Spatial Reasoning for Robots:
A Qualitative Approach

by
Alan Frank Blackwell
Thesis submitted in fulfilment of the
requirements for the degree of

Master of Science in Computer Science.

Victoria University of Wellington

October 1988

Abstract

This thesis presents a new approach to the problem of shape representation
for high level robot reasoning tasks. Techniques from the field of qualitative
physics are combined with current methods for solid modelling to develop a
qualitative representation of two dimensional shape and position. The qual-
itative spatial representation has been used to solve simple spatial reasoning
tasks. The results of this investigation are applicable both to the field of
robotics, where they provide a new approach to programming and control,
and to the field of qualitative physics, which has been hampered by a lack
of general purpose spatial reasoning techniques.

Acknowledgements

Thanks to Peter Andreae, my supervisor, for his fund of ideas and his ener-
getic criticism. Also to PROGENI, for the use of office facilities, and for ex-
tended periods of study leave. Thanks for advice, assistance, and friendship
to Mark, Karen, Duncan, Bernd, Paul, Craig, Julie, Jonathan, Matthew,
Andrew, Mike, David, Evan, Philip, Alvin, Alex, Clifton and Steve. Thanks
to my musical friends for a life beyond study, especially Harry and Gillian.
Lastly, thanks to Helen. This project would never have commenced, pro-
gressed, or been completed without her encouragement and support.

ii

Contents

1 Introduction
1.1 Limitations of Robotic Spatial Reasoning
1.2 Spatial Reasoning in Qualitative Physics
1.3 Advantages of Spatial Reasoning to Qualitative Physics . . .
1.4 Advantages of Qualitative Reasoning to Robotics
1.5 Qualitative Spatial Reasoning Scenarios
1.6 Organisation of the Thesis

2 Spatial Representation and Reasoning in Robotics
2.1 Survey of Robot Reasoning in AT
2.2 Space and Shape Representation for Robots
2.2.1 Robot Motion Representation
2.2.2 Space Filling Representations
2.2.3 Shape Boundary Representation
2.2.4 Constructive Solid Geometry Representation
2.2.5 Object Relative Position Representation
2.2.6 Representation for Robot Vision
2.2.7 Other Robot Representations
2.3 Shape Representation in Other Fields
2.3.1 Wireframes oL
2.3.2 Boundary Representation
2.3.3 Counstructive Solid Geometry
2.3.4 Other Methods

3 Qualitative Reasoning in Spatial Domains
3.1 The Origins of Qualitative Reasoning
3.1.1 Early Qualitative Reasoning Systems
3.1.2 Naive Physics

iii

10
11
14
15
16
20
21
22
23
24
25
26
26
27
28

3.2 Techniques in Qualitative Reasoning 33

3.2.1 Classification of Qualitative Reasoning Tasks 33
3.2.2 Elements of Qualitative Reasoning 35
3.3 Spatial Qualitative Reasoning 37
3.3.1 The Bouncing Ball World 37
3.3.2 The Mechanism World 39
3.3.3 Other Spatial Reasoning Systems 41
Two Methods for Qualitative Representation of Shape and
Space 43
4.1 Representation Issues in Qualitative Robot Reasoning 44
4.1.1 Representation of Detail 45
4.1.2 Geometric Reasoning Using Local Contexts 47
4.1.3 Representation of Multiple Features Using Functional
Groupingso 49
4.1.4 Qualitative Representation of Size 50
4.1.5 Summary of Qualitative Representation Issues 53
4.2 2D Qualitative Geometry from Solid Modelling 54
4.2.1 A Two Dimensional Derivative of Constructive Solid
Geometry oL 95
4.2.2 A Two Dimensional Derivative of Boundary Repre-
sentation Lo oo 56
4.3 Qualitative Two Dimensional Shape Description 57
4.3.1 Describing 2D Shape with Axially Specified Subparts
and Features, o8
4.3.2 Describing 2D Shape With Extended Polygon Bound-
aries e e e e 65

4.4 Extensions to the Two Dimensional Qualitative Representations 75
4.4.1 Including Order of Magnitude Information in the Dis-

tance Ordering 75
4.4.2 Ordering of Angle Sizes 76
4.4.3 Explicit Links to Three Dimensional Shape 78
Implementations of Two Qualitative Spatial Reasoning Sys-
tems 79
5.1 A Program for Reasoning About Sliding 80
5.1.1 Representing Contact State 81
5.1.2 Contact State Transitions 86
5.1.3 Envisionment of Motion through Contact States . . . 89

v

5.1.4 The ASSF Implementation 90

5.1.5 Summary of Sliding Issues 92

5.2 Reasoning About Path-Planning with EPB/PDO 94
5.2.1 The Path-Planning Problem 94

5.2.2 EPB/PDO Implementation' 95

5.2.3 Stages in Path Planning 97

524 GapPFinding 99

5.2.5 Checking for Fit, 100

5.2.6 Specifying Motion oo 103

5.2.7 Directional Reasoning 103

5.2.8 Summary of Path-Planning Issues 105

5.3 Future Enhancements 107
5.3.1 Integration of two approaches 107

5.3.2 Searching for Complex Paths 107

5.3.3 Unfastening Problems 108

6 Conclusions 110
6.1 Evaluating Spatial Qualitative Reasoning 110
6.1.1 Using PDO/EPB in Domains from Other Projects . . 111

6.1.2 General Evaluation of a Qualitative Representation . . 113

6.2 Evaluating Qualitative Robot Reasoning 116
6.2.1 Reasoning with Incomplete Information 117

6.2.2 Providing Graceful Degradation 118

6.2.3 A Human Interface for Robot Programming 119

6.2.4 Robot Reasoning with PDO/EPB 120

6.3 Summary e 121
6.4 Future Research Directions 122

A EPB/PDO Representation Example 124
B Robot Fastening and Disassembly Projects 150

List of Figures

1.1 Scene Example for the “Mover’s Problem” 7
2.1 Space Filling Representations 19
3.1 Free Space Division Guided by Scene Features. 38
4.1 Proximity Measurement in Terms of Boundary Expansion . . 71

4.2 Apparent Object Interpenetration at Coarse Levels of Detail 72

5.1 Vertex to Vertex Contact 81
5.2 Line Segment to Vertex Contact 82
5.3 Aligned Line Segments Contact 82
5.4 Overlapping Line Segments Contact 83
5.5 Large Line Segment to Small Line Segment Contact 83
5.6 Vertex to Convex Curve Contact 84
5.7 Vertex to Concave Curve Contact 84
5.8 Line Segment to Convex Curve Contact 84
5.9 Line Segment to Concave Curve Contact 85
5.10 Convex Curve to Convex Curve Contact 85
5.11 Concave Curve to Convex Curve Contact 86
5.12 Implementation of the EPB/PDO Representation 98
A1 Scene for EPB/PDO Example (drawn to scale) 125

vi

Chapter 1

Introduction

The subject of this thesis, qualitative spatial reasoning, falls between two
areas of artificial intelligence research: qualitative reasoning, and robotics.
The work described draws on past research in both of these fields, and has
resulted in the development of a new technique for qualitative representation
of shape and space, together with methods for performing simple spatial
reasoning tasks using the representation. I intend that the results presented
here should be useful in finding new approaches both to robot planning and
problem solving, and to qualitative reasoning, while being of interest to a
more general audience insofar as they represent a plausible computer model
for certain aspects of human spatial reasoning.

1.1 Limitations of Robotic Spatial Reasoning

Robots are general purpose machines. Current robotics technology makes
them mechanically capable of performing a wide variety of operations. In
principle, it is possible to reconfigure a single robot so that it can be used
for a range of different tasks; in practice, most commercial users of robots
find it uneconomic to reconfigure robots in any situations which cannot be
simply demonstrated by “lead-through” methods, because of the program-
ming expenses involved. The problem with robots is that although they are
general purpose machines, it is very expensive to instruct them for complex
tasks.

Commercial robots can perform tasks only when they have been given
a precise and detailed set of instructions for carrying out those tasks. The
greatest challenge for current robotics research is to implement, in a com-

puter system, the kind of “intelligence” that will enable robots to be more
easily instructable. In human terms, robots need to be less stupid [Pug82].
The ways in which they are particularly stupid include the inability to act on
goal oriented instructions, to plan sequences of actions, to learn from their
mistakes, or to understand the world around them; international research
in robotics has been addressing these problems since the 1960’s.

Research toward providing intelligence for robots is motivated both by
the long term commercial benefits of more intelligent robots [Bla86], and by
the challenges of robotics for those involved in the wider field of Artificial
Intelligence research. Those challenges result from the fact that robotics re-
quires the interface of a computer system to the physical world by way of sen-
sors and actuators. Much early A.I. research dealt either with domains which
were purely synthetic (such as computer programming, or chessboards), or
with “toy worlds”, which are simplified computer models of very restricted
real world situations.

Whereas robotics imitates the behaviour of intelligent animals by per-
forming the intelligent connection of perception to action, synthetic prob-
lems involve no perception or action, and are thereby simplified to a point
at which the real problems of robotics disappear. Toy world problems can
involve real perception, but act on such a simplified version of the world that
many real world problems do not occur. This avoidance of the real world
has been criticised by Brady [Bra85a|, and by Hayes [Hay83], who suggest
that future artificial intelligence research should be linked to problems in
robotics.

Brooks [Bro86] has proposed robotics as a starting point for A.I. research,
for evolutionary reasons. He points out that higher intellectual functions
have only developed in animals over the last few thousand years, once the
ability to act in the physical world was well established. He argues that
an understanding of the real world as a participant in it is a necessary
prerequisite to the kind of “common sense” which current A.IL research finds
great difficulty in achieving.

1.2 Spatial Reasoning in Qualitative Physics

Qualitative physics is a field of research that provides a new repertoire of
reasoning techniques for computers. These techniques enable computers to
reason about the real world without using numerical information or meth-
ods. The aims of qualitative physics are related to those of “Naive Physics”,

which attempts to describe the world using a formalised version of human
non-specialist understanding, thereby developing a model of human reason-
ing and also providing commonsense knowledge for A.I. systems. Qualitative
physics tends to be applied to more restricted problem domains than naive
physics — particularly engineering problem domains such as hydraulics, for-
mal mechanics and electronics, rather than to problems in the everyday
world.

Qualitative physics research to date has concentrated on problems that
do not involve much spatial information, dealing instead with complex pro-
cesses or device interaction over time. The analysis of systems such as cir-
cuits can be performed by using a simple representation of the connections
between components in the circuit, rather than any spatial description of
the circuit components.

Early qualitative reasoning systems operated in spatial problem domains,
but used methods of reducing the spatial content in the problem until the
programs operated only on connectivity information. The ways in which
this was achieved are described in detail in chapter 3.

1.3 Advantages of Spatial Reasoning to Qualita-
tive Physics

Most problem domains in physics involve a certain amount of spatial con-
tent, but qualitative physics research has been restricted to problems with
minimal spatial content. This has greatly restricted the utility of qualita-
tive physics methods, because few ways have been developed of applying
successful techniques to a more general range of problems. This weakness
has been noted by a number of people working with qualitative reasoning
systems [Fal87] [FNF87] [Jos87].

Recent qualitative reasoning literature describes systems which reason
about the behaviour of mechanisms, rather than circuits. In these situa-
tions, shape and space information is important, and the development of
qualitative spatial reasoning methods has been identified as a priority. The
techniques described in this thesis are an alternative approach to spatial
reasoning that is more general than that currently used for mechanism anal-
ysis.

1.4 Advantages of Qualitative Reasoning to Robotics

Current robot planning systems operate on a precise geometric and numeric
description of the robot, its workspace, and the objects that it is manipulat-
ing. Programmable robots (as opposed to guided, or “lead-through” robots)
are programmed to perform motions according to this precise description,
which seldom includes any tolerance information. Adequate precision of
the robot in carrying out its program, and exact location of objects in the
workspace is therefore a major concern of industrial robotics, because suffi-
cient precision must be obtained so that the numeric description agrees with
the workspace.

Despite impressive achievements of precision in robots, there are many
problems which cannot be solved by simply increasing precision. It is these
problems which can benefit from the use of qualitative spatial reasoning
methods instead of numerical geometry. A few important problems for
advanced robot programming that may be solvable by the application of
qualitative methods are as follows:

e A robot will encounter errors in its data from time to time, regard-
less of normal operating precision. In these situations it should be
able to continue operating, perhaps less efficiently, rather than hav-
ing to abandon the task. This is known as “graceful degradation” in
performance.

e High level robot programming should be carried out without having
to refer to numeric data. Ideally, a robot programmer should describe
the task to the robot in terms that they would use to describe it
when doing it themselves (“task-level” programming). People do not
naturally think of physical actions in terms of joint angles or numeric
workspace co-ordinates, so high level robot programming should be
done in non-numeric terms.

e A common way for people to communicate information about spatial
tasks is by the use of diagrams. A diagram normally reflects the struc-
ture of the task only, without containing any important dimensions in
the actual lines of the diagram — it is a qualitative device. A robot
should be able to understand the structure of the task from this kind
of information.

e Where parts of a robot’s workpiece are hidden, and the dimensions
are therefore completely unknown, the robot must be able to make

hypotheses about their shape. Consider the removal of a key from a
keyhole, for instance — we must make some mental picture of what the
hidden part of the key might look like, before developing a strategy for
removing it. If numerical information is needed for robot operations,
an hypothesis must include a complete geometric description, whereas
a qualitative reasoning system allows the robot to proceed on simple
structural hypotheses.

e [f the task involves design, it is often necessary to propose hypothet-
ical values for some design parameters (where the design is under-
constrained). In this case, the hypothetical assumptions made should
include no more information than is absolutely necessary to continue
design, since added information may cause the hypothesis to fail un-
necessarily. The use of a qualitative representation can provide this
facility, by describing only essential structural features.

An example of a current project in high level robot reasoning which could
benefit from the use of qualitative representations is Andreae’s NODDY
system [And85], which forms the basis of an ongoing project at Victoria
University. This system observes the actions of a conceptual robot in a
geometric world, and learns about robot procedures by generalising from
its observations. Numeric information is largely irrelevant to acquiring the
functional aspects of useful procedures, although NODDY presently uses a
number of numerical techniques. A qualitative description of robot actions
would provide a set of information for generalisation to proceed from that
had already been filtered to isolate structural elements.

There are a wide range of robot reasoning tasks which are hampered
by the complexity of operations in three dimensional numerical geometry.
The original starting point of my research was a proposal to investigate the
understanding of fasteners through robot disassembly of real mechanical de-
vices. The proposal excluded the physical issues of vision and manipulation,
but still resulted in a list of almost 100 research areas which would need sub-
stantial progress before a start could be made on the complete disassembly
problem.!

Many of these disassembly and fastening research issues derived their
complexity from the fact that representations available in three dimensional
robotic reasoning systems were not appropriate to the task that I wished to

!The relationships between these research topics is illustrated in the diagrams of ap-
pendix B.

solve. This failing originated the investigation of qualitative spatial reason-
ing that is described in this thesis.

1.5 Qualitative Spatial Reasoning Scenarios

This section summarises two tasks which are typical robot reasoning prob-
lems, and which a useful qualitative spatial reasoning system should be able
to perform. The system described later has successfully performed both of
these tasks.

The first task deals with sliding motion in two dimensions:

Given a scene consisting of a collection of objects, and one
object designated as the moving object, what contacts can be
established between the moving object and the others, under
the constraint that during all motion, the moving object must
remain in contact with at least one other (i.e. it is sliding around
the other objects).

The problem here is to produce what is called an “envisionment” in
qualitative physics — a set of possible future states for a system which is in a
known initial state. The major difference between a “robot” problem such
as this, and a qualitative physics problem, is that the actions of a system
analysed in qualitative physics normally result from instability in the initial
state, whereas here the robot has to physically act on the system to produce
a change of state.

Finding a solution to this problem requires firstly that the object bound-
aries and position be represented in such a way that possible sliding direc-
tions can be found, and secondly that the results of any motion can be
described in this representation, so that further motions can be planned.
The three reasoning stages in finding a problem solution are therefore:

1. Propose a possible slide from the current position.

2. Determine the possible contact positions at the first change of “state”
after this slide.

3. Compile a history of states that would be achieved after a series of
such sliding motiouns.

The second task is a simple two dimensional case of the “Mover’s Prob-
lem” or the “Findpath” problem, which can be stated as:

Moving
Object

Figure 1.1: Scene Example for the “Mover’s Problem”

Given an initial scene arrangement consisting of an object to
be moved, and N obstacles to the motion; find a path for the
object through the obstacles, such that it will not collide with
any of them.

Note that the mover’s problem is considerably more complex in three
dimensions than it is in two. I have discussed in chapter 4 my reasons for
limiting my approach to the two dimensional case. A two-dimensional scene
is shown in figure 1.1.

The problem for the robot is to find a path for the moving object which
will move it from amongst the surrounding obstacles, so that it can be either
removed from the scene, or manipulated in open space.

In solving this problem, the reasoning system must ask the following
questions:

e What obstacles prevent the moving object from moving into free space?

e Are there any gaps between those obstacles which might provide a
path?

e Are any of the gaps large enough for the object to fit through?

e What direction should the object be moved in, if it is to approach a
suitable gap?

e Are there any other obstacles along the path to that gap?

e If there are other obstacles, how should the path be modified in order
to avoid them?

This thesis describes a qualitative representation for physical objects
and scenes. The representation has been used to describe workspaces for
the two tasks presented above. Algorithms for carrying out the tasks have
been implemented, and both the algorithms and their implementations will
be discussed.

1.6 Organisation of the Thesis

Because this thesis draws from the fields of robotics and qualitative reason-
ing, it starts with two survey chapters. Chapter 2 presents an overview of
research in high level reasoning for robots, and discusses the spatial repre-
sentations which have been used in several projects. Chapter 3 surveys the
brief history of research in qualitative reasoning, covering both representa-
tion and reasoning methods, together with problem domains. This chapter
includes a critique of qualitative reasoning research with respect to spatial
reasoning performance.

Chapter 4 discusses two original qualitative shape and space representa-
tion methods, including the “Extended Polygon Boundary/Partial Distance
Ordering” representation (EPB/PDO). Each method has been developed
using a conventional solid modelling paradigm as a starting point. The
methods are discussed in terms of the requirements of simple spatial oper-
ations. Chapter 5 presents algorithins which use these representations to
perform the tasks described above, with some discussion of the implemen-
tation that has been carried out. Finally, chapter 6 discusses the utility
of the EPB/PDO representation when applied to qualitative reasoning and
high level robot reasoning problems. Topics for further investigation in both
qualitative reasoning and robot planning are described.

Appendix A gives a full description, in the LISP language, of a scene
used for testing the mover’s problem system. This example gives some idea
of the implementation issues that arise in providing computerised qualitative
reasoning, and can be used as a reference for those with further interest in
the details of the representation developed in this project.

Chapter 2

Spatial Representation and
Reasoning in Robotics

A fundamental step in the development of an AI system (or any computer
system) is designing appropriate computer representations for entities in the
subject domain, for the properties of those entities, and for relationships
between those entities. (The entities may be physical objects, computer
models of objects, or abstract facts). The resulting representation then has
a profound effect on the structure, operation, and capabilities of the whole
system. This is particularly noticeable in the field of qualitative physics, be-
cause the distinctive nature of the field is largely in the novel representation
used, and a completely new approach to computer reasoning has developed
as a result of that representation.

