a recall of 20%.
This work highlighted the fact that the dictionaries
of animal names that we had at our disposal (both
the list extracted from Wikipedia and the NCBI
itself) were far from comprehensive and therefore
affected our recall.

In this paper, we attempt to remedy the short-
comings of our dictionaries and investigate a min-
ing algorithm which returns conceptual clusters out
of a small, consistent corpus. The fairly convention-
alised aspect of Wikipedia articles (the structure and
vocabulary become standardised with usage) tends
to produce good, focused contexts for certain types
of words or relationships, and this partly overcomes
the data sparsity problem. We therefore propose the
realistic task of finding clusters of terms that a reader
of biological texts might be interested in. Here,
specifically, we focus on animal names, geograph-
ical areas (i.e. potential animal habitats) and parts
of the animal body. We reuse the Wikipedia corpus
from our previous work - 16MB of plain text - and
apply to it distributional similarity using semantic
features, with a bootstrapping algorithm proposed
by Pantel and Pennacchiotti (2006).

3 The Algorithm

The aim of the algorithm is to find words that are
similar to the seeds provided by the user. In order to
achieve this, we use the distributional similarity hy-
pothesis (Harris, 1968) which states that words that
appear in the same context are semantically related.
Our ‘context’ consists here of the semantic triples
in which a word appears, with the semantics of the
text referring to its RMRS representation (Copes-
take, 2004). So for instance, in the sentence ‘the
cat chased a green mouse’, the word ‘mouse’ has a
context comprising two triples:
lemma:chase pos:v arg:ARG2 var:mouse pos:n

which indicates that ‘mouse’ is object of ‘chase’ and

1www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Taxonomy



lemma:green pos:j arg:ARG1 var:mouse pos:n

which indicates that the argument of ‘green’ is
‘mouse’.

Let’s assume that ‘mouse’ is one of the seeds
provided to the system. We can transform its
context into generic features by replacing the slots
containing the seed with a hole: lemma:chase

pos:v arg:ARG2 lemma:mouse pos:n becomes
lemma:chase pos:v arg:ARG2 lemma:hole

pos:n.
Then, every time a generic feature is encoun-

tered in the text, we can hypothesise that whichever
word fills the hole position is semantically similar to
our seed: if we encounter the triple lemma:chase

pos:v arg:ARG2 var:bird pos:n, we hypothe-
sise that ‘bird’ belongs to the same semantic class
as ‘mouse’. (We assume that a match on any one
feature - as opposed to the whole context – is suffi-
cient to hypothesise the presence of an instance.)

We initially extract all the features that include
one of the seeds presented to the system. We filter
those features so that semantically weak relations,
such as the one between a preposition and its argu-
ment, are discarded: triples containing a preposition
or quantifier as the head or argument of the relation
are deleted. At the moment, we are also leaving
conjunction aside. Although we acknowledge,
following Caraballo (1999), that conjunction is a
good indicator of semantic similarity, it would mean
expanding our features to two triples. For instance,
‘cat and mouse’ would be expressed by the pair
lemma:and pos:x arg:L-INDEX var:cat pos:n

and lemma:and pos:x arg:R-INDEX var:mouse

pos:n. This is regarded as a necessary improvement
but not implemented here. The features left after
filtering are transformed into generic patterns by
replacing the slot containing the seeds with a hole,
as explained above.

We then calculate the reliability of those features
using the calculation proposed by Pantel and Pen-
nacchiotti (2006): we calculate Pointwise Mutual
Information between each feature and the instances
it extracts:

pmi(f, i) = log
(

P (f, i)
P (f) P (i)

)
(1)

where P (f) and P (i) are the probabilities of occur-
rence of the feature and the instance respectively and

P (f, i) is the probability that they appear together.
Pointwise Mutual Information is known for pro-

ducing scores in favour of rare events. In order
to counterbalance this effect, our figures are multi-
plied by the discount factor suggested in Pantel and
Ravichandran (2004):

d =
cif

cif + 1
∗ min (ci, cf )

min (ci, cf ) + 1
(2)

where cif is the cooccurrence count of an instance
and a feature, ci the frequency count of instance i
and cf the frequency count of feature f .

We then find the reliability of the feature as:

rf =

∑
iεI

(
pmi(i,f)
maxpmi

∗ ri

)
|I|

(3)

where rf and ri are the reliabilities of the feature and
of an instance respectively, and I is the total number
of instances extracted by f .

Initially, the seeds have reliability 1 and all the
other words reliability 0. We then select features
with n-best reliabilities. Those features are used to
extract new instances, the reliability of which is cal-
culated in the same fashion as for the initial patterns:

ri =

∑
fεF

(
pmi(i,f)
maxpmi

∗ rf

)
|F |

(4)

We select the instances with m-best reliabilities to
replace the original seed list.