The application of qualitative reasoning techniques in a spatial domain
depends primarily on the development of a (qualitative) representation for
physical objects and spatial relationships between objects.

Techniques for the representation of physical objects using computer
systems have been developed in the context of several different fields. This
chapter surveys the field of robotics, pointing out the approaches that have
been taken to spatial representation and reasoning in the past. For com-
parison, the final section of the chapter briefly surveys shape representation
methods used in the areas of computer graphics, and computer aided design.
Some of the representation methods that have been used in these fields can
be adapted to make a basis for qualitative representations, and this will be
discussed further in chapter 4.

10

2.1 Survey of Robot Reasoning in AI

Early Al projects in robotics included Minsky’s “hand-eye” project at the
Massachusetts Institute of Technology in 1966, McCarthy’s “computer with
hands eyes and ears” at Stanford University in 1968, and Rosen and Nilsson’s
“intelligent automaton” at the Stanford Research Institute in 1967. As
one can deduce from the anthropomorphic titles of these projects, their
overall aims were for computers to imitate human capabilities when acting
in the real world, as a complement to the reasoning powers that were being
developed under the auspices of Al research.

These projects were mainly concerned with investigating the technology
required for a robot actuator guided by sensory data, but the techniques
developed were soon applied to practical tasks — in particular the task of
mechanical assembly. Robot assembly projects were soon under way at
Stanford (assembling a water pump) in 1973, University of Edinburgh (as-
sembling a toy car) in 1975, and Hitachi Central Research Lab (assembling
objects from plan drawings) in 1972 [EUY 1 72].

These hand-eye assembly projects only had a primitive internal repre-
sentation of the task they were performing. For example, the Edinburgh
project, described in [ABB*75], used a camera looking from above onto a
pile of white parts on a black table, and identified white areas which pro-
truded from the general pile. A grasp at one of these positions would take
hold of a single object. This object could then be pulled out of the pile,
laying it flat on a clear area of the table, so that its shape could be matched
against a known library of parts. Each identified part was then stored in
a predefined place, so that the assembly subsystem (which used no visual
information), could follow a set sequence of movements to incorporate it in
the assembly.

A number of early AI programs operated on a problem domain where
a robot arm was building piles of blocks on a tabletop. This problem do-
main became known as the “blocks world”. Many of the programs that
operated on the blocks world were not interfaced to an actual robot, or to
sensing equipment. In these cases, the blocks world was simply a model in
computer memory, which included only the information necessary to solve
the questions that the program would be applied to. One example of such
a blocks world program is the well-known SHRDLU, by Winograd, which
responded to English language commands, and answered questions about
the effects of its actions on the world model.

“Blocks world” programs usually investigated reasoning capabilities which

11

were seen as being useful to real robots. Fahlman’s BUILD [Fah73] anal-
ysed the stability of piles of blocks, and planned ways in which it could build
and dismantle piles without them falling over. Sussman’s HACKER [Sus75]
investigated machine learning by comparing the results of action plans to
goals that it had formulated for those plans; it could acquire new “skills”
by storing the debugged versions of successful plans.

Since these early projects robotics research has diversified, and now takes
place at various levels of abstraction from the physical robot. Typical re-
search topics (in order of increasing abstraction) are:

1. New manipulator, arm, and sensor designs.

2. Control of manipulators and arms, and the interpretation of sensors.
3. Description and specification of robot motion.

4. Automated motion planning.

5. Operation from task descriptions, rather than motion description.

6. Deriving assembly plans from a simple description of the assembly.

New manipulator developments include general purpose devices such
as multi-fingered manipulators (e.g. [JWKB84] [LPD83]), as well as spe-
cial purpose manipulators for handling unusual objects ([KTTP83] [BH82]).
Arm designers experiment with different numbers of joints and different co-
ordinate systems (spherical, cylindrical, and cartesian). New sensors include
tactile and contact sensors, together with remote sensors such as sonar or
optical devices (e.g. [Sie86] [RT82] [BDARP83] [Ben83)).

Design of new actuators or sensors must consider control issues, but
research continues even on the control of well-known devices. Robot arm
kinematics is constantly under analysis, and the control of dextrous hands
appears to be at least as complex as the design of the hand itself. The
interpretation of visual images is also a very large field of research, although
the methods of acquiring the images have not changed very much for 20
years.

The specification of robot motion is essential for programming robots,
and a variety of techniques have been developed for describing such motion.
These range from robot programming languages [GSCT83], to methods for
guiding or leading the robot through a desired trajectory. All of them require

12

methods for analysing and describing the motion of a robot arm (e.g. [Lyo85]
[TPB81)).

If a robot is to plan motions for itself, it must be able to plan and
evaluate possible paths. A considerable body of work has been devoted, for
example, to the problem of collision avoidance for an arm moving in three
dimensions [Bro83]. Motion planning issues also include compliance [LP85]
— controlling the arm so that it exerts a specified force at the surface of a
workpiece — and grasp analysis for manipulators [Ngu85b] [Lyo85].

An attractive goal for robot users is the ability to describe only the task
that must be performed, while the robot works out for itself the details of
the motions that it must carry out. This goal is called “task-level program-
ming”, as opposed to the “robot-level programming” that describes indi-
vidual motions. Task-level programming languages include Lozano-Perez’s
LAMA [LP79] [LP76] and AUTOPASS by Lieberman and Wesley [LW77].
These languages describe tasks in terms of the workpiece, rather than in
terms of the robot.

“Goal-level programming” aims to have the robot carry out even more
of the work necessary in deciding how to perform a task. A typical scenario
in goal-level programming is that the programmer describes an assembly,
then the robot works out for itself how to combine available parts to form
the assembly. General discussions of goal-level robot programming are given
by MacDonald [Mac87a| and Zhang [xZ87].

Industrial robot applications have mainly made use of developments
from the first three levels of abstraction in the above list. The later three
levels have only been investigated in a research context, and experimental
task-level or goal-level systems often operate in a simulated “blocks world”,
rather than using real robots or workpieces. The integration of robot con-
trol across these varying levels of abstraction is an important research topic.
One promising approach to this topic is hierachical integration, as proposed
by Brooks [Bro85b] and Albus [Alb81].

Further progress in the more abstract levels of robot reasoning relies
largely on the development of more sophisticated representations of the
physical world, as has been pointed out by Brady [Bra85a]. The reason-
ing tasks carried out in high level robot control tend to involve qualitative
rather than numerical data, as the reasoning moves further from exact mo-
tion description (this was noted by Ambler and Popplestone in developing
the RAPT system for assembly goal specification [APK82] [PAB80] [APT75]).
The qualitative representation for spatial reasoning described in this thesis
developed from an investigation into qualitative, high-level representations

13

for use by robots.

2.2 Space and Shape Representation for Robots

All robot systems operate in the physical world, and a robot controller
therefore must include some form of spatial representation, whether it is an
explicit description of object shapes and locations, or whether it is implicit
in a sequence of motions through space. The requirements of robot spatial
representations vary considerably in different applications, however — the
sophistication of spatial representations must increase as the robot controller
is required to perform more sophisticated tasks. The following list presents
the types of spatial representation facilities that are necessary to carry out
different levels of robot programming and control:

e Robot level programming does not assume that the robot has any
explicit knowledge about its surroundings. The shape of the objects
that the robot is operating on is, however, implicit (to some extent)
in the motions that the robot makes.

e Vision systems (those which perform object recognition, or scene anal-
ysis) must have some explicit spatial representation, since all visual
processing operates on a two dimensional projection of the physical
subject.

e “Hand-eye” systems must be able to relate the description of an object
as it appears in the visual field to operations that the robot will carry
out in its workspace. This requires a spatial representation which is
more versatile than for vision alone.

e Systems in which object descriptions are directly created by a pro-
grammer require that the description can be readily derived from the
programmer’s own “spatial representation” — his concepts of space and
shape. At the same time, the robot controller must be capable of relat-
ing the programmer’s description both to features in the visual field,
and to actual movements. Representation facilities like these are a
requirement of task level programming.

e Where a robot is reasoning for itself in an environment that may con-
tain unknown objects, or unfamiliar arrangements of objects, it must
be able to use sensory data to construct a useful spatial representation

14

of its surroundings, so that it can plan and operate in those surround-
ings.

e “Robots” that operate in a simulated world are of course particularly
dependent on the form in which the simulated world is represented,
since they do not interact with anything other than the representation.

The remainder of this section discusses several approaches which have
been taken to space and shape representation in robotic systems. It includes
discussion of techniques that have been used in most of the above categories
of task, so that the capabilities of various general methods can be compared.

2.2.1 Robot Motion Representation

The great majority of present day commercial robots are programmed using
“robot-level” programming technology. The only spatial representation nec-
essary to support this type of programming is a stored description of robot
motion. Typical components of such a description are:

e Joint angles for the robot arm

e Workspace coordinates

Forces which the robot must apply

Velocity of the arm (either angular, or cartesian)

These components are often amalgamated in a “trajectory”, which de-
scribes the sequence of positions, velocities, or forces that the programmer
has specified. A sophisticated program may have a number of trajectories,
which can be selected or modified, depending on sensory input.

A powerful set of techniques for motion representation are the configu-
ration space methods, which describe robot motion in a multi-dimensional
space. This is useful in describing general robot motion, where it can be
necessary to simultaneously move an object in any of three directions (x,y,
and z axes), while rotating it around any of three axes. The complete motion
can be planned and described in a six dimensional configuration space. Path
planning techniques using this type of configuration space are described by
Lozano-Perez [LP83], Gouzenes [Gou86], and Donald [Don87].

Multi-dimensional motion spaces for reasoning about force control prob-
lems are described by Mason [Mas81]. His system specifies motion along

15

“C-surfaces”, which are surfaces in a 6-dimensional space that defines force
application in three directions, in addition to position. C-surfaces can be
used to describe the motion involved in complex force control tasks such as
drawing on a blackboard with chalk, or tightening a screw while holding a
screwdriver in the slot.

Athough the shape and arrangement of workpieces are to some degree
implicit in the programmed trajectory or C-space motion, it would be diffi-
cult to derive very much useful information about the workpiece from this
“representation”. (There is certainly some simple information that could be
deduced — consider, for example, the possibility of finding the body shape
of a car from the path followed by a spray painting robot).

I include a discussion of these motion representations for completeness,
but they are really too specialised (to robots) to be applied to more general
questions of spatial reasoning.

2.2.2 Space Filling Representations

In a space filling representation, an area of space (either the whole workspace,
the visual field, or simply the locality of an operation) is partitioned into
regions, which are classified as either occupied or unoccupied. An object is
represented in the system simply as a collection of occupied regions. The
spaces between objects are represented as explicitly as the objects them-
selves, and can be analysed by considering the collection of unoccupied re-
gions.

The technique used in the Edinburgh assembly project described in the
previous section is typical of the most primitive form of space-filling rep-
resentation. In this system the basic units of space in the representation
correspond exactly to pixels in the robot’s visual field. The Edinburgh
system made two dimensional images using an overhead camera. The two
dimensional outline of an object lying on the table was then matched against
a library of outlines for all parts. The identification of protrusions from the
pile, and outline shape matching could both be carried out using a simple
copy of the visual image as the internal representation. This copy was a pixel
map with bits of an array set where there were light areas in the image.

The same simple representation was used in this project as the basis
for visually guided arm movements. Each stored object representation had
associated with it a point by which the object could be grasped, and once
the identity and position of the object had been established relative to the
camera, (which was in a fixed position), the arm could be guided directly to

16

the grasp point.

This hand-eye system is versatile enough to operate in many industrial
environments, but the simple representation of shape results in several lim-
itations. One limitation is that shape matching is carried out on the whole
object, and where an object is partially obscured, the system cannot recog-
nise it. The practical solution to this problem involved using the robot arm
to scatter piles of objects which obscured each other; this would not be an
acceptable technique in a lightbulb assembly plant! A further limitation is
the restriction to parts that are adequately described by a two dimensional
view.

The Edinburgh system was limited to recognising shapes that have unique
outlines when lying flat on a table; it is possible, however, to use the same
simple level of visual shape encoding, with more sophisticated indexing, to
obtain a more complex description of three dimensional shape. The simplest
way of doing this is to store outlines of an object when viewed from differ-
ent angles. Grossman and Blasgen developed such a system for identifying
objects, which was not limited to flat parts [GB75]. Complex parts were vi-
brated in a tray into one of a few stable orientations. The vision system was
then able to test the image of a part in the tray for all known orientations.

The representation of the object in this case consisted of a collection of
pixel maps of the possible two dimensional projections of the part in each
stable orientation. Although this system was able to identify three dimen-
sional parts more accurately and reliably than a simple overhead view, the
resulting collection of projections was really only useful for part identifica-
tion — a robot would require more information about the underlying part
structure to plan manipulation.

A limitation of both of the above systems is that the world representation
contains only the shapes that are in the visual field of the robot. Space filling
representations can be made more powerful by representing the whole of the
robot’s workspace, rather than just its visual field. This representation must
be less dependent on sensing hardware, since it cannot make direct use of
image pixels.

The extension of space filling representation to the whole workspace can
also involve an extended number of dimensions in the representation. If the
workspace representation is not restricted to construction from the informa-
tion in a single image, it can include three dimensions. Three dimensional
space filling divides the workspace into regions using a three-dimensional
grid, where the elements of the grid are occupied or unoccupied “voxels”.

Space filling representations (whether two dimensional or three dimen-

17

sional) can be made more compact and memory efficient by using schemes
to describe contiguous chunks of either occupied or unoccupied space. One
simple method is that of “quadtrees” (or “octrees” in the three dimensional
case), which partitions the workspace using the following algorithm: The
workspace is divided into quadrants (or octants). If a quadrant is homoge-
neously filled or empty, it is not subdivided any further. A non-homogeneous
quadrant is itself divided into quadrants, and the process is repeated. This
subdivision can then be carried out to any level of detail.

Lozano-Pérez’s original LAMA task-level programming system [LP76]
makes use of a still more sophisticated space filling approach for representing
the overall workspace. This does not divide the workspace into arbitrary
quadrants, but into object-specific domains at the boundaries of objects.
This method can achieve improvements in accuracy, because the edges of
objects are located precisely, instead of being represented at the nearest line
of area units. It also involves less memory usage than the quadtree method,
because the number of space divisions increases only with the number of
objects (or edges), rather than with resolution accuracy. The method is,
however, more computationally complex.

Figure 2.1 illustrates the various space filling methods, as used to de-
scribe a simple scene at low resolution.

There are two very significant limitations to the space filling techniques.
The first of these is that the level of accuracy which can be achieved in
describing the object boundary is limited to the size of the smallest unit
region. An n-times increase in accuracy therefore results in a 2" increase
in memory usage for a two dimensional pixel-based system, and a larger
relative increase for a quadtree system.

The second limitation is that straight-sided objects only appear to have
simple boundaries if those boundaries are aligned to the grid along which
the representation space is divided. The representation of an object with
edges which are not aligned to the grid axes results in aliasing of the edges
(this can be seen in the diagonal lines of the example). The efficiency of
using regions which fit the object boundaries is also greatly reduced in this
case, because it is impossible to subdivide the workspace orthogonally to fit
edges. This is noted by Lozano-Perez as a weakness of the method used in
his LAMA system.

The main advantage of space filling representations has been the simplic-
ity with which they can be constructed, with the simplest case (pixel-size
regions) requiring no processing at all to derive the shape representation
from image data. For this reason, they are still used in industrial tasks

18

ded

Actual Image Spaca Filling from Pixels

Cuadireedike Space Filling

Figure 2.1: Space Filling Representations

19

Edge-Relative Space Filling {like LAMA)

involving simple shape matching, or location of a single workpiece within
the robot workspace. (An example is the detection of a workpiece randomly
located on a conveyor belt, which must be visually located so that it can be
picked up by a robot arm). Where more complex reasoning is to be carried
out, space filling representations soon become impractical.

A secondary advantage of space filling representations arises from the
fact that empty space is explicitly represented. This is useful in path plan-
ning problems, where empty space of sufficient size for the robot arm to
move through can be found directly by searching the scene representation.

2.2.3 Shape Boundary Representation

The most important part of a space filling representation is the way in which
the abutment of occupied space regions against empty regions is described.
The refinements of space filling methods in the previous section all involve
ways of economically improving accuracy along this boundary. A common
technique in shape representation for robots is therefore to describe this
boundary explicitly, rather than as an implicit line between occupied and
unoccupied regions.

Explicit boundary representation provides important benefits both in
pure vision systems, and in systems where a robot arm is controlled using a
visually acquired shape representation. An example of the former, developed
for industrial applications, is quality control and sorting of objects lying flat
on a conveyor belt, where boundary shape is the criterion used for sorting.
Typical examples are quality control which checks that biscuits are round
(no pieces broken off), or a sorting machine for fancy chocolates [Cro82],
which stores mathematical models of the curved boundaries of each type of
chocolate.

The boundaries of a workpiece are very important in controlling a robot
arm, since it interacts with the workpiece only along those boundaries. A
good example of this is Trevylan’s robot sheep shearer [TKO82], which con-
structs a mathematical model of the boundary of each sheep. This model is
used to guide the shearing arm over the sheep’s skin.

Both recognition and robot handling using a simple boundary description
are described as goals of a system which, among other tasks, identifies and
handles kiwifruit [FA86]. This system describes the “silhouette polygon” of
the kiwifruit in terms of a series of vectors around the boundary.

In each of the above cases, the shape boundary is the only information
which is relevant to the robot task, so the best shape representation is to

20

make explicit those parts of the boundary which the robot must operate
with.

2.2.4 Constructive Solid Geometry Representation

Boundary shape representation is useful both for visual shape recognition,
and for planning robot actions — the first because many industrial recog-
nition tasks can proceed on the basis of boundary information only, and
the second because robots only interact with shapes on their boundaries.
Boundary representation does have disadvantages, however, where humans
must operate with the representation, since we more often consider three
dimensional objects to be collections of solid masses, rather than collections
of surfaces.

For this reason, robot programming research has resulted in different
types of shape representation from those used in object recognition or robot
control. Constructive solid geometry (CSG) is often used for this purpose.
In a CSG representation, overall three dimensional shape is described as a
combination of simpler solids, which in turn can be decomposed, until an
atomic level of “shape primitives” is reached.

An early paper by Grossman [Gro76] described the use of procedure
calls to represent nested arrangements of parts and subparts in an assembly.
The procedural structure of these reflected the hierachically decomposed
structure of the assembly.

The approach became more sophisticated with the addition of a “seman-
tic overlay” in a joint representation development project involving Gross-
man and Lozano-Perez, together with Wesley and Lieberman, the chief ar-
chitects of the experimental AUTOPASS language [WLPL'80]. The “Ge-
ometric Design Processor” merges entities from the classes of object, hole,
fastener, assembly, and so on, to form descriptions of assemblies in the world.
The “world-graph” includes pointers to rigid or non-rigid objects, which in
turn refer to their neighbours with friction and constraint relationships.