We then bootstrap. At each iteration, we incre-
ment n and m.

4 Experimental Setup

4.1 Corpus

The corpus is the one used in Herbelot and Copes-
take (2006); it consists of 12,200 Wikipedia arti-
cles on animals. The text was parsed using RASP3
(Briscoe and Carroll, 2002) and the RASP-to-RMRS
converter (Copestake, 2004) was applied to the
derivations to obtain the RMRS representation. In
order to ascertain the limitations of the algorithm
with regard to the size of the corpus, we experi-
mented both on a subset of the corpus (1000 files)
and on the entire text.



4.2 Initial Settings

All experiments are subject to the setting of three
parameters:

– the original set of seeds given to the program
– the initial number of features retained for the ex-

traction of new instances, after the feature reliability
calculation phase (n0)

– the initial number of instances retained to form
the new set of seeds, after the instance reliability cal-
culation phase (m0).

At each iteration, we increment n by 1 and m by
5.

We attempted to extract various clusters out of
the corpus. Our three queries were animal names,
geographical areas/features and parts of the animal
body. Small noun clusters were given to the system
as seeds:

(1) animal, mammal, fish, bird, insect,
cat, snake

(2) wetland, marshland, farmland, land,
region, hill, forest, desert

(3) whisker, hoof, scale, vertebra,
fin, beak, abdomen, wing, shell

The subset corpus involved 5 iterations with, ini-
tially, n0=1 and m0=5. The whole corpus involved
10 iterations with, initially, n0=1 and m0=10. We
recorded, at each iteration, the full list of instances
extracted by the n-best features (before selection of
the m-best words). This constituted our results.

4.3 Recall

As always in this type of project, the calculation of
recall demands intensive manual work. Due to time
restrictions, we mostly show here the number of in-
stances extracted at each iteration of the algorithm.
For comparison purposes, however, we also calcu-
lated true recall for the best iteration (the most pre-
cise) of the animal query. The figure was obtained
over a 100 file subset of the whole corpus: we ex-
tracted all unique nouns out of the subset and man-
ually annotated the animal names, yielding 527 en-
tries. We then ran the instance extraction program
over the 100 files, using the best feature list obtained
by the system (the one with the best precision). Our
recall figure was then taken as the number of extrac-
tions over the 100 files divided by the true number
of animal names (527).

Table 1: Number of Extractions and Precision for
the Three Queries, First Five Iterations

Animal Query

Num Features Num Extractions Precision

1 97 86%

2 151 83%

3 174 70%

4 277 57%

5 289 54%

Geography Query

Num Features Num Extractions Precision

1 1 100%

2 17 18%

3 27 26%

4 74 12%

5 74 12%

Parts of the Body Query

Num Features Num Extractions Precision

1 1 100%

2 98 45%

3 313 25%

4 313 25%

5 313 25%

4.4 Precision
Precision is calculated, at each iteration, by one an-
notator. For larger files, we only show precision fig-
ures for the first 100, 200, 300 and 400 instances.
The criterion for precision is whether the instance
satisfies the entailment condition. So for instance,
the word ‘creature’ is considered correct for the ani-
mal query because it entails ‘animal’ while the word
‘phylum’ is considered incorrect as it can entail any
kind of organisms, including plants.

5 Results

5.1 Subset Corpus
Our results for the small 1000 file corpus experi-
ments are shown in table 1.

The precision for the animal query is acceptable,
although it decreases quickly with the introduction
of noisy features. The precision for the other two
queries is extremely low. We find, however, that set-



Table 2: Number of Extractions and Precision for
the First Five Iterations, n0=2, geography query

Number of Features Number of Extractions Precision

1 1 100%

2 35 77%

3 59 56%

4 105 33%

5 106 33%

ting n0=2 and m0=10 for the landscape query pro-
duces far better results (see table 2). This is due to
the second feature extracted at iteration 1 produc-
ing better instances than the first and pushing correct
seeds at the top of the reliability list.

5.2 Whole Corpus

Our experiments on the whole corpus (12,200 files)
highlight that on this task, the algorithm is also very
sensitive to our choice of seeds. For the animal
query, using the same seeds as for the subset leads
to a number of extractions no better than in the ini-
tial experiments and to worse precisions (see table
3). The body and geography queries produce results
similar to the ones obtained in the subset experiment
(with n0=1 for the parts of the body, n0=2 for geo-
graphical features) but using the initial settings n0=1
and m0=10 for both queries. This seems to indicate
that the only way the algorithm is affected by a mini-
mal corpus size is by being more sensitive to the set-
ting of n0 and m0. The precision itself is not linked
to size, in this experiment at least.