Generic objects, or particular objects in a scene, can be composed from
combinations of solid primitives and “hole” primitives (which describe empty
space). The primitive shapes available are cuboid, cylinder, cone, wedge,
hemisphere, laminum (flat things), and revolute (solids of revolution). In
addition to the shape description facilities of the geometric design processor,
the AUTOPASS language provided facilities to describe robot operations at
a “human” level, with basic operators such as “INSERT” and “ATTACH”.

The designers of this representation system anticipated that it would be

21

applied to computer vision, path planning, high level robot programming,
and graphical design. In fact, the complexity of the system when compared
to methods such as space filling or boundary representation has meant that
few attempts have been made to use it so far. The AUTOPASS language
has not been completed, so it is difficult to assess the overall utility of the
scheme, but it includes many of the concepts that appear in other advanced
representations.

Constructive solid geometry representations are discussed further under
the heading of computer aided design below, since this is where they have
most widely been used.

2.2.5 Object Relative Position Representation

Primitive robot programming systems describe all robot actions relative to
the robot itself. Many robot tasks, however, can be described solely in
terms of the desired effects upon workpieces. For this reason, “goal-level”
programming systems, in which robot actions are not considered by the
programmer, describe position of shape elements relative to other objects.

The goal-level robot programming language RAPT allows operators to
describe assemblies, with the objective that the description of the assembly
should be “interpreted” by a robot. This interpretation would result in the
robot creating a physical instance of the described assembly. One of the
main goals of the RAPT project was that assemblies be described in terms
that are natural to people. With this in mind, the relationships between
components of an assembly are defined using operators such as “AGAINST”
and “FITS”.

The procedure followed by RAPT involves translating the programmer’s
specification of object relationships into geometric descriptions. The rela-
tionships between objects are specified in terms of individual shape features
of the objects, and the goal state is described as a mapping from the axes of
one feature to the axes of another. The features in turn are described with
respect to the object body with a mapping to the axes of the object. These
mappings are all represented as combinations of translation and rotation
matrix operators.!

'Further discussion of RAPT can be found in the following references: The RAPT
representation of object relationships is described in [AP75], the relational language which
is used to implement the system is described in [Pop79], the interpreter is described in
[PAB80], and a comparison of RAPT with programming in VAL and with a computer
aided drafting system, is given in [APK82]. An extension to RAPT which deals with

22

2.2.6 Representation for Robot Vision

The greatest variety of shape representation techniques appear to be found
in vision research literature. This is largely because the task is simpler
than the complete problem of robot control, so systems can successfully
employ a greater variety of techniques, without some of the constraints that
are imposed by the need to control a physical robot. Greater variety also
results from attempts to describe natural objects in outdoor scenes, which
can be far more difficult to encompass with formal description techniques
than the man-made objects that robots normally act upon.

Many visual representations are optimised for particular visual input
facilities, or for recognising particular classes of objects. There is therefore
much variation, even between systems that use the same overall approach.
Rather than attempting a complete survey, the remainder of this section
concentrates on those methods which are applicable to mechanical domains.

The earliest vision systems represented objects simply as a pixel map
of the image corresponding to the object. A slightly more sophisticated
representation can provide a three dimensional description of an object using
“silhouette” bitmaps observed along three axes. The result describes a three
dimensional enclosure for the object (excluding closed concavities), which
can be stored efficiently. The technique is called rectangular parallelepiped
coding [KAS86].

The use of edge detection filter algorithms on visual data enabled objects
to be represented as a collection of boundaries. Guzman identified different
types of vertex that can be formed at edge junctions in three dimensional
polyhedral objects (with Huffman and Clowes later providing a theoretical
foundation for the classification [RJ88]), and this classification can be used
to derive a three dimensional description of an object from the relationships
between visible edges.

Lowe has developed a technique for identifying objects in terms of invari-
ant groupings of edges which would have a known appearance when viewed
from any angle [Low87]. Shape representation in terms of possible edge
groupings only identifies features for shape recognition — it does not provide
a full description of the shape. It is interesting in that it provides a consistent
mapping from two dimensional to three dimensional representations.

A useful technique for describing three dimensional shape is the method
of generalised cylinders, developed by Binford. A generalised cylinder is

representation of tolerance information, and propagation of positional uncertainty through
an assembly is described by Fleming [Fle85b].

23

created by sweeping a two dimensional shape along an axis, with size of the
swept cross-section varying according to a sweeping function. A plain cylin-
der, for example, is simply defined as a circle swept over a straight line, with
a constant sweeping function. More complex definitions are easily achieved
— a pyramid is a square swept over a straight axis with a linear sweeping
function, decreasing toward the apex. Generalised cylinders were proposed
as the output formalism for a large MIT vision project by Brady [Bra85a],
following Marr’s use of generalised cylinders as a high-level representation.

Description of shape by analysis of boundary features is provided by
Brooks’ “Smoothed Local Symmetries” representation, which separates the
boundary of a two dimensional image into sub-parts, according to transi-
tions on the boundary that look like joins between parts. Shapes described
with this representation are used as the basis for shape generalisation from
visual data by Connell [CB87] [Con85], and for a project by Brady in which
function of mechanical tools is deduced from their shape [BA84a).

There are many shape representation techniques used in vision systems
which can be applied to a more general range of shape than those discussed
above. Other methods for representation of shape within a visual image
include the use of surface patches of known curvature on three dimensional
objects [FH86], the use of “Gaussian curvature” to represent bumps in a
more general solid representation than the generalised cylinder [Bli87], and
representation of a wide range of natural forms using three dimensional
surfaces defined by superquadrics and fractals [Pen86a]. These techniques
provide more generality, but are more complex than the above methods,
which adequately describe mechanical objects.

2.2.7 Other Robot Representations

Sedas and Talukdar have developed an algorithm for planning disassembly of
objects in two dimensions which makes use of multiple representations of the
object to be disassembled [ST87]. The three representations used include a
sectional view of the assembly, stored as the co-ordinates of all vertices in the
section, a connection graph describing points of attachment between parts
in the assembly, and a “skeleton” diagram which represents each part as a
connected group of convex polygons, with connections between the centroids
of the polygons.

Ballard describes a method for representing robot actions using “task
frames” [Bal84]. A task frame is a special co-ordinate system based on
the object being manipulated by the robot. The task frame moves with

24

the object, and can thus be used to simply describe tasks which occur in
a context that might otherwise add to the complexity of describing robot
motion. One such situation would be the assembly of a workpiece while it
is moving past on a conveyor. The advantages of the task frame approach
are its simplicity of implementation, and the straightforward transformation
that can be performed between the task frame and world co-ordinates.

Although the majority of high-level shape representation techniques are
designed to be used with visual sensory information, representations can
also be built from other sensory input. For example, Briot et. al. outline
an object representation which describes an object in terms of the joint po-
sitions of a four fingered multiply-jointed manipulator grasping it [BRS78].
This allows objects to be recognised from grasp alone, without any visual or
other sensory data. The joint-space object representation is not intended as
a general purpose shape description method, but is simply used for object
recognition.

These last examples are only a few from a great range of representation
techniques, but they indicate some of the variation that is possible in de-
scribing shape and space for robot reasoning. The previous sections have
surveyed the most influential techniques in spatial representation for robots,
but it has been necessary to omit a number of interesting systems.

2.3 Shape Representation in Other Fields

Most general purpose approaches to shape representation have been de-
veloped outside the field of robotics. The study of “Solid Modelling” has
application not only to robotics, but to computer aided design and drafting,
and also computer graphics.

Solid modelling techniques have developed with growing sophistication
in CAD methods, which have progressed from a simple description of lines
and points in an image, to description of three dimensional objects in terms
of “wireframes” (the edges and vertices of the three dimensional shape),
to boundary representation, which describes the surfaces of an object, and
constructive solid geometry, which describes solid shapes in terms of primi-
tive solid components. The remainder of this section discusses each of these
categories of representation technique.

Computer aided drafting was first done by specifying a set of co-ordinates
of lines and points in a format which could be stored, edited, and used
to make copies of the defined drawing. Specifications were either entered

25

numerically, or captured from x-y digitising devices. CAD systems today
have generally evolved from this level, but many are still related to manual
drafting only in the same way that a word processor is related to a pencil
— they remove the tedium involved in copying and editing, and sometimes
make data entry more efficient. They do not, however, have any explicit
representation of the object being drawn; The internal representation of the
drawing is simply a collection of the lines and points which will appear on
the page.

2.3.1 Wireframes

Solid modelling systems are distinguished from simple CAD in that they
allow three dimensional objects to be designed in a three dimensional space.
The three dimensional representation can then be used to automatically
generate two dimensional projections.

The most primitive form of CAD solid modelling is the “wireframe”
method. A wireframe is a description of the vertices and edges of a three
dimensional object, specified by x, y and z coordinates. The wireframe de-
scription of an object can be used to generate computer drawings in various
projections, and can be manipulated by an operator for such functions as
on-screen rotation. Wireframe systems do not normally perform “hidden
line removal” and the operator must therefore specify the visibility of each
edge and vertex for a given projection.

Wireframes are not sufficently powerful for many spatial reasoning tasks,
because it is possible for a single wireframe to represent several different ob-
jects, depending on what spaces in the frame are filled — wireframes are
ambiguous. They are not altogether satisfactory for CAD tasks either, be-
cause they allow the accidental creation of “impossible objects”, such as a
cube with one edge missing.

2.3.2 Boundary Representation

An obvious extension to the wireframe method was to represent the poly-
gons composing an object surface, rather than the edges only. This type
of method is known as “boundary representation”, because it describes the
boundaries of the solid (in terms of an enclosing surface). Extensions to
polyhedral object representations include the use of surfaces specified from
b-spline curves. B-spline boundary representation techniques are used heav-
ily in current computer graphics technology for visual effects involving three

26

dimensional objects, and are also sufficient for some machine tool control
applications, where the computer system must know the goal shape of the
workpiece surface after cutting.

Boundary representation methods are more powerful than wireframes,
because they represent an object in terms of its surfaces, rather than its
edges. A wireframe can thus be created from any boundary representation,
but not necessarily vice-versa (because of possible ambiguity). The use of
surfaces prevents the “missing edge” problem, and can also prevent am-
biguity. Some checking is still necessary, however, to ensure that a given
collection of surfaces describes a valid three dimensional object.

2.3.3 Constructive Solid Geometry

Constructive solid geometry systems allow the definition of complex three
dimensional objects using a combination of simpler objects. A CSG system
normally includes a set of solid shape primitives such as cubes, cylinders,
cones, etc. which can be defined in a range of sizes and shapes. These
primitives are combined using “set operations”, or “boolean operations”,
which allow the shape of an object to be described as the intersection of
other objects, or as the union of objects. Inverse sets (or subtractions) are
used to make holes in the overall shape. The resulting shapes can in turn
be joined, or intersected with other shapes, to describe three dimensional
shape of any complexity. CSG systems often include facilities for defining
new primitives by “sweeping” operations, such as those that are used in
the generalised cylinder method described in the previous section. Two well
known CAD research systems that use CSG methods are GMSolid [BG82],
and PADL-2 [Bro82b].

Constructive solid geometry systems are more powerful than boundary
representations in the same ways that boundary representations are more
powerful than wireframes. A boundary representation can be automatically
derived from a CSG description (in fact this is often done for graphical
display purposes). Objects constructed using CSG are guaranteed to be valid
three dimensional objects, and such a representation cannot be ambiguous.
CSG representations have been extended in various ways; examples are the
inclusion of tolerance or uncertainty data [RC86], or object-oriented style
“methods” knowledge for operating on defined objects [Big86] [Ela86].

Recently developed systems have included combinations of the above
methods. Gossard, Zuffante, and Sakurai describe shape using a combina-
tion of CSG and boundary representations [GZS88]. Their “Object Graph”

27

can include both solid primitives and boundary surfaces in the description
of an object.

2.3.4 Other Methods

Both constructive solid geometry and boundary representation techniques
are also used outside of the engineering domain, most notably in computer
graphics work. The most difficult problems in computer graphics seem to
involve the realistic representation of natural objects, rather than man-made
ones. This means that new techniques developed for graphics systems, such
as texture mapping, have not yet influenced the fields of either CAD or
robotics, which deal mainly with man-made objects.

A number of fields make extensive use of computerised shape representa-
tion, but are not concerned at all with solid shape, because they are building
on commonly used two dimensional abstractions. A typical example is com-
puter assisted mapping, where there is a definite correspondance between
the two dimensional map and the three dimensional shape of the land, but
mapping conventions allow all infomation about the map to be described
in two dimensions only. Such systems may include sophisticated two di-
mensional shape representation (such as extended polygons, in Geovision’s
“AMS” system), but represent three dimensional shape only in that they
allow the draughtsperson to draw contour lines.

Another example of a two dimensional abstraction that has lent itself
to computerisation is plane geometry. Gelernter’s 1963 geometry-theorem
proving machine used descriptions of two dimensional shape that specified
a range of possible coordinate values for each point in the shape described,
thus allowing the system to test its proofs over a range of cases.

This chapter has covered a variety of methods for representation of, and
reasoning about, shape and space in two and three dimensions. Several of
the methods discussed here have influenced the development of the qualita-
tive shape representation presented in chapter 4, and they will be referred
to again in that chapter. This survey has also given some indication of the
limits of spatial reasoning capabilities both in robotics and in other fields
— limitations arising from lack of accuracy, ambiguity, or difficulty in con-
structing the representation either from a vision system, or from a human
programmer. Chapter 6 discusses ways in which a qualitative spatial repre-
sentation can overcome some of these limitations.

28

Chapter 3

Qualitative Reasoning in
Spatial Domains

3.1 The Origins of Qualitative Reasoning

There have been two main streams contributing to the development of the
field of “qualitative reasoning”. The first of these, usually referred to as
qualitative physics, builds on the work of de Kleer, who pioneered the use
of qualitative methods in solving engineering problems. The second is a
program initiated by Hayes, with the aim of developing a “Naive Physics”,
which Hayes defines as “a large-scale formalism” of commonsense knowledge.

Nearly all published work in qualitative reasoning acknowledges both
de Kleer and Hayes, but the majority follows the example of de Kleer’s
work, in that it attempts to analyse specific physical situations in qualitative
terms. In contrast to this approach, Hayes recommends that naive physics
should consider a wide range of human experience in developing qualitative
models. The following two sections present firstly a historical overview of
developments in qualitative physics, and secondly a brief discussion of the
aims of naive physics, which considers how far qualitative reasoning research
has progressed toward those aims.

29

3.1.1 Early Qualitative Reasoning Systems

The first (1975) published paper which is referred to in qualitative physics
literature was de Kleer [dK79]'. The system described in this paper was
intended to model human problem solving in Newtonian mechanics. Several
people had previously worked on systems which could solve problems at the
level of “high school physics”, but de Kleer was the first to use qualitative
methods in an attempt to model the thought process of a student more
closely — the others simply extracted numbers from a problem description,
and used linguistic cues to select the mathematical operations which might
be appropriate.

De Kleer’s system, called NEWTON, described motion of a block on a
roller coaster in terms of the speed of the block and the slope of the roller
coaster. The speed could have one of three qualitative values — positive,
negative, or zero. The slope of the roller coaster was likewise described by
one of three qualitative slopes — up, down, or level. NEWTON performed an
initial qualitative analysis to find places at which the behaviour of the block
was likely to be interesting, and later applied numerical techniques if oper-
ations using the qualitative values were not sufficient to reach a conclusion
about behaviour at particular locations. The use of multiple representations
to support both qualitative and numeric reasoning was the major emphasis
of the research.

In 1979 de Kleer extended qualitative techniques to the domain of elec-
tronic circuits?. The techniques used for reasoning about circuits retained
NEWTON'’s use of three qualitative values. An emphasis of the work was
establishing causal relationships between values at different nodes of the
circuit. The use of the circuit domain removed any need for spatial repre-
sentation in this research, since a circuit can be completely represented by
its topology, without any spatial information.

In 1980, de Kleer and Brown described a system which modelled human
understanding of mechanical devices [dKB80], [dKB83]. The input to the
system was a structural description of the device. From this information
the system would create an “envisionment” of its likely behaviour. The
example used was an electro-mechanical buzzer. The analysis of the buzzer

!The reference listed in my bibliography is a version of this paper in a 1979 collection.
The paper was initially published as MIT AI Lab Technical Report TR-352 in 1975. De
Kleer also published related papers in 1977 [dK77]

?Initially described in “Causal and Teleological Reasoning in Circuit Recognition”,
MIT AI Lab Technical Report TR-529 1979, but more fully developed in [dK84]

30

proceeded by analysing how some components could cause changes in the
state of others, thus changing the state of the whole system. The oscillation
of the buzzer could be deduced from the closed loop in the state transition
diagram.

In 1981, Forbus published a description of a system which reasoned about
the motion of a bouncing ball through a two dimensional scene consisting
of free space bounded by vertical and horizontal surfaces [For81]. “FROB”
could, given a description of the initial trajectory of the bouncing ball, pre-
dict where it might come to rest. The main tools used by the system were the
“metric diagram” and the “place vocabulary”. The “metric diagram” was a
representation of the scene that was intended to model the human capability
to reason using an internal image of a situation [For83]. The “place vocab-
ulary” was a subdivision of free space into regions with different qualitative
features. Motion was then described as a transition between regions. This
part was purely qualitative, and included no numerical analysis components.

Forbus developed a new technique for qualitative reasoning in 1981,
which he called “qualitative process theory” [For84a]. Qualitative process
theory describes physical quantities such as temperature and pressure in
terms of a “quantity space”, which is an ordering of values that have qual-
itative significance for the process being described (for example — boiling
point is a qualitatively significant value for temperature when a water heat-
ing process is being described). The process is described as a set of “influ-
ences” on quantities associated with objects in the situation described. For
example, heating might be described an influence exerted by a heater on the
temperature quantity associated with a fluid.

A large body of research has developed from Forbus’ qualitative process
theory, and from de Kleer’s work on causal reasoning about circuits. A
comprehensive collection of this work is the book “Qualitative Reasoning
about Physical Systems”, published in 1984 [Bob84a]. Since this time, the
field has continued to grow, and I will mention later work only if it has a
bearing on spatial or mechanical reasoning.

3.1.2 Naive Physics

“Naive Physics” is a term coined by Hayes [Hay78] in 1978, to describe his
approach to developing a “large-scale formalism” of commonsense knowledge
about the world. This concern with real world knowledge can be related to
a general awareness amongst Al workers that future progress in Al depends

31

on intensive knowledge being made available to reasoning systems.3

The aim of naive physics as stated in [Hay83] is to formally describe the
world in the way that most people think about it, rather than describing it
in the way that physicists think about it. This description should attempt
reasonable completeness — that is, it should describe a significant portion of
the way we understand the world, rather than just small pieces.

The use of the word “naive” indicates that this description must in-
clude commonsense knowledge that is normally taken for granted in formal
physics, and it therefore may include elements outside what we consider to
be the field of physics. It may also choose to describe phenomena in a way
that is familiar to “the man in the street”, but would not be considered
appropriate to a physicist. Two examples are the “force” of sucking, and
“impetus” theories of motion, both of which adequately describe everyday
phenomena, and are prevalent theories amongst intelligent people [McC83],
even though they are considered to be inappropriate for physicists.

The “Naive Physics Manifesto”, and the its revision in the “Second Naive
Physics Manifesto”, proposed the construction of a formalisation of common-
sense knowledge which covered a broad range of knowledge using a common
framework, and included dense factual detail. It specifically did not recom-
mend the construction of programs or new formal description methods. It
did dwell on the importance of spatial representation, although it excluded
the sort of spatial reasoning that is necessary to plan physical motion®.

Nearly all qualitative physics literature has cited the “Naive Physics
Manifesto” (including Forbus [For81], Faltings [Fal87], Kuipers [Kui82], Stan-
fill [Sta83a], etc.), and it can therefore be considered to be a foundational
work for qualitative physics.

The wide influence of the manifesto can be easily accounted for — it is
compelling reading, pointing out clearly the deficiencies of much work in
A.L., while proposing a clear, exciting, and apparently practical vision for
future progress. However, most qualitative physics work does not follow
Hayes’ recommendations. In particular, an emphasis on restricted domains,
and on construction of reasoning programs rather than on knowledge rep-
resentation, separates qualitative physics from naive physics as proposed by
Hayes.

In addition, the importance of spatial reasoning in the commonsense

3Hayes’ awareness of the problems of real world reasoning may also have been strength-
ened by his early work in robotics.
*[Hay83] p.10

32

world as pointed out by Hayes has not resulted in an emphasis on spatial
problem solving in qualitative reasoning. On the contrary, most work con-
centrates on problem domains which can be abstractly represented without
spatial information. This thesis addresses some issues in spatial representa-
tion which are obviously related to commonsense spatial reasoning ability,
and they may assist progress toward some of the goals that Hayes has set.

3.2 Techniques in Qualitative Reasoning

This section presents an overview of the reasoning techniques which have
been employed in qualitative reasoning systems. There are a few central
methods which are employed in almost all qualitative reasoning systems,
while others are applicable only to certain types of problem. I have distin-
guished between these cases, and also note which methods are particularly
relevant to spatial reasoning.

3.2.1 Classification of Qualitative Reasoning Tasks

The problems which have been used as test cases for qualitative reasoning
systems can be classified in several ways. They can be classified by the
general domain in which they occur (medicine or engineering, for example),
by complexity, by the quantity of information involved, and so on. They
can also be classified by the problem formulation, and the general reasoning
strategy that must be taken to find the problem solution. The following
list describes types of problem formulation that require different reasoning
strategies.

e Explanatory tasks start from the structure of a system, and produce
an explanation of behaviour in terms of that structure. Behaviour
includes the response of the system when it is perturbed in a given
way. De Kleer and Brown’s work has emphasised this type of task; the
hydraulic pressure regulator circuit is an example of deriving function
from structure.

e Predictive tasks start from a description of a system which is in an
unstable state. From the structure of the system, and the initial state,
they produce a prediction of either a sequence of future states, or
a final stable state. De Kleer’s roller coaster problem, and Forbus’
bouncing ball are both example of predictive tasks.

33

e Diagnostic tasks start from a state or behaviour that is inconsistent
with the presumed structure of the system. The system specifies what
element of the structure could, in changing, produce the observed be-
haviour. A typical domain for diagnostic tasks is electronics, where
the system must identify a faulty component. Davis [Dav84b]| describes
one such system.

e Planning tasks start from a description of a system that is in a given
state, together with a goal state for the system. The system must
describe a perturbation of the system which will cause it to reach the
goal state.

e Design tasks start from a description of desired behaviour for a systern,
and produce the structure of a system which will have the desired
behaviour.

Planning and design tasks are particularly appropriate for the applica-
tion of qualitative techniques, but they are not usually attempted, perhaps
because they are less constrained than the other three types of task. The
problem solving system described later in this thesis does carry out a plan-
ning task.

A further classification of qualitative reasoning methods can be based
on whether the problem domains in which they operate are discrete or con-
tinuous. A typical discrete system can be described as a set of separate
components, each of which has one or more “ports” by which it can be con-
nected to other components. The state of a discrete system is the sum of
the states of all components in the system at a given time, where a compo-
nent state is described in terms of the values at each of its ports. Typical
discrete problem domains are those of electronic circuits, and fluid circuits,
where state is expressed in terms of voltage and current, or pressure and
flow, at each port of a device. The connections between ports are regarded
as “conduits”, which guarantee equal values on each side of the connection
[dKB84].

A continuous domain, unlike these discrete domains, cannot be com-
pletely described by topology. The “conduit” in discrete domains is actu-
ally a descriptive device which explicitly discounts the spatial aspects of
connections between nodes, allowing physical devices to be represented as
abstract networks. Using these techniques for spatial reasoning problems
would result in a loss of much spatial information. The normal approach to
qualitative reasoning in continuous domains however, involves exactly this

34

type of method. The domain is made to look more discrete, by dividing
the continuous space into qualitatively distinct regions. Motion can then be
described as a series of transitions between discrete states — each region is
represented as a possible state.

The roller coaster problem is an example of this approach, where a lin-
ear space (the length of the roller coaster) is divided into distinct regions
according to slope. An object travelling the roller coaster can, from any
state, make a transition into one of two other states, giving it one degree of
freedom. The bouncing ball is an example where there are two dimensions
in which qualitative division takes place, and hence two degrees of freedom
for state transitions (up/down and left/right).

The significance of this “discretising” of continuous spatial domains will
be considered further in later sections, but I will first describe the common
elements of qualitative reasoning programs that operate on the function and
structure of topologically described discrete systems.

3.2.2 Elements of Qualitative Reasoning

The most fundamental common feature of qualitative reasoning systems
is the use of the “quantity space”. This term derives from Hayes’ “quality
space”, which in naive physics refers to a set of possible values for properties
of an entity, where the properties are meaningful “independently of the
entities which possess them.” Distance, therefore, is a quality space in naive
physics, because distance exists independently of particular entities.?

Forbus uses the term quantity space to describe an ordered set of qual-
itatively differentiated values of a particular quantity. The values that are
present in the set are not universal, but apply to the current problem. The
boiling point of water, for instance, might appear in the temperature quan-
tity space of some problems, but not in the quantity space of a problem
involving oil. The meaning of the term quantity space has been extended to
apply to any set resulting from a qualitative division of a continuous value
range. It has been used, for example, to describe the three-valued system
used by de Kleer in the original roller coaster problem (and by many others
since) — positive, negative, and zero.

A number of alternatives to the quantity space have been proposed, using

SHayes also uses the term “quantity space”, but by it he means any space in which
reasoning takes place without knowledge concerning the properties of the space. This
difference in terminology can be a source of confusion when investigating the relationship
between qualitative physics and naive physics.

35

various methods for dividing a continuous value range into discrete quali-
tatively distinguished regions. These methods include the “fuzzy logic” of
Zadeh [Zad79], which has been used for qualitative reasoning by D’ Ambrosio
[D’A87], Simmons’ “Commonsense Arithmetic” [Sim86], and Raiman’s “Or-
der of Magnitude” reasoning [Rai86]. The most essential feature for qual-
itative reasoning, whichever of these techniques are used, is that the “dis-
cretisation” is done with reference to landmark values in the problem itself,
rather than with respect to arbitrary ranges.

Another fundamental concept in qualitative reasoning is “envisionment”,
which refers to the process of predicting and analysing changes of qualita-
tive state. Important programs which perform envisionment on discrete
systems are ENVISION, by de Kleer and Brown [dKB82] and QSIM, by
Kuipers [Kui82]. The transitions between states are determined by causal
relationships between components of the system.

In discrete systems, the future state of the system can be analysed in
terms of individual component behaviour. Envisionment involves predict-
ing the series of qualitative states that will result from any perturbation to
the system. The envisionment depends on system topology, and on com-
ponent properties, because the perturbation propagates between discrete
components of the system. The results of envisionment can be used to make
conclusions about function, and to determine stable states (in which any
small perturbation will tend to return the system to its current state).

As well as detecting stable states, the envisionment method can predict
instability. This has lead to a number of explanatory programs that use
oscillators as test examples — both mechanical, electrical, and pneumatic
oscillators (see Falkenhainer et. al. [FFG86]). It has also encouraged the
use of qualitative reasoning methods to analyse feedback systems, since the
stability of a feedback system is one of its most important properties.

The envisionment technique can be extended either by the use of “in-
dependent experts” (as in de Kleer’s roller coaster, where a mathematical
analysis could be used to define more precisely an envisioned qualitative
state), or by more sophisticated envisionment (as in Kuipers’ QSIM algo-
rithm, or Forbus’ qualitative process theory, which make use of derivative
information as part of the system state in addition to magnitude of quanti-
ties).

Recent developments in qualitative reasoning applied to discrete do-
mains have largely retained the de Kleer and Brown envisionment struc-
ture, and have concentrated on more sophisticated representation of causal-
ity through state transitions, or on more sophisticated organisation of the

36

quantity space. (See [Wil86], [IS86a], [dKB86], and [IS86b], for example).
On the other hand, a number of qualitative reasoning workers have become
aware that these programs share a lack of power in spatial reasoning, and
they have begun concentrating on applying qualitative techniques to spa-
tially complex domains that cannot be adequately represented as networks
of discrete components.

3.3 Spatial Qualitative Reasoning

The first of the qualitative reasoning systems described above was de Kleer’s
Newtonian physics problem solver, which operated on the roller coaster ex-
ample. This example is set in the spatial domain, in that it involves con-
tinuous length and height representation of the roller coaster. However, as
mentioned, it has only one degree of freedom, because the height component
of the motion is dependent on the length component.

This allowed the representation to be simply an ordering of qualitatively
different segments of the roller coaster, each with an associated height and
slope (the system also required a complete geometric description of the roller
coaster, but this information was not used by the qualitative reasoning com-
ponent). A similar one dimensional system was designed by Forbus, which
analysed the one dimensional motion of a block on a spring [For82].

These systems, although operating on problems that involve spatial mo-
tion, allow the problem to be abstracted to a degree that it can be easily
analysed using techniques for systems without spatial components. Many of
the problems that are involved in real world motion analysis are not consid-
ered in these systems — the most important of which are the representation
of direction of motion, and of relationships between objects.

3.3.1 The Bouncing Ball World

The bouncing ball problem solved by Forbus’ “FROB” involves more com-
plex two dimensional reasoning, because there are two degrees of freedom
in the ball’s motion. FROB represented the problem in two different forms:
the “metric diagram” was a geometric description of the scene, which was
essentially the formatted input to the qualitative reasoning program. From
the metric diagram, the system computed the “place vocabulary”, which
is the set of possible states for the moving ball, together with information
about possible transitions between those states.

37

1

I

| Region 3:

| Right of Well Free
| Space
|
|
|

Region 1:
Left of Well

Region 2:
Above Well

—_ = — — = = =

el

e N
I

Figure 3.1: Free Space Division Guided by Scene Features

Occupied
Space

FROB divided the free space in the metric diagram into qualitatively
distinct regions by extending discontinuities in the free space boundaries.
This means that the prescence of a “well”, as shown in Figure 3.1, results
in the division of the otherwise uniform free space into four regions — in the
well, above the well, to the left of the well, and to the right of the well.

The spatial regions in the divided metric diagram correspond directly
to possible qualitative states (actually temporal locations bounded by time
interval and spatial position) in the motion of the ball. From any one re-
gion, there are a finite number of other regions that the ball can move into
(at most eight, including diagonals); these possible motions are represented
as possible state transitions. Forbus calls this representation the “place
vocabulary”.

The division into regions from the metric diagram is always carried out
along vertical and horizontal lines constructed through boundary disconti-
nuities. The vertical direction is defined with reference to gravity, and the
horizontal is perpendicular to gravitational acceleration. The effect of this
is to include implicit information about gravitational acceleration and po-
tential energy in the scene representation — speed of motion is constant in
the horizontal direction, and acceleration is constant in the vertical.

38

The current state of the moving ball was described in terms of location
(a “place” in the place vocabulary), and direction of motion. The next
state could be determined from this information, since the place vocabulary
included information about how individual places are connected to other
places in each direction. The program could then derive an envisionment
of possible future states, given the current state, together with the place
vocabulary.

A later paper by Forbus [For82] discusses the application of his quali-
tative process theory to the bouncing ball problem, with motion being de-
scribed as an “influence” on the “position quantity” associated with an
object. Acceleration and energy are also treated as quantities which are
influenced by processes. The implemented example which he describes in-
volves one dimensional motion of a block and spring — a classic example of
energy conversion. He does not suggest a definite approach for extending
the energy conversion of this example to the two dimensional case of the
bouncing ball, but in a more recent paper gives the opinion that “quantity
spaces don’t work in more than one dimension” [FNF87].

The approach to qualitative two dimensional reasoning which I have
developed can use a quantity space technique to describe two dimensional
motion and position — in terms of proximity relationships between objects.
This technique is described in chapter 4.

3.3.2 The Mechanism World

Just as many discrete envisionment programs operate in the domain of cir-
cuits (either electronic or hydraulic), many qualitative spatial reasoning pro-
grams operate in the “Mechanism World”, or “Machine World”. This do-
main involves analysing motion in systems of rigid mechanical components.
The interaction between components includes relative motion, mutual con-
straint, and transmission of kinetic energy.

The reasons that this domain is popular appear to be firstly that it has
been thoroughly analysed at a theoretical level (in mechanical engineering),
and secondly that behaviour of mechanical devices is usually simple and con-
sistent — they have been designed with the objective of achieving predictable
and repeatable motion.

Two systems for the qualitative analysis of mechanisms are those pro-
duced by Stanfill [Sta83a], and Joskowicz [Jos87]. Stanfill’s “Mack” system
accepts a geometric representation of a simple machine, and applies rules in
solid geometry, mechanics, and pneumatics, to produce a qualitative descrip-

39

tion of the machine’s behaviour. Typical machines analysed by Mack are
pistons and cylindrical bearings. Mack operates by building successive mod-
els of the system in terms of pneumatics, forces, acceleration, and process,
with the final process model being an expression in the form of Forbus’ qual-
itative process theory; it relates motions to pressures and to other motions.
The spatial analysis component of this sytem uses geometric techniques, and
it is only the more abstract levels that are expressed in qualitative form.

Joskowicz describes a system which reasons about kinematic chains. A
kinematic chain is a series of kinematic pairs. A kinematic pair is a me-
chanical device which transmits kinetic energy, such as a pair of cogs, or
a belt and pulley. Each pair involves two components in contact, with at
least one axis of possible relative motion (i.e. they are not rigidly joined).
Kinematic pairs can enable the transmission of kinetic energy between com-
ponents, and they can also provide various types of constraint on the motion
of components.

This system initially analyses the possible axes of motion for each pair
of components in the chain, using a configuration space derived from a con-
structive solid geometry description of the components. A qualitative envi-
sionment is then carried out to determine the operation of the whole chain,
with kinetic energy being treated as a material that is affected by each kine-
matic pair. This stage of the analysis is closely related to the techniques used
for circuit or fluid flow analysis, and described above. The spatial analysis,
however, uses standard geometric techniques for determining configuration
space from a CSG description, rather than qualitative methods.

Neither of these two systems operate from first principles in analysing
relative motion of a pair of components in contact; instead, they classify each
combination of components into a known category. Joskowicz’s system uses
Reuleaux’s 1876 classification of kinematic pairs, for instance.® Faltings
considers that this approach lacks power because the system cannot deal
with situations that are not represented in its symbol set [Fal86] [Fal87].

Forbus, Faltings and Neilsen describe the application of Forbus’ metric
diagram and place vocabulary (or MD/PV) approach to the “mechanism
world” [FNF87]. State is represented in terms of connectivity, or types of
contact between objects. The metric diagram provides quantitative informa-
tion from which one can calculate a configuration space for the component,
given constraints on its motion. This configuration space is then subdi-

SFranz Reuleaux “The Kinematics of Machinery: Outline of a Theory of Machines”
Reprinted by Dover Publications in 1963

40

vided according to contacts that can occur between components. The place
vocabulary is created from this information, and qualitative motion can be
envisioned in terms of changes in state between these contact configurations.
For example, the turning of a ratchet involves state transitions from contact
between one gear tooth and the pawl, to a later state of contact with another
gear tooth.

The MD/PV model also aims to solve problems involving kinematic
chains, and Faltings’ goal as described in [Fal86] is to explain the action
of a clock after an analysis of individual kinematic pairs within it. An en-
visionment of motion in a complete mechanism such as this would involve
operating on very complex system states that include connectivity informa-
tion for all components of the mechanism.

Plimmer’s study of kinematic chains as found in the analysis of a bi-
cycle [Pli85] makes use of a simple three-valued quantity space in deter-
mining direction of motion for bicycle components such as cogs and chains.
Causal motion relationships between components are represented explicitly
by interaction slots in a functional representation of each component in the
kinematic chain. The bicycle analysis system does not include any notion of
state, and deals only with a bicycle which is in a “static” condition (actually
in constant motion, without acceleration or deceleration).

Systems that operate in the “mechanism world” all reason about con-
tact between components, and contain only components that have motion
constrained by axes or joints, so that there are no more than two degrees
of freedom in motion (only one — direction of rotation — in Faltings, Stan-
fill and Plimmer). The system which I describe in chapter 5 can represent
objects moving in free space, as well as objects in contact. The above sys-
tems use quantitative geometric techniques to establish fundamental motion
constraints from shape description, in particular Lozano-Perez’s configura-
tion space method (this is described in [LP83]). The system 1 describe is
interesting in that it derives possible motion from shape using qualitative
methods only.

3.3.3 Other Spatial Reasoning Systems

Other qualitative spatial reasoning techniques have been proposed that vary
widely from the combination of quantity space, system state, and envision-
ment shared by most of the systems described above.

Examples of these are Schmolze’s “Physics for Robots” paper [Shm86],
which tries to extend Hayes’ ontology of liquids to the situations that would

41

be encountered by a robot in a kitchen and Davis’ “Ontology of Physical
Actions” [Dav85], which has similar aims at a more general level — a formal
theory of solid objects that humans encounter — for use by a robot. Davis
also describes a representation that can be used for reasoning about spatial
relationships between objects in terms of containment and relative location
[Dav84a).

These examples are normally classified as “Naive Physics”, since they
attempt to find a formal basis for reasoning about very fundamental human
concepts of space, rather than trying to solve any particular problem of
motion or shape description. Work of this kind may become important to
the type of qualitative reasoning described above if it is to be incorporated
in a more general system for reasoning about action in the world. At this
stage, work relating to qualitative spatial reasoning can proceed without
requiring study of these issues.

Some use has also been made of qualitative methods for solution of real-
world problems, because of the advantages of qualitative data as a basis for
rule-based decision making. Two examples of this are a system for quali-
tative description of motion and position in an autonomous vehicle [BB87],
and one for qualitative description of plug and socket shape when mechani-
cal parts are to be fitted together [GB87]. These projects give examples of
approaches to qualitative representation, but do not use qualitative methods
(such as envisionment) for any type of planning or analysis. The representa-
tions developed for these systems tend to have less generality, since they are
concerned only with distinguishing between specific situations or objects,
rather than with general techniques for qualitative spatial reasoning.