We investigated the role of the seeds in this result
and attempted to improve our figures by lengthen-
ing the animal list to 16 initial seeds. This did not
change the results. Shortening the list again, taking
away the more general nouns and lower frequency
words (animal, fish, insect, bird, cat) led however
to an acceptable precision again (see table 4). The
final seed list consists of spider, snake, cetacean,
cattle, ant, crustacean, reptile, beetle, monkey, di-
nosaur, hamster, tortoise. This brings up the ques-
tion of defining a ‘good seed’, which is discussed in
the next section.

The first 25 instances for the best results are
shown in table 5.

Table 3: Number of Extractions and Precision for
the First 10 Iterations, Animal Query, Whole Cor-
pus, Initial Set of Seeds

Number of Features Number of Extractions Precision

1 16 63%

2 69 39%

3 110 54%

4 140 48%

5 189 44%

6 201 44%

7 202 44%

8 221 43%

9 251 44%

10 269 45%

Table 5: First 25 Instances out of Best Results for
All Three Experiments

Animal query Geography query Parts of the body query

muricoid marshland whisker

flickerus region rao

acoel hillock inability

hamster embankment electroreceptor

ungulate ditch cue

cattle terrain hearing

blesmol upland existence

monkey savannah smell

reptile key sight

crocodile slope effort

dinosaur cliff skeleton

predator dune wood

duck wetland belly

megalosaur scrub dinosaur

palmation field order

scyphomedusa environment chemoreceptor

sophistication vegetation ending

coral meter apparatus

balitorina patch receptor

haeckelium savanna taste

kurilensis island barbel

lepiotacea location bristle

paramelemorph woodland membrane

porcelanid country tissue

sea-scorpion plain tortoise



Table 4: Number of Extractions and Precision for the First 10 Iterations, Animal Query, Whole Corpus,
New Set of Seeds

Num Features Num Extractions Precision 100 Precision 200 Precision 300 Precision 400

1 233 41% - - -

2 467 62% 46% 50% 58%

3 653 69% 60% 64% 65%

4 797 75% 60% 57% 59%

5 859 74% 74% 60% 57%

6 970 76% 73% 63% 59%

7 1622 78% 72% 64% 59%

8 1717 75% 70% 64% 57%

9 1719 74% 72% 64% 60%

10 1804 75% 72% 67% 62%

5.3 Recall Considerations
We calculated recall over a 100 file subset, using the
features obtained after iteration 7. We obtained 185
extractions, yielding a recall of 35%. This figure is
similar to the recall obtained in our previous RMRS-
based project, when attempting automatic pattern
extraction (see Herbelot and Copestake, 2006 Sec-
tion 5 reporting a 37% recall). We have not yet fully
investigated the cause for the low recall in this task
but it can partially be attributed to the incomplete
rule coverage mentioned in our previous work. This
is being remedied with a new version of the RASP-
RMRS converter. The problem is also inherent to
the algorithm: using only a handful of best features
for the extraction of new instances is bound to limit
coverage.

6 Discussion

As the algorithm is sensitive to the original seeds,
we would like our program to be able to select good
seeds without relying on the user’s choice. Intu-
itively, a good seed is one that has a medium fre-
quency in the corpus and is situated midway in its
conceptual hierarchy:

– a rare word makes the program suffer from data
sparsity while a very frequent one is too general and
returns patterns unrelated to the subject matter.

– a general concept appears in a wider variety
of features than a less generic one and is therefore
less ‘focused’. For instance, ‘animal’ appears with
the nouns ‘rights’ (animal rights) and with the verbs

‘swim’, ‘walk’, ‘climb’, etc while ‘fish’ only se-
lect for ‘swim’ and is therefore more likely to give
a good quality pmi with the swimming-related fea-
tures.

This intuition is supported by some linguistic ob-
servations in prototype semantics. A prototype is a
linguistic object which is considered a particularly
good exemplar of the conceptual category it belongs
to; i.e., it can be described using elements which
have a strong semantic tie to its category or hyper-
nym. For instance, a dog is a good prototype for the
category ‘animal’ because it exhibits a physical ap-
pearance and behaviour that we commonly associate
with animals. By contrast, some people would argue
that humans or corals are not animals on the basis
of behavioural patterns and shape. We are not inter-
ested here in the philosophical implication of linking
humans to the animal concept but rather in the po-
tential of good prototypes to also be good seeds. It
is indeed expected that a convincing prototype will
frequently appear in contexts highly characteristic of
the concept under consideration.

Rosch et al (1976) introduce the notion of ‘ba-
sic level category’ to refer to the level in a concep-
tual hierarchy which best gathers the characteristic
elements of a concept, that is, the categorical level
of the best prototype. It is found that in the ani-
mal taxonomy, for example, the genus level is the
basic level category (as opposed to higher or lower
levels such as kingdom or species). The notion usu-
ally refers to levels halfway through the hierarchy,



those most commonly used when naming an object
belonging to the concept under consideration (com-
pare Look at that vertebrate!/Look at that dog!/Look
at that Yorkshire terrier!). These findings tally with
our intuition that good seeds can be found midway
through the WordNet hierarchy.