The system which I describe in chapters 4 and 5 also departs in some
measure from the mainstream of qualitative reasoning, but is more closely
related to the mainstream than those of Schmolze, Davis, Burger and Bhanu,
or Green. Its representation of state is more general than the “mechanism
world” systems, in that a given state describes the complete relative posi-
tions of all objects in a scene (not just contacts). It uses a space description
method that is related to the quantity space, but this is adapted so that For-
bus’s reasons for criticism of the quantity space in two dimensional situations
are avoided. The main features of the approach, however, were initially de-
veloped from consideration of robotic reasoning and solid modelling systemns,
rather than from other qualitative reasoning projects.

42

Chapter 4

Two Methods for Qualitative
Representation of Shape and
Space

This chapter describes the development and implementation of a qualitative
geometric representation. The representation facilitates reasoning methods
that overcome some of the limitations of Al systems discussed in previous
chapters — in particular, the limitations of robots that cannot solve problems
using “commonsense” spatial reasoning, and the limitations of experimental
qualitative reasoning systems that cannot make use of spatial information.

The qualitative geometric representation incorporates ideas and tech-
niques that have been described in the previous two chapters, and are now
used in a new overall context. The first part of this chapter discusses issues
that need to be considered while developing any spatial representation or ge-
ometric modelling system if it is to be useful in robot reasoning. The second
part considers how two major solid modelling techniques can be adapted to
qualitative methods, and describes how each resulted in a different approach
to two dimensional scene description. The third section presents these two
different approaches in detail, discussing the advantages and disadvantages
of each, and the fourth section discusses further extensions which have not
yet been implemented.

43

4.1 Representation Issues in Qualitative Robot Rea-
soning

Comparing the way that humans think about physical situations to the way
that robots are currently programmed suggests a number of important is-
sues that should be considered in the development of new robot reasoning
systems. In this section, I concentrate on the issues arising from four as-
pects of human spatial reasoning that appear to be particularly important
in solving simple qualitative spatial reasoning problems. These aspects are:

1. Representation of detail at multiple levels. People are able to store
a large amount of detailed information about a complex object, yet
also consider that object in terms of gross shape alone when this is
necessary. They are also able to focus on a particular detail of the
overall shape, while retaining a record of its context. An example of
this ability is the way that a mechanic views a car. He knows a huge
amount about its detailed shape, but is able to think, when necessary,
simply in terms of its overall shape (when driving it).

2. Independent reasoning in local contexts. Where overall shape is very
complex, people are able to reason about one part of the overall shape,
treating it as an independent context. The car mechanic for example,
when fixing a handbrake, is able to work purely with that local context
within the car. Other contexts, such as the seats or headlights, can
be temporarily forgotten. He can also fix a truck handbrake as easily
as a car handbrake, by operating in a local context that is abstracted
from the overall shape of either vehicle.

3. Assignment of properties to groups of features. People are able to
assign an abstract description to a whole set of shape features, and
then make statements about the new abstraction, rather than simply
about a single instance of it. This ability is particularly noticeable
in its abscence — sufferers from visual agnosia are unable to construct
abstract descriptions of sets of details in their visual field, and are thus
unable to recognise generic classes of object, even though they can see
all of the details.

4. Qualitative size description and judgement. In many spatial reasoning
situations, the absolute size of a given shape feature is not important.

44

Its size relative to other shapes may be more important, as in the ques-
tion “will this washer fit over that bolt?” Alternatively, its size may
be altogether irrelevant, as in the question “is that a bolt?”. If quali-
tative reasoning methods are available, it is possible to discuss relative
size, or size-independent questions, without numerical information.

4.1.1 Representation of Detail

A scene description used by a robot may include much information that
is not relevant to the task currently being performed. This is especially
likely when the robot has acquired the scene information by sensory means,
whether visual, tactile, or in the form of range data. The irrelevant infor-
mation is usually superficial detail, but even overall shape may be irrelevant
to the task.

One of the most important functions of robot sensing systems is the fact
that they filter raw sensory data, and provide a description of the object or
scene sensed at a higher level of abstraction (for example, they may take an
array of pixel brilliance values, and produce from it a description of object
edges).

Some form of filtering is always necessary, but the requirements of the
resulting filtered description can vary widely. A system which sorts nuts
from bolts could abstract its sensory information to the degree that it de-
scribes any object as either nut, bolt, or not-nut-or-bolt. A system that
joined nuts and bolts together, however, might need to know what head type
the bolt had, what diameter it was, and what thread standard it conformed
to. A system that manufactured nuts and bolts would need to know the
depth of the thread, the thread spacing, the groove angle, and so on. A
quality inspection system might need to know the exact position of every
point along the thread.

A general purpose reasoning system, if it were to imitate human capa-
bilities, should be able to separate these levels of detail, so that they are all
available to it when necessary, but so that suitable abstractions can be used
without considering what lies beneath them. This approach can provide
more reasoning power than an arbitrary level of abstraction, because it is
not always possible for a sensing system to select an abstraction without
an understanding of the task — particular shape details may or may not be
important in the context of a given task.

As an example, the irregularities in the surface of a rough cast fireplace
grate are completely irrelevant to the function of the grate, but the general

45

roughness of the casting surface may be quite important to a robot which
is assembling fireplaces, because the roughness of the grate prevents it from
sliding over other surfaces. In this case any given irregularity on the grate
is still of no interest to the robot — it is texture that is important.

A contrasting situation is that of a large mechanical part, which is to be
oriented in an assembly with the aid of a locating pin. The shape of the part
as a whole might be irrelevant to the orientation task, while the shape of
the small locating pin is very important. The contrast between this example
and that of the rough casting makes it clear that the significance of a given
detail in an object’s shape depends on the functionality of that shape detail,
and on what use a robot is trying make of the object.

A shape description could reflect this dependence on the functionality of
shape elements by including in the representation only those elements of the
shape which are functionally important. This is the de facto methodology
of current robot programming, in which a programmer must decide whether
or not a given aspect of the object’s shape will ever be available to the robot
program. These decisions are encoded in the program when the object
description is being constructed by the programmer (I refer here to task-
level programming languages such as RAPT, where objects are explicitly
described, rather than robot-level languages, in which the shape of the object
is only implicit).

A more intelligent robot, acting on the basis of representations that have
been acquired from sensory data, will not necessarily have the information
available which is needed to make decisions about the function of parts at the
time that the representation of an object is constructed. Such a robot cannot
ignore small details of object shape, because they may become important
during operations on the object. On the other hand, the inclusion of every
detail in a complex shape description may hinder the construction of useful
abstractions for the robot reasoning system to work with.

As an example of the need to judiciously ignore detail, consider a six-
pack of beer bottles. A detailed description of its shape appears to be very
complex, and could obscure properties such as the fact that sixpacks can be
regarded as rectangular blocks for the purposes of stacking them. A person
wondering whether sixpacks could be stacked would not stop to analyse the
shape of each bottle top. They would notice the overall box-like shape of
each sixpack, and experiment with stacking them on the basis of this coarse
description. A robot which is reasoning about its workspace in a qualitative
fashion should be able to perform such a task with a similar economy of
detailed analysis.

46

A way of achieving both simple overall shape description and retention of
details which may become functionally important is to represent objects at
multiple levels of detail. This approach has been used in computer systems
that must perform high level analysis from possibly noisy input data, in
domains such as reading handwritten script [SB87], or recognising speech
[dM8T7]. The explicit representation of multiple levels in these systems allows
them to continue referring to low level sensory information even after high
level analysis has commenced.

Most machine vision problems are amenable to exactly this approach
— they have a large amount of input data (typically the brightness of ev-
ery pixel in the vision field), and they filter it to provide a higher level
abstraction. A multilevel shape representation might involve making links
from high level description to the low-level data. People, however, do not
store large amounts of information that is later filtered — they store a coarse
description as a “first impression”, and collect more detail if necessary by fo-
cussing their attention [Pen86a]. Some attempts have been made to provide
machine vision systems with similar controlled focus facilities, as described
in [Fun80] [Pen87].

There are two options, therefore, in providing a vision system with
the ability to create scene descriptions containing multiple levels of detail.
Whichever is used, the reasoning processes described above can be supported
— the difference lies in the visual control mechanism, and in the data storage
techniques used. This section has argued that it is both useful and plausible
for robots to represent shape data at multiple levels of detail. The shape
representations discussed later in this chapter support qualitative methods
which can make use of this type of sensory data, and perform this type of
reasoning.

4.1.2 Geometric Reasoning Using Local Contexts

A major disadvantage of the space filling techniques for object representation
discussed in chapter 2 was that the description of an object depends on its
orientation with respect to the axes used to partition the space, and its
apparent size with respect to the axis units. The axes themselves often have
no functional relationship to the task being performed, and the variance in
descriptions disguises the similarities between objects that are functionally
equivalent, or even identical.

If similarities between objects are to be reflected in their descriptions,
the representation must be capable of expressing shape in a way that is

47

independent of surrounding objects, and independent of the viewing posi-
tion. This can be achieved by describing objects in terms local to the object
itself. The head of a bolt, for instance, might appear completely different
when seen on the side of a car under assembly, than when seen on a bench
with a collection of ball bearings. The functional shape of the bolt head
is identical in different situations, however, and it should therefore be de-
scribed in local terms, relative to the rest of the bolt, rather than relative
to the scene in which it appears. If the heads of bolts are always described
identically, the invariance of the head’s functional shape is easily recognised.

In reasoning about interaction between objects (for instance, analysing
fasteners), it is necessary not only for the objects to be expressed in local
terms, but also the relationships between the objects. For example, a split
pin in a vehicle assembly always works the same way, whether it passes
through an axle, or through a steering link. In this case, the overall shape
of the axle or link is irrelevant, and it is only a few features near the split
pin that are functionally important. It should be possible to represent a
fastening situation such as this in terms of the local features, the orientation
of those features relative to each other, and the motions required to act on
them.

Three aspects of object representation which can be formulated in terms
of a local context are size, location, and orientation. Size can be described
in local terms by comparing feature sizes either to the overall dimensions
of a complete object, or to distinctive features in the vicinity (using a local
quantity space in qualitative systems). Location and orientation can be
described relative to distinguished points and directions in the remainder
of the object shape, rather than with respect to global axes. Using the
object itself or an interacting object to provide a reference frame means
that descriptions of similar objects or interactions will always be made in
consistent terms.

Local orientation must be described by reference to distinctive shape
features. Candidates for orientation reference features include object axes,
or dominant directions. Dominant directions can be calculated from bound-
ary representations, where dominance is established by the total length of
edges and/or surface normals with a particular orientation. Object axes
are usually specified in constructive solid geometry representations, where
each primitive has intrinsic axes. Both of these directions are functionally
significant in many mechanical parts (in fact, the directions often coincide
in mechanical parts), and the representations discussed later in this chapter
make use of both.

48

Local context descriptions can be made relative to a reference frame de-
rived from the main object, or derived from neighbours of the object, where
interaction between objects is particularly significant. Another possible ref-
erence frame for local context is provided in a representation with multiple
levels of detail, where a coarsely described shape can be used to provide the
local reference frame with respect to which the details that compose it will
be defined. One of the representations described later in the chapter does
precisely this — in that representation I refer to the coarse feature reference
frame as an “imple context”, because complex concave or convex features of
an object’s shape can be described at a coarse level as a dimple or pimple
on the object. Size, location, and orientation of detailed shape features are
then described relative to the imple.

In addition to static descriptions of object shape, size, and orientation,
motion of objects can be expressed in terms of local contexts. Where two
objects are joined together by small fasteners, the overall motions of the
objects for unfastening are best described by reference to the shape of the
fasteners. If the fasteners are described using imple contexts, then the mo-
tion of the complete object should be described in terms of those contexts.
The extensive use of local contexts therefore requires that transformations
be available between local and global coordinates, as described by Popple-
stone, Ambler and Bellos in [PAB80], and by Ballard [Bal84].

This section has described the benefits arising from shape description
in terms of local shape context, and has discussed some mechanisms which
can provide these abilities. The qualitative representations presented later
in the chapter make use of qualitative adaptations of these mechanisms.

4.1.3 Representation of Multiple Features Using Functional
Groupings

Robots usually perform repetitive tasks, and an intelligent robot should be
able to recognise and take advantage of situations where the same objects
or object elements are encountered more than once. Such capabilities are an
important element of most CSG solid modellers, where they are the equiva-
lent of macros or subroutines in programming languages. If, for example, a
table is being defined using a CSG scheme, a single leg might be described
as the union of a truncated cone and a disk (at the foot). This description,
instead of being repeated three more times at other corners of the table,
could be defined as a functional grouping with the name “leg”, allowing a
more straightforward description of the table by referring simply to a leg at

49

each corner.

The ability to define a complex shape as an abstract functional grouping
enables a robot to associate specific properties with the whole group of
features comprising that shape. There are a number of properties which
could be usefully linked to abstract shape groupings, as follows:

e The essential elements that define the functional grouping must be
recorded. Any given grouping may have more complexity than nec-
essary to belong to the group, but this list of necessary properties
ensures that it will behave as expected.

e Deductions that have been made in the past concerning properties of
equivalent groups can be recorded, so that information can be re-used.

e Manipulation strategies employed to perform operations on the group
can be stored, together with their relative success.

e Associated shapes or groups can be recorded, so that the functional
description of a nut, for instance, can be linked to that of a bolt.

e The inclusion of variations between successfully matched group mem-
bers provides a historical basis for generalisation from examples. Some
negative information regarding unsuccessful partial matches would al-
low even more power in generalisation.

Similar advantages are listed by Noah and Sacerdoti as arising from the
addition of “macro operators” to a robot planning system. MACROPS en-
abled the planner to collect effective sub-plans so that they could be re-used
in appropriate situations, and functional groupings provide an analagous
mechanism which records physical descriptions for re-use.

The two representations discussed later in this chapter have not been
extended to allow all of the above capabilities in matching and collecting
information about functional groupings of shape elements. The suitabil-
ity of each of the two dimensional representations for functional grouping
description is discussed, however.

4.1.4 Qualitative Representation of Size

Reasoning about operations on physical objects requires some way of ex-
pressing the sizes of objects, the sizes of object features, and distances be-
tween objects; this is the aspect of scene representation in robot reasoning

50

systems which normally involves a large amount of quantitative information.
The quantitative information available is essentially a set of measurements
of the scene. For a qualitative representation to be useful, some size infor-
mation must be retained, while reducing the reliance of the representation
on numeric information.

What kind of size information should be retained in a qualitative repre-
sentation for use by a robot? The alternatives include a quantity space with
distinguished points, such as that used by Forbus [For84a], a set of fuzzy
values, as defined by Zadeh [Zad79], a combination of the two techniques as
proposed by D’Ambrosio [D’A87], or a set of relative sizes.

Typical tasks involving size judgement which a robot might encounter
are:

e There are two parts A and B. Part A has a hole in it. Will part B fit
into the hole?

e Past operations have involved screwing a screw A into a hole in work-
piece B. Screw C is slightly different to A. Will C fit into the hole in
B?

In both of these robot tasks, it is relative sizes of the workpieces that have
functional significance in the context of the task rather than their absolute
or measured size.!

The size of object components can be described relative to characteristic
dimensions of the overall object. In two dimensions, for example, there are
two characteristic size references which are easy to determine for any object.
These are the widest extent of the object (along which I define the “major
axis” in the first two-dimensional representation described below), and the
narrowest extent (the “minor axis”).

If some characteristic size is chosen as a local size reference value, it
could be used as a distinguished point in the size quantity space, so that
qualitative size distinctions are made by comparison to this value. There
are however two disadvantages to such an approach. One of these is that
there are qualitative size distinctions which cannot be made in terms of the
reference. If a bolt were described by reference to its length and the width
of its head, there would be no way of discriminating between the thread

! Absolute size information may become important when the robot is physically op-
erating on workpieces, if positioning and motion of robot arms are specified as absolute
coordinates within the workspace, but it is not always necessary during task planning
stages.

ol

diameter and thread pitch. The second disadvantage is that the reference
sizes may have no relevance at all to the operation being planned. If a
collection of bolts are being matched to appropriate nuts, the length of each
bolt is quite incidental.

The first of these disadvantages can be alleviated by further dividing the
quantity space, in order to discriminate between sizes that are smaller than
any of the reference values. This can be done by defining fractions of the
reference values as new “distinguished” points. One of the representations
described below uses this approach, and simply defines binary orders of
magnitude as appropriate fractions, so that something more than half the
size of the reference value can be contrasted with something less than quarter
the size.

The second disadvantage is more difficult to relieve, and is actually ex-
aggerated by the binary orders of magnitude approach, because of the effect
of surplus distinguished points in the quantity space. These extra points
can arbitrarily produce a perceived distinction between close values that are
actually qualitatively equal, but happen to fall on either side of a binary
order of magnitude point. The object-relative size representation described
below does not attempt to solve this problem, but other researchers have
attempted to do so — notably Connell and Brady, who used a Gray coded
representation for the ordering of feature size ranges when measured as a
proportion of object axis size [CB87]. The use of Gray coding allowed values
to fall within overlap regions, where they share the properties of both neigh-
bouring size ranges. Alternatively, magnitude comparison can be performed
on a “fuzzy” basis, as described by D’Ambrosio [D’A87].

There are numerous ways of extending the local reference value approach
so that the size criteria used are less arbitrary than simple comparison to
overall object size. One of these is to allocate special values according to
a statistical analysis of the distribution of feature sizes in the scene. It
would then be possible to describe the sizes of individual shape features
by reference to these statistically compiled values in the same way as for
comparison to axis sizes.

Another approach to size comparison is to use some simple technique
to broadly distinguish size across the whole scene, then provide a size-on-
enquiry ability to determine relative sizes of objects only when that infor-
mation is needed. This allows an initial simple distinction to be refined if
necessary. Such an approach avoids the accumulation of superfluous and
even misleading size classifications, but it does incur computational over-
head, since a program acting on a scene description must decide when it is

92

necessary to find further information.

Relative size representation is the first facility to be considered in de-
signing a qualitative spatial reasoning system. It provides a natural way to
describe size dependent operations without reference to any specific mea-
surement system, and it provides facilities that can operate with inexact
data. There are a number of options to follow in achieving relative size de-
scription. This type of capability is an immediately apparent requirement
of a “qualitative” spatial reasoning system, since linear measurement infor-
mation is the obvious candidate for application of the quantity space. The
first of the two representations presented later in this chapter uses a system
of distinguished points in the size quantity space that are derived from local
shape axes, while the second uses a partial ordering of size on a global basis.

4.1.5 Summary of Qualitative Representation Issues

In this discussion of four spatial representation issues I have identified a
number of capabilities that are desirable for a qualitative spatial reasoning
system if it is to be used by a robot, and I have also suggested ways of
providing those capabilities.

Multiple levels of detail in shape description allow sensory data to be or-
ganised at a high level of abstraction, while retaining the information from
which the abstract description was constructed. This gives a reasoning sys-
tem access to all relevant information when the derived high level description
is insufficient.

The way in which people make use of the ability to consider complex
shape at multiple levels of details can be emulated in two ways: a complete
description of each scene can be stored, with index links to appropriate parts
of the high-level description. Alternatively, an initial coarse description can
be constructed, with the reasoning system directing focus of attention to
obtain more detail where necessary. The representation techniques described
in the rest of the chapter can support both techniques, by allowing indexing
either from coarse to fine levels of detail, or vice versa.

Many human spatial reasoning tasks depend on the ability to consider
features or operations in a specific local context. This ability can be used
either in concentrating on one portion of a very complex overall shape, or
to apply similar operations in similar local contexts, regardless of variations
outside the local context.

I describe a specific method for local context shape representation, where
an “imple” is a portion of overall shape that can be treated as an object on

93

its own. The imple defines local context for size, location, and orientation.
Imples also provide a mechanism for description at different levels of detail
— the imple context may contain detail that was not appropriate to include
at the level of detail description where the imple shape was defined.

The human ability to assign properties to an abstract functional group-
ing of shape elements provides a number of capabilities that would be useful
to a robot spatial reasoning system. These include a record of successful
deductions and manipulation strategies, together with a basis for generali-
sation and identification of previously encountered situation types.

The following representations do not include this facility, but both were
designed with consideration to how functional groupings of shape elements
might be achieved.

Relative size description is the most basic facility for a qualitative spatial
representation. It is the normal mode of operation for people, who seldom
need to measure objects before operations can be performed on them. A
variety of techniques for relative size description have been proposed, and
the two representations discussed below make use of two different techniques
— one an axis-relative quantity space, and the other a scene-global size or-
dering.

4.2 2D Qualitative Geometry from Solid Modelling

My initial approach to qualitatively representing objects and their inter-
actions and relationships was to adapt and extend commonly used solid
modelling techniques, so that they could be implemented using qualitative
methods, while meeting some of the requirements discussed in the previ-
ous section. Using solid modelling techniques resulted in two different ap-
proaches to the problems involved: one developed from boundary represen-
tation methods, and the other from constructive solid geometry methods.
Although my initial investigations recognised that any development aimed
at robotics should take a three dimensional approach, both of the modelling
methods involved sufficiently complex problems in two dimensions that my
implementation was restricted to that case, and I made no attempt at im-
plementing a three dimensional representation.

Following relatively independent paths in developing these two represen-
tations has resulted in interesting differences between the two. Both two
dimensional methods will therefore be described in detail below, although
more space is devoted to the one that I conclude is superior. As an intro-

o4

duction to the two dimensional shape representations, this section describes
the way that they were derived from three dimensional representations.

4.2.1 A Two Dimensional Derivative of Constructive Solid
Geometry

The basis of constructive solid geometry is the description of complex shapes
as a combination of simpler ones. Therefore the fundamental requirements
of a CSG scheme are: a set of primitive shapes, and a method of describing
the relationships between primitives. Applications of CSG in the robotics
domain (e.g. [WLPL™80]) had previously found that it was also useful to be
able to define new primitives, such as solids of revolution, or laminar shapes.

A large set of simple primitives for CSG, and also some complex shapes,
can be elegantly defined using the generalised cones method. Geometric
primitives such as cones, pyramids, or blocks can all be described as a two
dimensional shape swept along an axis, as can mechanical “primitives” such
as washers, brackets, channels and wires. This appeared to provide a con-
sistent way of both describing standard primitives, and defining new ones
when necessary. The sweeping axis can also be used as a reference direction
when combining primitives.

There is no two dimensional equivalent of the generalised cones method
that provides the same kind of power in description of physical objects. It is
certainly possible to construct two dimensional shape in terms of swept line
segments, but there is little advantage to be gained in doing so, especially
since it is difficult to gain qualitative knowledge about the shape from this
type of construction. The alternative that I chose was to define shape prim-
itives in terms of their qualitative features — features such as curves, angles,
and lines.

The shape elements that are constructed from these features are still
defined in terms of axes, and are combined in the same way as subobjects
are combined in CSG schemes — by defining the relative positions of their
axes, together with a logical operator. A single general method was used
to define objects, subparts and features; all shape features are described
in terms of their axes, so that the feature can be described relative to the
overall axes of the subpart, which are then described relative to the axes of
other subparts.

A conscious concern in proposing this representation was that it should
be feasible to construct a scene description from visual data. This is one
of the disadvantages of constructive solid geometry — although it is easy for

95

people to define a complex shape using CSG, it is not so easy to take a
picture of a complex shape, and construct a CSG representation from it.
In fact, CSG cannot be used as the basis for a canonical shape description,
because there is no unique set of primitives which combine to form a given
shape. The feature-based qualitative representation could however make
use of a number of techniques for feature detection in scenes (such as [KJ86]
[RKHS85]).

Connell and Brady describe a method for decomposing two dimensional
shape into CSG-like primitives. The smoothed local symmetry representa-
tion makes use of cues from the object boundary to find “joins” that break
an object into subparts [CB85a]. I have made use of a far less sophisti-
cated technique for identifying joins: subparts are defined as being convex,
and the junction between two subparts is therefore delimited by a “waist”
— the narrowest extent between concavities. A canonical description of two
dimensional shape is provided by the smallest possible number of convex
subparts.

The relationships between these subparts can be described with respect
to axes. I define the “major axis” of a shape as the line along which it extends
furthest, and the “minor axis” as that along which it is narrowest. These
axes are used to describe relative position of subparts, and are also used
as size references. When an overall shape is divided into convex subparts,
these are also defined and oriented by their axes. The convex subparts are
described as collections of shape features, all of which are related in terms
of their own axes’ orientation with respect to the major and minor axes of
the subpart.

This description of subparts and shape features in terms of the relative
positions of their axes I describe as “Axially Specified Subparts and Fea-
tures”. For convenience, I will refer to the general method by the initials
ASSF.

4.2.2 A Two Dimensional Derivative of Boundary Represen-
tation

The second approach which I took to two dimensional qualitative geome-
try was developed from boundary representation methods rather than from
constructive solid geometry methods. The reason for this was that the most
important aspects of the ASSF representation in reasoning about motion
seemed to be boundary related rather than axis related, as I explain later.
Solid modelling using boundary representation requires a larger amount

96

of information to describe basic three dimensional shape than the combina-
tion of constructive solid geometry and generalised cones does, but it can
also describe a wider range of objects. This is because all surfaces of the ob-
ject are described explicitly, whereas in a CSG description they are implicit
in the combination of primitives, and in the shape sweeping methods used
for describing primitives.

Explicit boundary description provides important advantages where the
representation is used for reasoning about interaction between objects, rather
than just properties of a single object. This is because objects only contact
other objects on their boundaries, so a description of the boundary must be
available to the reasoning system, whether it is given explicitly, or deter-
mined by computation from a constructed solid description.

The generalised cones method requires that a method of representing two
dimensional shape be used to describe the cross section for “sweeping” op-
erations, but a boundary representation must describe the two dimensional
shape of every face in the three dimensional object. This has the advantage
that individual features are separately described in local two dimensional
contexts for the whole object, whereas for CSG, features in planes other
than the cross section must be inferred from the sweeping function.

An object boundary can be qualitatively described in two dimensions
by identifying sections that are qualitatively homogeneous, then describing
the relationships between those sections. If the homogeneous sections were
all straight lines, the resulting description would be a polygon. For more
generalised shape description, the sections can also be curves or wiggles, and
the description becomes an extended polygon.

The qualitative representation which I derived from three dimensional
boundary representation describes shape in exactly this way — as a collection
of qualitatively different segments arranged to form an extended polygon.
For brevity, I will refer to this extended polygon boundary method as EPB.

4.3 Qualitative Two Dimensional Shape Descrip-
tion

This section describes in detail the two systems for two dimensional shape
representation which developed from the approaches to solid modelling dis-
cussed above. I have used both of these systems to construct descriptions
of example shapes and scenes. Chapter 5 describes programs which operate
on both representations, and discusses the relative advantages of each one.

o7

For each of the two approaches, I will discuss the methods used to repre-
sent four aspects of qualitative shape: primitive shape, relative size, object-
interior position (the relative position of subshapes within an object), and
object-exterior position (The relative positions of complete objects, or of
parts on different objects). These four are sufficient to describe any combi-
nation of objects in a scene, and any combination of subshapes within an
object.

4.3.1 Describing 2D Shape with Axially Specified Subparts
and Features

The axial specification method provides the following basic shape description
mechanisms:

e Shape is described in terms of a combination of distinct convex sub
parts, and two dimensional shape features.

e Relative size is described in terms of the lengths of object axes, subpart
axes and feature axes.

e The position of subparts and features within an object is described
with respect to the object axes, subpart axes and feature axes.

e Relative position of separate objects is described in terms of contact
between features or subparts, and relative orientation of object axes.

The most prominent aspect of this two dimensional shape representation
method is the use of axes to describe both size and orientation, and that
every element of the shape description has axes associated with it. The axes
associated with important shape description levels are as follows:

Overall Shape: The major and minor axes. These were described above
as the widest and narrowest extents respectively of the shape.
More precisely, the major axis is the longest perpendicular line that
can be drawn between two parallel tangents to the shape boundary,
and the minor axis is the shortest such line. “Tangents” may span
vertices, so that the height of a triangle, for instance, could become
an axis by this definition.

Convex Subparts or “Imples”: The major and minor axes, and the waist.
Major and minor axes of imples are defined as for overall shape, with

98

the waist being considered part of the imple boundary during axis
construction.

Vertices: The angle bisector.

Edges: The chord between edge extremities, and the normal to this chord.

Primitive Shape

The qualitatively different types of shape feature which can be combined
into an overall shape description fall into five major categories:

e Straight edges (edge).

e Vertices (vertex).

e Simple curves with no points of inflection (curve).

e Complex curves with multiple points of inflection (wiggle).

e “Dimples” and “pimples”, which are represented in the same way as a
convex subpart is. When viewed at a higher resolution, they are com-
posed of smaller features. The axes of an imple, and its relationship
to the object, are defined as for a convex subpart.

Each of these categories is then further divided in ways that are either
object independent, or relative to axes of the object or of other features.
Straight edges are described only according to relative size on an object
scale, (this will be discussed in the size representation section), but there
are shape subcategories for all the other primitive shape feature types, as
follows:

Vertices are described by the angle of the vertex, which can have one
of seven qualitative values. These seven include four value ranges, sepa-
rated by three distinguished points. The distinguished points are based on
the right angle, two being the concave-right and convex-right angles,
and the other the straight angled vertex, which can be used to describe
points where two features meet at an angle of 180° (e.g. a curve and a
straight edge). The four ranges of values between these points are described
as concave-acute, convex-acute, concave-obtuse and convex-obtuse
angles.

Simple curves are described by size in the same way as straight edges,
but they are also described by the angle through which the curve turns,

99

and by the spread of the curve. The same qualitative angle values are used
for curves as for vertices, with the exception that a straight angled simple
curve is not described as a curve, but as a straight edge. This allows the
description of concave or convex curves, as well as of varying amounts of
curvature. Spread is expressed in terms of the ratio between the length
of the chord axis and the maximum deviation of the arc from that axis.
This deviation is the bulge of the curve. A simple set of qualitative values
uses circle shapes as distinguished points in the quantity space, because the
circle is a curve with many useful geometric properties. A semicircle-like
curve has a bulge that is half its chord axis, and a circle-1like curve has a
bulge that is equal to its chord axis. Three qualitative ranges are separated
by these two distinguished points, so that there are five possible qualitative
values for curve spread.

Complex curves (wiggles) are described according to the number of
points of inflection, and the amplitude of the wiggle. The number of points
of inflection need not be exact, with a distinction between few or many
wiggles being sufficient to indicate the qualitative nature of the shape. Am-
plitude (or bulge) can be defined in a manner that is similar to that used
for simple curve definition. My formalism divides wiggle amplitude into
qualitative ranges between a quarter and half the length of the chord axis.
This is more arbitrary than the classification of simple curves and vertices,
however, since it is not based on geometric properties (such as right angles or
circles). A less arbitrary basis for classifying amplitude might be desirable,
but a complex technique is unjustified because wiggles are not common in
the mechanical domain, and I avoid them in my examples.

The major categories of imple are convex (pimple) and concave (dimple)
shapes. There is a lot of variation in shape between imples, but this is re-
flected at a deeper level of detail, where the imple is described as if it were
a separate subpart. An imple has two pairs of axes: The first pair are the
waist line separating the imple from other convex subparts, and the normal
to that line. The second pair are the major and minor axes with respect to
which the imple shape is defined. The use of two pairs of axes means that
the imple can be regarded as a curve when its exact shape is not important
(the waist axes can be regarded as curve axes), while the complete shape
description can be related to that curve model for operations on the imple
itself.

60

Relative Size

Relative size can be represented qualitatively at the simplest level by the
qualitative relations: bigger, smaller, and equal to. In the ASSF system,
relative size of objects within a scene, features within subparts, and subparts
within objects, are all expressed in terms of the lengths of different types of
axes.

The two axes which are most often used as a reference for relative size
are the major and minor axes of each distinct shape; such shapes can be
either a complete object, a subpart, or an imple. Local relative size is
expressed by comparing a given dimension to these axes. Five qualitative
values are immediately available: there are three qualitative ranges (less
than the minor axis, between the minor and major axes, and greater than
the major axis) and two distinguished points (major and minor).

Section 4.1.4 above points out the ways in which this approach is unsat-
isfactory, and also some partial solutions. Oune partial solution is to further
subdivide the quantity space, so that it is possible to make qualitative dis-
tinctions between sizes that are closer in magnitude. I have done this by
introducing further “distinguished” points at one half and one quarter of
the major and minor axis lengths. This results in a quantity space with
six distinguished points and seven qualitative ranges, which can be used to
construct a satisfactory representation of quite complex objects (especially
where local complexity is treated using a local set of imple axes), but which
still suffers from the limitations described in section 4.1.4 if there are es-
sentially equal sizes that are accidentally separated into different quantity
space ranges.

Individual features are measured along their own axis, which is usually
a straight line between the points at either end of the feature. This is
true of straight and curved edges, and also of imples, which are measured
along the waist where the imple meets another convex part. Secondary axis
measurements are used to define the shape of an imple, by specifying the size
of imple major and minor axes relative to the axes of the main shape. All
of these feature sizes are described by comparing them to the local quantity
space defined from the major and minor axes of the main shape.

Object Relative Position

The object relative position of a feature describes where it is with respect
to the complete object. Position is defined in terms of the location of the

61

feature and its orientation. Each of these is described in two ways: relative
to the major and minor axes of the whole object, and relative to other
features.

The location of a feature with respect to the whole object is described in
terms of a reference point on the feature. The reference point for an edge,
curve, or imple is the centre of the chord or waist axis, and the reference
point for a vertex is the vertex point. The position of this point in a two
dimensional space defined by the major and minor axes of the object is
described by stating which end of each axis the point is nearest to, and how
near it is.

The location of a feature with respect to other features is described by
the order in which the features appear when the boundary of the object is
being traversed in a clockwise direction. This description is independent of
the overall shape of the object, but features which cannot be directly related
to the boundary do not have any description of this type.

Orientation relative to the overall shape is specified in terms of a refer-
ence direction derived from the axes of individual features. The reference
direction for curves and straight edges is the normal to the chord axis, the
reference direction for vertices is the vertex axis, and imples are multiply de-
fined in terms of several reference directions: the normal to the imple waist,
the major axis of the imple shape itself, and the minor axis of that shape.
The orientation of these feature reference directions with respect to the rest
of the object can be described by a qualitative direction space oriented to
the intersection of the major and minor axes. This qualitative centroid pro-
vides an origin by which four quadrants around the object centre can be
defined. These four quadrants then produce a range of qualitative direction
values with four distinguished directions, and four value ranges.

Orientation with respect to other features is only specified where there
are special relationships between two features, since relating each feature to
every other feature would become very complex for more than a few objects.
The particular relationships defined are those between parallel, aligned,
or perpendicular axes. Lists are maintained of every set of features in a
scene which are parallel or aligned; where two of these sets are perpendicular
to each other, that is also noted.

Object Position

Object position is a description of the orientation and location of com-
plete objects with respect to other objects in the scene. This description is

62

achieved in two ways: firstly in terms of the object axes, and secondly in
terms of features that are near each other.

Relative location of two objects is expressed by reference to the intersec-
tions of major and minor axes on each object. The distance between these
two points is measured in terms of axis lengths, choosing whichever of the
main axes of each object is an appropriate measure. The second component
of location is the angle relative to each object at which the other intersec-
tion is found. This is expressed by dividing the space around the object into
four “quadrants” (which may or may not meet at right angles) divided by
the major and minor axes. The angular location of the other object is then
described by the quadrant in which its axis intersection falls.

Relative orientation of objects is described in the same way as relative
orientation of features on a single object; where axes of the two objects are
parallel, aligned, or perpendicular, this is noted. No effort is made to
express exact angular orientation at any other angle, but qualitative orien-
tation can be ascertained by comparing the relative angular location from
the point of view of each object.

The relative orientation of features on different objects is described in
two different ways. The most functionally important one specifies where
objects are in contact: the names of the two features that are in contact are
recorded on a global list of all contacts in the scene. The other records sets of
parallel, aligned, or perpendicular straight edges. These sets are maintained
in the same way as for features on the same object, and for aligned object
axes.

Axially Specified Subparts and Features Summary

An implementation of the ASSF representation for two dimensional scenes is
presented in the next chapter, which describes a reasoning system that uses
this representation. During the construction of that system, the following
advantages and disadvantages of the representation became apparent:

Advantages:

e Predicting interaction between objects requires that the arrangement
of features around the object boundary be explicit. Lists of features
in order around the boundary were extensively used for this purpose.
An explicit neighbourhood pointer for each feature would have been
even more useful.

63

e Contact between objects can be easily represented by simply listing
all features on the objects which touch each other.

e Hiding detail by the use of imples allows gross motions of objects to
be planned without considering small details of the object shape.

e Convex subparts provide a simple and consistent method for dividing
two dimensional shape into simpler shapes. In addition to providing
a computationally feasible technique for acquisition of shape descrip-
tion from visual data, it is close enough to design techniques such as
constructive solid geometry that the representation is clear to humans.

e The use of object axes as the basis for a representation can provide
some degree of functional information about the object. This is evident
in the “Mechanic’s Mate” project [BA84a|, where shape axes are used
as cues to mechanical function; they can indicate possible rotational
motion, linear motion, or direction of force application.

e Overall, the ASSF shape description method seems reasonably close
to human techniques for describing shape; it is possible for a person
to reconstruct the shape of an object given a description in this form.

Disadvantages:

e Defining size with object axis length as a size reference does not assist
reasoning about object interaction, because it obscures the relative
sizes of shape features on different objects (since shape features on
each object are related to the axis on that object only). Reference to
axis length would be more useful in solving problems in CAD, object
classification, or other areas where objects are considered one at a
time.

e Description of the size of shape features by comparison to the major
axis fails to recognise the common case where two shape features fall
within the same subdivision of the axis size, but have a functionally
important difference between their own sizes.

e Although object axes can provide functional information, local shape
features on the object boundary are far more significant where close
interaction between objects is occurring, and the relative orientation
of features is therefore more important in this situation than axis ori-
entation is.