As a preliminary investigation of this idea, we se-
lected five seeds from the top three levels of the ani-
mal hierarchy in WordNet (the data is sparse at those
levels, hence the use of the first three levels instead
of one only) and five seeds from the fourth level, un-
der the synset ‘vertebrate’. The occurrence counts of
the ‘good’ seeds in our second experiment on the an-
imal query (see Section 5) have an average of 758.
We estimated that seeds with a frequency between
420 and 1100 were acceptable (roughly 758 +/- 50%
– this could be expressed as a percentage of the num-
ber of words in the corpus) and used this range to
constrain our second set of words.

Following this heuristic, our two sets of seeds are:
(1) bird, animal, reptile, mammal, insect
(2) parrot, passerine, bat, salamander,

rodent

We observe that the number of extractions for the
first test after 10 iterations is of 8 entries only with
a 50% precision. The number of extractions for the
second test is of 50 entries with a 64% precision.

Another test on our worst query, the body parts,
had similar effects: we selected the ‘external body
parts’ level as our more general level and the level
‘appendage’ as the lower one (those are parent and
child in WordNet - the body hierarchy is a lot flatter
than the animal one). This time, we did not constrain
the seeds’ frequency count, as the WordNet data was
sparse. After 10 iterations, we obtained 4190 terms
with the higher level - the result of a noisy generic
pattern involving the identity copula - and 260 terms
with the lower level. Precisions were calculated as
13% and 23% respectively on the first 100 terms,
showing that, even though results are extremely low,
the more specific seeds perform better than the gen-
eral ones. This seems to support our hypothesis, al-
though further experiments are obviously needed.

Regarding the overall sensitivity of the program
to initial settings (see the choice of n0 in the pre-
vious section), our aim for further work is to fully
test the algorithm over a range of settings and seeds.
If it is not sufficiently robust to a variety of initial

conditions, it may need revisiting.
We also note, looking at the feature list for the an-

imal query, that the patterns extracted are very much
corpus-dependent. We give the list of the best seven
features at the 7th iteration of the animal query in
table 6.

We would not normally expect features including
‘modern’ or ‘appear’ to be indicative of the presence
of an animal, but they work well on this particular
set of texts where species are likely to ‘appear’ or to
be the ‘modern’ form of an ancient animal.

The disappointing precision on the body query
can be explained by the fact that many terms used
to describe parts of organs are borrowed from gen-
eral vocabulary: area, tip, side, etc. On one hand,
these terms are not likely to have a strong pmi with
focused body-related features. On the other hand,
when extracted, they then return too general fea-
tures at pattern-extraction stage. It is also likely that
both the geography and body queries suffer from
data sparsity (many features return less than 10 in-
stances). This demonstrates that, although cluster-
ing can be used on a small-size corpus for queries
related to the main topic - here, animals - it may not
be so successful when it comes to concepts outside
of the text’s focus.

7 Conclusion and Further Work

We have presented here a clustering technique to ex-
tract and gather words under user-chosen concepts
from a small size corpus (16MB). Using semantic
features as characteristic context of each concept
and a bootstrapping algorithm previously proposed
by Pantel and Pennacchiotti (2006), we achieve 78%
precision on the top 100 terms of our best query
(72% on the top 200). We note that the performance
of the algorithm is very sensitive to initial settings,
in particular to the initial number of characteristic
features retained and to the choice of seeds. Ac-
cordingly, we would like to investigate ways to im-
prove the robustness of the program to user-defined
choices. We propose a partial solution to the issue
of the seeds by selecting mid-frequency terms out of
WordNet levels situated half-way through the con-
ceptual hierarchy.

The less successful queries suffer not only from
original settings but also from data sparsity. We aim



Table 6: Seven Best Features For Animal Query

lemma::appear lempos::v arg::ARG1 var::hole pos::n

lemma::like lempos::v arg::ARG2 var::hole pos::n

lemma::species lempos::n arg::ARG1 var::hole pos::n

lemma::go lempos::v arg::ARG1 var::hole pos::n

lemma::modern lempos::j arg::ARG1 var::hole pos::n

lemma::allow lempos::v arg::ARG2 var::hole pos::n

lemma::call lempos::v arg::ARG2 var::hole pos::n

to investigate how to keep only the best seeds at the
top of the returned instance list at each iteration. We
would like to propose a separate clustering step on
the extracted instances, relying on shared extracting
features (i.e. it is possible that the ‘good’ instances
share the same features while the ‘bad’ seeds are ex-
tracted by less similar feature lists).

We have also shown that ontology extraction by
clustering is possible on a small topic-focused cor-
pus. We would hope to extend these results to other
texts.
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