64

e The methods for describing location and orientation of shape features
are rather clumsy. They describe location and orientation sufficient
that object shape can be largely reconstructed (by a human) from the
description, but they are difficult to use when reasoning about motion
is being carried out.

4.3.2 Describing 2D Shape With Extended Polygon Bound-
aries

The second of the two representations I have developed describes object
shape in terms of the boundary of the object. This representation provides
the four basic shape description mechanisms introduced at the start of the
previous section in the following ways:

e Primitive shape is expressed at the level of boundary elements, which
are either qualitatively homogeneous segments of the boundary, or the
junctions between those segments.

e Size is described using a partial ordering of the distances between
objects and the lengths of boundary elements.

e The positions of boundary elements local to each object are described
in terms of the order in which boundary elements appear on the bound-
ary.

e Relative positions of separate objects are described in terms of prox-
imity between boundary elements on each object.

This shape representation does not make any use of axes, and it provides
no space filling information of the type that is provided by the subparts or
imples of the ASSF representation. The information which it does contain
is in fact mostly a subset of the ASSF representation — a description of
the shape boundary can be constructed using the types of qualitative shape
feature described as part of the ASSF representation. As a subset, the basic
shape representation of the EPB technique is therefore simpler, but less
intuitively obvious to humans than the hierachy of subparts and features.

Primitive Shape

The basic components of the extended polygon boundary are “segments”,
and “junctions” between segments. A segment is a qualitatively homoge-
neous length of boundary corresponding to an edge of the extended polygon.

65

Element Type | Shape Attributes
segment line length

curve length

angle
concave/convex
bulge

wiggle | length

period

bulge

junction angle
concave/convex

Table 4.1: Boundary Element Types

A junction is the place where two homogeneous lengths of boundary meet,
corresponding to a vertex in the extended polygon. Segments and junctions
are both types of boundary “element” (in fact, all boundary elements are
either segments, or junctions).

The term “qualitatively homogeneous” is used to describe either a straight
line segment, a curve without discontinuities, or a wiggle, which is an un-
tidy piece of boundary that is differentiated from other tidier segments by
transitions at each end.?

These three types of boundary elements were derived from the shape
features described above as part of the ASSF representation. Table 4.1
summarises the types of boundary element that are required to describe a
wide range of 2D shape in a mechanical domain.

The range of values which can be assumed by the angle, bulge, and
period attributes are the same as those used in the ASSF representation,
and were chosen for the same reasons given in the previous section.

The EPB representation supports multiple levels of shape detail with a
mechanism for defining one or more simple elements as an alternative to

2These three types of boundary segment were selected primarily because they were
convenient in motion planning problems, but an advantage in this selection is that it is
possible to extract this information directly from a visual image, as shown by Mackerras
[Mac87b]. His system produces an “RSK” segmentation graph, containing “regions”,
“segments” and “knots”, which is similar to my extended polygon representation. Brady’s
Smoothed Local Symmetries vision system [BA84b] also produces shape description output
in this form.

66

complex portions of the boundary.® Operations which do not need exact
data can then deal solely with the simplified boundary elements where it is
appropriate. It is possible to nest these parallel representations, so that an
overall shape can be progressively simplified.

Parallel representation can also be used to provide alternative descrip-
tions of single shape features. For example, a knife with a serrated edge can
be treated the same as a knife with a straight edge for most operations — the
serrations are only a significant detail when the knife is sliding along that
edge. The parallel representation can be used in this case to describe the
knife-edge segment of the knife boundary as a 1line on the coarse branch of
the parallel description, and as a wiggle on the fine branch.

The same approach can be used to describe manufacturing features such
as fillets or chamfers. A curved boundary segment with a small radius can
be described at a coarse level as a simple junction between the segments on
either side of it. The transformation between curve and junction retains
the angle of the curve in the junction description, and discards the curve
size.

Relative Size

The Extended Polygon Boundary representation expresses size in relative,
rather than in absolute terms, the same as the ASSF representation. The
ASSF system described the size of all features in a single shape relative
to the length of that shape’s axes. The disadvantage of this system was
that it was not possible to directly compare the sizes of two features on
different shapes. In fact, it was not always possible to compare the sizes
of two features on the same shape, if they fell into the same range between
distinguished points in the length quantity space.

This problem can be avoided by describing boundary element sizes rel-
ative to each other, rather than relative to a few reference values (whether
axis lengths, or other values). If relative size is recorded on a global basis,
rather than local to one shape, it is also possible to compare the size of
elements on different objects. This ability is essential for reasoning about
most types of object interaction.

Recording the relative sizes of all boundary elements in the scene results
in a global size ordering. The use of a complete global ordering would provide
a large amount of information, but removes some of the advantages of a

3See Appendix A for a LISP code example of the way that multiple levels of detail are
represented on an object boundary.

67

qualitative representation, in that exact measurement information is needed
to construct the ordering. In addition to this construction requirement, the
ordering must be partially re-constructed when any movement occurs in the
scene. The maintenance of a complete ordering would require that some
numeric information be included for re-calculation of the ordering.

This problem can be overcome in part by using a partially ordered space
instead of a complete ordering. A size value is given a context in the partially
ordered space by three links: one to any other size that is known to be
equal in magnitude, one to the smallest size in the space that is known to
be larger than it, and one to the largest that is known to be smaller. The
resulting partial distance ordering is a network of size relationships similar to
the “quantity lattice” used by Simmons [Sim86] in investigating qualitative
arithmetic.

The greatest advantage of the partial distance ordering is that exact
information can be represented together with uncertain information. If all
sizes in a scene are known precisely, a complete ordering can be created,
while if no information at all is available, all sizes in the scene can be repre-
sented in parallel as equally uncertain. A normal application, of course, will
involve a mixture of certain and uncertain information, that is represented
as a network.

A typical situation where this is necessary is motion planning, where
static measurements of the scene before any motion occurs are exactly
known, but intermediate positions of the moving object during the proposed
motion are only estimated. These estimated positions can be described as a
limited range of possible values, while the exact information retains a strict
ordering.

Techniques for reasoning with a partial ordering can make use of as much
information as is available about any given measurement, thereby providing
a natural graceful degradation of system performance when less precise data
is available. The implementation described in the following chapter behaves
in exactly this way, and it is able to continue reasoning either with impre-
cise input data, or after modifying its internal representation with inexact
qualitative operations.

There are two types of distance information which must be available to
a spatial reasoning system: sizes of things, and distances between things. In
the EPB system, both types of information are recorded in the global partial
distance ordering. The size of boundary segments is recorded explicitly as
a length attribute of the segment, which points into the ordering. Distance
between boundary elements, which is called “proximity”, is recorded as part

68

of a link between the elements. Proximity can be used to describe the
distance between two elements on the same object, in which case it might
also convey implicit information about the overall size of the object, or it can
be used to describe the spatial relationships between two different objects.

The implementation of the partial distance ordering uses “equidistance
lists” — sets of distances (which might be either segment lengths or prox-
imities) of equal magnitude. The zero point in the ordering is the contact
list which is the set of boundary elements that are in contact with another
element. Contact is therefore treated the same as any other proximity — the
distance simply has a magnitude of zero.

Object Position

The EPB representation contains no explicit information about overall ob-
ject shape; it only has information about elements of the object boundary.
This means that any description of the relative positions of objects must
be in terms of their boundary elements rather than their axes, for example.
This is not necessarily a disadvantage for purposes of analysing object in-
teractions, since any interaction between the objects will take place on their
boundaries. The position of an object in terms of its boundary elements
can be defined relative to all other objects in the scene simply by stating
what other objects have proximity relationships to each boundary element.
This proximity information in the partial distance ordering constitutes an
effective qualitative representation of two dimensional position.

Since boundary elements are used as the basic unit for describing the
overall scene, rather than object axes, as in the ASSF representation, some
technique is necessary for reducing the overall number of relationships de-
scribed. This is because the total number of possible relationships between
all boundary elements in the scene is the square of the number of elements
in the scene, and becomes very large for even a moderately complex scene.

The method used to reduce the number of relationships is as follows:
proximity is only measured between those boundary elements which would
come into contact if the objects were to move toward each other. A simple
transform can be carried out on visual scene data that filters out unlikely
contacts, and also orders the remaining element proximities appropriately
for inclusion in the partial distance ordering.

The proximity transform involves simultaneously “expanding” the bound-
aries of every object in the scene by constructing an enclosing outline around
it. The boundaries are expanded in steps until elements on the expanded

69

boundaries come into contact (this process is shown in Figure 4.1). The set
of contacts that occur at a given expansion step are formed into an equidis-
tance list, and these lists are ordered by the stages in the expansion at which
they are formed. This information is integrated in the partial distance order-
ing with object internal proximities and segment lengths by simultaneously
“expanding” along segments and inside objects, so that these distances can
be formed into ordered equidistance lists together with proximities between
boundary elements on different objects. This allows direct comparison of
segment length with distances between objects.

The combination of boundary specified object relationships and parallel
levels of detail on the object boundary means that at coarse levels of detail,
solid objects can appear to interpenetrate. Consider two combs which are
interlocked, as shown in figure 4.2. When viewed at a fine level of detail, the
teeth of the combs are seen to be laced together. When viewed at a coarse
level of detail, however, the combs have no teeth. The toothed edge of
the comb may appear to be a wiggle, or even a straight boundary segment.
This is a reasonable representation, since many operations can be performed
on the comb as if the teeth were a straight edge (such as picking it up by
the edges), however the apparent overlap of the combs now means that the
proximity between the two coarsely represented edges should be negative,
and this is inconsistent with the “size” ordering, which is a representation
only of magnitude.

This apparent boundary overlap is a common situation when fastening
devices are being considered. Fastened objects are usually interlocked in
some way, and the interlocking mechanism is often small by comparison to
the whole object, so that at some levels of detail the object boundary will
simply be extended to include it. The use of a “negative” proximity here,
although not strictly meaningful in a magnitude ordering (magnitudes are
always positive), allows the amount of overlap of the coarse boundaries to
be explicitly represented. To allow this, overlaps are included in the partial
distance ordering like any other proximity information, but they are tagged
as a special type. This means that the complete partial distance ordering
may include four different types of distance: length, internal proximity,
external proximity, and now overlap.

Object Relative Position

The position of individual boundary elements relative to the whole object
is represented using two types of information. One is the order of elements

70

First Comact: Second and Third Contacts:
(C3I DM (D4 B4) (A3 B1)

(B4 08)

smaller

. largar

—J

C3 D13)

Ad C2)

langar smailar

lamar smailar

(
(C—)
[
Fourth Contact: (B4 D8)

Fifth Comact: (A4 C2) ! :
Sixth Contact: (C3 D13) Partial Qrdering of Proximity
Seventh Comtact: (B4 D8)

smailar

largar

smallar

largar

smallar

langer

Figure 4.1: Proximity Measurement in Terms of Boundary Expansion

71

T

ST
.’-".‘__‘ﬁ!

AN

Interpenatrating Objects at Fine Lavel of Detail

Y\

Apparent "Negative Proximity” at Coarse Level of Boundary Detail

Figure 4.2: Apparent Object Interpenetration at Coarse Levels of Detail

72

around the boundary, and the other is the record of any places where an el-
ement is in proximity to another element on the same object, as determined
by the proximity transform described in the previous section. The proximity
transform, in which the object is also “expanded” with outlines inside the
shape boundary, produces a canonical distance ordering for object interior
distance that is consistent with the description of exterior distance. Note
that the transform does not have the same interpretation for motion plan-
ning in this case, since there is no possibility that the boundaries of a rigid
object will come into contact.

Internal proximity such as this is recorded in the partial distance or-
dering, with a tag to indicate that the elements are part of the same ob-
ject. Boundary order is represented with a pointer from each boundary
element to its left and right neighbours. The resulting representation of
the boundary is a doubly-linked circular list, containing alternate segments
and junctions.

This description of the boundary representation is slightly simplified,
in that it omits the mechanism for multiple levels of detail on the object
boundary. It is possible to represent sections of the boundary in multiple
ways by allowing a number of parallel alternative sections of boundary. To
achieve this, each boundary element does not have just a single pointer to
its neighbours on the left and right, but a list of pointers, ranked in order
from elements which are part of the coarse detail to those which are fine
detail. The circular boundary list is therefore actually a network, when the
multiple levels of details are considered, but it can be used as a simple list at
a given level of detail by traversing the links at that level only. In the course
of my implementation, I found that the two most useful ways to search the
boundary are at the most coarse and most fine levels of detail.

Extended Polygon Boundary Summary

The second part of the next chapter describes a reasoning system which
uses the extended polygon boundary representation, and partial distance
ordering (described together as EPB/PDO). The following advantages and
disadvantages of the representation are a few of those noted during the
implementation of that system:

Advantages:

e The ability to define a coarse boundary simplified much of the rea-
soning, because overall relationships are quickly lost when traversing

73

a boundary which consists of a chain of fine details with imprecise re-
lationships between them. The coarse boundary description was used
more often than the fine one for most operations.

e The definition of proximity as boundary elements that “might contact
each other” provided explicit information useful for reasoning about
object interaction.

e The partial distance ordering implicitly supports graceful degradation
with inexact information, and the reasoning system based on it is
naturally robust as a result.

e The doubly-linked circular list formed by boundary left and right
pointers was a useful aid to boundary operations. The resulting bound-
ary representation is similar to that used by Faltings in the CLOCK
system [FNF87], but is more closely related to actual shape than that
system, which explicitly links “first” and “last” elements of the bound-
ary.

e An EPB/PDO representation could be constructed directly from the
output of vision systems such as those described by Brady, and by
MacKerras.

Disadvantages:

e Shapes described with this representation seem to be far more diffi-
cult for a person to reconstruct than with the ASSF representation.
Although the representation made it easier for a computer program
to reason about object interaction, it is not necessarily a good rep-
resentation for people to deal with (as would be necessary in robot
programming).

e Description of the relative position of objects only in terms of bound-
ary elements made it difficult to reason about relative motion of ob-
jects. Most motion operations extrapolated from an element position
to produce a derived object orientation, and then used this descrip-
tion for reasoning with. It may have been more appropriate to include
object-scale orientation explicitly.

e Direction is represented very imprecisely, and the relative directions of
boundary segments on opposite sides of an object may be completely

74

unknown, because of the cumulative effects of unknown angles around
the boundary between them.

Overall, the extended polygon boundary representation is simpler than
the ASSF representation, and it appears to offer more power for reason-
ing about interaction between objects in two dimensions. The main reason
for this is that important factors in object interaction are explicit in the
EPB/PDO representation. These factors include the representation of the
boundary itself, where interaction takes place, and of the relationships be-
tween boundary elements on different objects, which can be used to identify
possible interactions.

4.4 Extensions to the Two Dimensional Qualita-
tive Representations

This chapter has presented two methods for qualitative representation of
two dimensional shape: one has an emphasis on constructing two dimen-
sional shape descriptions from hierachical combination (through subparts)
of primitive shape features, using axes to describe size, position, and ori-
entation. The other has an emphasis on segmenting the boundaries of two
dimensional shape into elements that are qualitatively homogeneous, with
position described in terms of proximity between elements, and a global size
ordering.

Each of these has been used to construct scene descriptions in the LISP
language, and has been used as input to one of the simple planning systems
described in chapter 5. The last three sections of this chapter describes pos-
sible extensions to the implemented representations which were not required
for the examples, but would add both power and generality for applying a
qualitative shape representation to a wider range of problems.

4.4.1 Including Order of Magnitude Information in the Dis-
tance Ordering

The partial distance ordering of size information described above can be used
to make only a limited number of deductions about the scene described. It
can tell us that the thickness of a sheet of paper is smaller than the depth
of a file box, and that it will therefore not protrude above the top of the
box if it is placed inside. If two sheets of paper are placed on top of one
another, however, we can make no conclusions at all about whether or not

75

they fill the box. This is because we may know that one size (the box depth)
is larger than another (the paper thickness), but we do not know how much
larger it is.

An answer to the question of how many sheets of paper will fit in the
box could easily be found by a system that had absolute information about
the thickness of the paper and the depth of the box. Absolute information is
not required, however; a person can answer this question without measuring
the thickness of the paper. The qualitative knowledge that supports this
reasoning is the fact that the thickness of a sheet of paper is of a different
order of magnitude from the depth of the box.

Order of magnitude information can be included in the partial distance
ordering by the use of much-larger, much-smaller and nearly-equal size
relationships in addition to those for larger and smaller. Such a provision
enables not only comparisons of size after addition operations as in the above
example, but a complete qualitative arithmetic as discussed by Raiman, in
his paper “Order of Magnitude Reasoning” [Rai86].

Order of magnitude information is easy to incorporate into the partial
distance ordering, because it can simply be superimposed on the relative
size information, leaving the previous ordering intact. Where such informa-
tion is given, it provides extra useful data, but a scene description could
be composed without any order of magnitude information. In this case,
the reasoning system could continue to operate, but there would be more
questions that it could not answer.

The addition of order of magnitude capabilities does not therefore affect
the graceful degradation of the system when given incomplete data, but it
does provide it with more power when more information is available.

4.4.2 Ordering of Angle Sizes

The geometric description of shape involves both magnitude and direction
information. In the representation described above, all distances in a scene
are related by their magnitudes, but angles are simply divided into four
broad categories by quadrant, with the boundaries between quadrants pro-
viding three distinguished points in the angle quantity space.

This is sufficient for expressing qualitative direction of neighbouring
boundary segments, and for determining overall convexity or concavity around
a simple boundary. The addition of a further four qualitative regions by in-
cluding very-acute and very-obtuse angles (both concave and convex)
allows several trigonometric operations to be included in the repertoire of

76

geometric techniques for the reasoning system. Table 5.1 lists a set of rules
in qualitative trigonometry which become considerably more powerful with
the addition of these further qualitative angles.

Further information about angles could be represented by creating a
partial ordering of angle sizes similar to the distance ordering. The require-
ments for angle information are rather different to those for size, however.
Absolute distance values need never be expressed, as long as any required
relationship between distances in the scene can be represented. The one
exception to this is the contact distance (zero), which is a distinguished ab-
solute point. There are a number of distinguished absolute points in the
angle quantity space, however, because there are particular angle values
which always have the same properties (there are no geometric properties
that are always associated with a given absolute size).

The current system has distinguished points for qualitative description of
angles at 90°, 180°, and 270° (straight, convex-right and concave-right
angles). The very-acute and very-obtuse ranges referred to in the next
chapter might also start at a distinguished point; some of the trigonometric
properties assigned to very-acute are true of any angle less than 45°, for
instance. The addition of a number of other distinguished points could
also be justified by the fact that they correspond to useful trigonometric
properties. These might include 30°, 60°, 110°, 150°, 210°, 240°, 300° and
330°, to name a few.

The need for a greater number of distinguished points in a partial order-
ing can be easily accomodated by using special absolute value nodes in the
network. The contact list in the distance ordering is one such special node.
The approach taken by Simmons in his common-sense arithmetic system
[Sim86] allows any node in the network to be assigned an absolute value,
and his method could be used to create a partial angle ordering, in which the
nodes have an absolute value slot that can be used for normal trigonometric
operations where they are necessary. This would maintain the robust nature
of the qualitative representation, while providing an adjustable number of
absolute distinguished points.*

“The minimum number of absolute points would be the three points that distinguish
between concave and convex, and between acute and obtuse. This could provide a
relatively easy transition from the current system to the angle ordering, by simply replacing
the current set of distinguished angles with absolute points in the partial ordering.

77

4.4.3 Explicit Links to Three Dimensional Shape

The most difficult issue in applying either ASSF, EPB/PDO, or any two
dimensional qualitative representation to a real robot reasoning system is
the extension of the methods developed to three dimensions. The issues
involved are too complex to discuss in any depth, but some ideas of initial
directions to investigate include the following:

e Both generalised cones and boundary representation solid modelling
techniques are based on two dimensional descriptions at a certain level.
A boundary representation must include 2D faces as part of the bound-
ary, and the generalised cone technique requires a method for describ-
ing two dimensional cross-sections.

e The majority of actions in a mechanical workspace involve simulta-
neous motion in no more than two dimensions. People also appear
to have difficulty reasoning about motion in three independent di-
mensions, so limiting a robot reasoning system to two dimensions for
actual motion planning may be an acceptable restriction if human-like
performance is the goal. These two dimensions might be in either a
cartesian or polar co-ordinate system, since simultaneous turning and
linear motion in the case of screw operation is not a difficult reasoning
problem for people.

e In two dimensions, there are only three types of possible contacts be-
tween object boundaries: junction—junction, segment-segment, and
junction-segment. In three dimensions, there are six types of possi-
ble contact: plane—plane, plane—edge, plane—vertex, edge—edge, edge—
vertex and vertex—vertex. This requires that planes be explicitly rep-
resented, and also that methods of expressing relative orientation and
contact be more sophisticated. This would require a completely dif-
ferent approach to defining proximity (which must reflect potential
contact).

e Wong and Fu describe a method for planning motion in three dimen-
sions, operating in the space of a two-dimensional orthogonal projec-
tion [WF86].

78

Chapter 5

Implementations of Two
Qualitative Spatial
Reasoning Systems

This chapter describes two programs which perform qualitative spatial rea-
soning using qualitative scene information. Each program can solve a ba-
sic spatial reasoning problem. The reason for constructing these programs
was to test the capabilities of qualitative spatial representations in prob-
lem solving tasks, and this chapter discusses the grounds on which the two
representations in the last chapter were evaluated.

The tasks used to test these representations were described in the intro-
duction. One task is to find out what surfaces a moving object can come
into contact with when it is sliding around a number of obstacles. The other
is to plan a path for a moving object through a group of stationary obsta-
cles, and into free space. The program which solved the first of these tasks
used the ASSF representation, but it could equally well have been based on
EPB/PDO. The program which solved the path planning problem used the
EPB/PDO representation.

The programs described were both implemented in the LISP language,
and some mention is made of language related matters in this chapter. This
is because the descriptions of my programs are intended to be sufficiently
detailed to make another implementation possible. The level at which de-
scription is carried out, however, does not extend to lisp coding details, and
it should be possible to implement a similar system in a language other than
LISP by using this chapter as a reference.

79

5.1 A Program for Reasoning About Sliding

I proposed the “sliding problem” as an initial case study to test the power
of the ASSF shape representation. The two dimensional scene in which the
task is carried out includes a number of stationary obstacles, and one moving
object. The task for the program is to list the contacts that might occur
if the moving object were sliding around the obstacles (the only constraint
on motion in sliding is that the moving object must stay in contact with at
least one of the obstacles at all times).

The possible contacts which the program must find are qualitatively
described in terms of the pair of features which are in contact: one on the
moving object, and one on an obstacle. The moving object might be in
contact with more than one obstacle at one time, so one entry in the set of
possible contacts might include several of these feature pairs.

The sliding problem is not an especially difficult one when compared to
human performance in spatial reasoning, or even when compared to some
robot reasoning systems. It is, however, a problem which would not be
trivial to solve using computational methods based on numerical geometry.
The main point of interest as a problem in qualitative reasoning is that the
solution must be expressed in terms of qualitative state; the definition of a
“contact” implies a particular qualitative state, whereas a numeric system
could provide only a range of coordinate values over which the position
constraints of the problem are met.

The overall method described below for solving this problem could be im-
plemented equally well using any qualitative shape description that includes
a description of boundary features. The last part of this section discusses
some technical details of my implementation using the ASSF representation,
but a number of these points would apply to any representation.

The main challenge in this problem lies in the need to qualitatively de-
scribe the process of sliding, and the state of contact. Both involve inter-
action between objects that takes place on the boundaries of those objects.
The two are closely related by the formulation of the problem, which de-
fines the constraint on sliding motion in terms of contact, and asks for a
set of contacts which can occur through sliding. It is therefore natural to
conversely describe the process of sliding as a change in contact state over
time.

In order to solve the problem, a program must therefore be capable
of remembering more than one state of the system under analysis, and it
must be capable of ordering these states with respect to the times at which

80

Figure 5.1: Vertex to Vertex Contact

they occur. It must also be capable of representing and analysing state
transition. The following sections discuss the representation of contact state,
the analysis of state transition, and finally the overall reasoning strategy
followed by the program.

5.1.1 Representing Contact State

In terms of the ASSF representation, a “contact” is one item on the list of
things that are in contact with a particular feature. Each item on this list
refers to a second shape feature (on a different object) that is in contact with
this one. The qualitative state information implicit in this representation
of a contact includes the names of the two objects that are in contact, the
relative size of the features which are in contact, the relative orientation of
the objects which they belong to, and the qualitative shapes of the features,
and their neighbouring features.

The most important of these qualities for the purposes of sliding analysis
is the shape of the two features. Different sliding behaviour can be observed
for each of the differently shaped feature pairs described in the following
list:

1. Contact between two vertices only. This results in each vertex ap-

pearing on the contact list associated with the other. (See figure 5.1)

2. Contact between a line segment and a vertex. Each appears on the
contact list of the other. (See figure 5.2)

3. Contact between two line segments of the same length, which are ex-
actly aligned. Each line segment appears on the contact list of the

81

Figure 5.2: Line Segment to Vertex Contact

Figure 5.3: Aligned Line Segments Contact

other. In addition to this, the vertices at each end of each segment
appear on the contact list associated with the vertices at each end of
the other segment. (See figure 5.3)

. Contact between two overlapping line segments. In this case, the con-
tact list of each line segment includes the other line segment, and also
the vertex at one end of the other. Each vertex also has the other line
segment on its contact list. The side of the line segment on which the
contacting vertex appears separates two types of overlap contact — ei-
ther both vertices are clockwise from the contacting segment when the
boundary of the object is being traversed, or both are anticlockwise.
(See figure 5.4)

. Contact between two line segments, where one is longer than the other,
and the longer one extends past the shorter at both ends. In this case
the contact list of the longer will include the shorter segment, and also
the vertex at each end. The contact list of the shorter will have only

82

Figure 5.4: Overlapping Line Segments Contact

Figure 5.5: Large Line Segment to Small Line Segment Contact

one entry — the larger line segment. (See figure 5.5)

. Contact between a vertex and a convex curve. Each appears on the
contact list of the other. (See figure 5.6)

. Contact between a vertex and a concave curve. Each appears on the
contact list of the other. (See figure 5.7)

. Contact between a line segment and a convex curve. Each appears
on the contact list of the other. The vertices at the ends of the line
segment will not be in contact with the curve. (See figure 5.8)

. Contact between a line segment and a concave curve is not possible,
but the vertices at each end of the line segment can be in contact with

83

Figure 5.6: Vertex to Convex Curve Contact

Figure 5.7: Vertex to Concave Curve Contact

Figure 5.8: Line Segment to Convex Curve Contact

84

Figure 5.9: Line Segment to Concave Curve Contact

Figure 5.10: Convex Curve to Convex Curve Contact

a concave curve. (See figure 5.9)

10. Two convex curves can contact each other. (Concave curves cannot.)
(See figure 5.10)

11. A concave and convex curve can contact each other only if the angle of
the convex curve is smaller than the concave curve. (See figure 5.11)

In addition to the actual shape of two features in contact, it is appar-
ent from the above list that the shape and contact status of neighbouring
features is also relevant in distinguishing between qualitative contact states.
The shape of neighbouring features becomes more important, however, when
considering the ways in which the contact state can change as the objects
slide past each other.

85

Figure 5.11: Concave Curve to Convex Curve Contact

5.1.2 Contact State Transitions

All possible sliding motions involve changes of state between the above cat-
egories of contact, and this is represented by corresponding changes in the
contact list for the moving object, and in those of the obstacles. The change
in state which occurs after any given sliding motion depends on the shape
of the features involved, and on the direction of the slide.

The shape of features which are neighbours to the current contact site
is static information which can be obtained directly from the qualitative
scene description. The direction of sliding motion is dynamic information,
which must be determined for each change of state. Direction of sliding is
conveniently described for a single moving object as being either clockwise
or anticlockwise with respect to the boundary of the moving object (for
multiple moving objects, direction would have to be stated relative to one
of them).

The distinction between the clockwise and anticlockwise sliding direc-
tions in motion description must be supported by an annotation of shape
description that establishes which neighbours of a feature lie in a clockwise
or anticlockwise direction (this can be stated independently relative to the
boundary of each object). If this were not done, the reasoning program
would not be able to determine the “handedness” of the object descriptions,
and would not be able to distinguish between mirror copies of objects.

A substantial amount of effort in the implementation of this sliding anal-
ysis program involved providing functions for accessing the shape representa-
tion in terms of the two directions, and describing both contacts and object
boundaries in these terms. A typical problem in doing this was that the list
of features which comprised a subpart or object was described as a simple

86

list, whereas the clockwise ordering of neighbouring features had to be cir-
cular. The necessity for use of circular lists is mentioned again briefly in the
discussion of implementation.

Having established the present state, the neighbouring features to the
current contact position, and the direction in which motion toward the neigh-
bouring features is taking place, it is possible to identify the next qualitative
change in contact state that will occur.

The list of possible state transitions is much less than the square of the
number of states, because very few states can possibly follow each unique
contact type in a physically possible object description. In particular, any
contact between non-vertex combinations must be followed by a contact
that involves vertices. Possible transitions can be categorised in terms of
their behaviour around vertices. The program described here distinguishes
between three important types of sliding state around a vertex. I describe
these as “aligned” contact, “sliding over” a vertex, and “falling off” a vertex.

e All contact states can be classified as either aligned or non-aligned.
Aligned contacts are states in which any motion at all will alter the
state, because there are vertices in contact with other vertices. There
will always be an aligned contact state in between two non-aligned
states, except when concave and convex combinations of features are
in contact. At this point, the moving object is about to start (or has
just finished) sliding over a vertex. These aligned states therefore mark
a transition between sliding over edges, and sliding over vertices.

e It is only possible to slide-over convex vertices. Concave vertices
require either that the moving object rotate, or that the aligned vertex
on the moving object continue to slide with a vertex to edge contact
over the following edge. There is therefore a second kind of motion
that can occur around an aligned state: a combination of slide-to,
and slide-from.

e If a line segment or curve is sliding over a convex vertex, and there is
another convex vertex at the end of the moving segment, it is possi-
ble for the moving object to fall-off the obstacle that it is sliding
around. The actual behaviour will depend on the free space motion
characteristics of the scene space (in particular whether there is any
gravity, or similar field). Possible behaviours which satisfy the sliding
constraint are that the moving object rotates about the fall-off point,
or slides-from the aligned vertex.

87

There are therefore three basic types of aligned to non-aligned tran-
sition: the slide-over motion, the slide-to/slide-from motion, and the
fall-off motion. These transition categories, when expanded to included
the relevant cases from the list of possible contact states, can describe the
motion of a single moving object over the boundary of a single obstacle,
but they must be extended to describe an object moving around a number
of obstacles. This extension is not too complex, because two obstacles in
contact (or even near each other) form a new feature that behaves like one
of the normal features. The extensions that would be necessary identify
the equivalent feature, and allow the concept of “neighbouring” features to
include features on other objects which are candidates for the next contact.

Transitions between contacts with features on different objects are there-
fore of the same types as transitions between features on the same object.
The main distinction is between the cases of sliding over an aligned bound-
ary between objects, and an overlapping boundary. The simplest case is the
aligned boundary, in which there is an intermediate state where the moving
object is in contact with both objects.

There are several cases of overlapping obstacle contacts: there are two
directions from which to approach an overlap — from the high side, the
moving object will “fall off” onto the second obstacle. From the low side, the
moving object will come into contact with the hanging part of the overlap.
In either case, the behaviour also depends on the curvature of neighbouring
shape features.

The level of analysis presented so far does not deal with one important
case: contact between a concave and convex curve, or even between the
areas surrounding a concave and convex vertex. If the angles of the curves
or vertices include right angles, or if one is acute and the other obtuse, the
resulting contact states can be determined. If both are acute or both obtuse,
it is impossible to determine the contact that will occur, because the relative
sizes of the angles are unknown.

A second case which is difficult to analyse is sliding across the gap be-
tween two obstacles which are not touching each other. This would require
direct comparison between the size of the gap between the obstacles, and the
size of the moving object. The other state transitions I have described can
all be qualitatively analysed without size or angle magnitude comparison,
and it was this case which made clear the deficiencies of the ASSF represen-
tation with respect to direct comparison of feature sizes. This is discussed
further with other implementation issues.

88

5.1.3 Envisionment of Motion through Contact States

In any qualitative envisionment, a possible change in state of the system
being modelled must be reflected in the representation, so that future state
changes can be determined. The complete dynamic state of the sliding object
system can be described as the set of all contacts in the scene. As mentioned
above (and presented in more detail in the implementation section), contact
is described relative to each feature, as a list of things that are in contact
with that feature.

The global contact state for the whole scene is the set of all such contact
lists. Each contact is mentioned twice in this set, once in the list of each
feature that participates in the contact. Updating the contact set to reflect
a change of state involves adding new contacts to the set, and removing all
reference to contacts that have been separated.

Adding new contacts includes the addition of new contact lists to the set
if a feature has no previous contacts, and determining whether the contact
should be at the clockwise or anticlockwise end of the contact list if the
feature does have previous contacts. Where a contact is removed, it must
be removed from the contact lists of each feature to maintain consistency in
the contact set. All of these functions, although they are necessary to main-
tain consistency in the contact set, are analagous to principles that humans
automatically apply when reasoning about relative motion of moving and
stationary objects.

A higher level of reasoning in the program makes use of this contact set
information to search for possible new contact configurations. The search
tree is presently only a binary tree, because at any point the moving object
may only move clockwise or anticlockwise. If the program dealt with obsta-
cles which had gaps between them, this search tree might expand, because
of the multiple possibilities in moving between objects.

The search level of the sliding system collates a “history” of possible
contact sets. It also determines from the contact history when it has ex-
hausted the possible contact configurations (this occurs when a system state
is exactly repeated, and the program has searched from that state in both
clockwise and anticlockwise directions).

The solution required to the original sliding problem is an envisionment
of all contact sets that can occur as the moving object slides. This contact
history can therefore directly provide the final solution.

As pointed out in chapter 3, planning tasks differ from other qualitative
reasoning domains, in that the “envisionment” is actually the effect of ac-

89

tions planned by the reasoning program, whereas “function from structure”
problems usually determine the behaviour of a system that changes state
by itself. The envisionment described here can therefore be considered by a
planning program to be a history of the states that would have occurred if
a robot had actually carried out previous planning stages. The formal rela-
tionship between history and envisionment in qualitative physics reasoning
is discussed in some detail by Forbus [For87]. The attitude I have taken in
this implementation is however quite informal.

5.1.4 The ASSF Implementation

The program implemented to solve the sliding problem made use of many
of the facilities provided in the ASSF proposal, but did not include some
aspects. In particular, it omitted the description of axis relative object
positions. The parts of the proposed representation which were important
for solving this problem were the qualitative description of feature shape,
including vertex angles, the relative position of features on an object by
“neighbour” relationships, and the contact list associated with each feature.

The ASSF representation was implemented with extensive use of data
types that support multiple attributes of different types. My implementation
used the LISP “defstruct”, but any method of relating data items of different
types to an single reference could have been used. The shape elements
described in this way included basic features (vertices, lines and curves),
orientation and position, and functional groupings of features for generic
part or object shape types.

The attributes of a feature vary between vertices, lines and curves. The
attributes of a line feature include length, orientation, and position relative
to the local object. The attributes of a vertex include its angle, the ori-
entation of the angle bisector, and whether it is concave or convex. The
attributes of a curve include orientation of the chord axis, length of the
chord, position of the chord centre, bulge of the curve, and whether it is
concave or convex. The “wiggle” feature type was not included in this im-
plementation, since sliding over wiggles involves a different type of reasoning
problem.

Position and orientation descriptions are also defined by defstructs, since
position and orientation have several components. These components in-
clude major and minor axis positions, and local and global orientation.
Although the facility for describing global orientation was included in the
representation, it was not used for the solution of the sliding problem.

90

The use of groupings of features as generic shape types allowed common
two dimensional shapes to be defined once, so that any given shape in a
scene is simply an instance of the generic type. As an example, a generic
square is defined as composed of four edge features, and four vertex features.
There are certain attributes of each feature which can be defined as being
true for all squares. The definition of the square includes information about
where these features are on the boundary of the square, and how they are
related to each other. The relationships described include sets of lines which
are parallel and pairs of lines which are perpendicular to each other, as well
as the requirement for right-angled vertices in a square.

Any reference to one part of a particular two dimensional shape in the
scene is made using terms established in the generic shape definition. One
side of a particular square, for example, might referred to as the second line
segment in the third instance of generic shape number one.

Scene and Problem Representation

When establishing possible sliding motion, the most important information
about the scene is the description of what features or objects are in contact
with other features or objects. These contacts were represented using “con-
tact lists”. Whenever one shape feature comes into contact with another,
a contact list is created for each feature. The contact list is linked to the
feature by the name of that feature at the head of the list. The rest of the
list consists of all features which are in contact with the feature at the head.
Any further contacts that occur can be added to this list.

The contact lists are ordered in a clockwise direction (relative to the
object on which the head feature is found). This implicit direction in the
contact list ordering is used as the basis for distinguishing between clockwise
and anticlockwise sliding, since the system must be able to tell what relative
direction successive slides occur in.

All contacts between objects in a scene are collected in the “contact set”,
which is the set of all contact lists. The contact set contains two entries for
every contact; one entry is found on the contact list of each of the two
features in contact. It is necessary to maintain consistency in the contact
set by removing entries from the relevant contact lists when a contact is
broken, and removing whole lists when the feature the list refers to is no
longer in contact with anything.

For ease in formulating the problem, one object in a scene is represented
directly as the moving-object, while all others are called obstacle-1,

91

obstacle-2 etc. The analysis of sliding therefore commences with the con-
tact lists for each feature of moving-object.

In order to represent motion around the boundary of a single obstacle,
the features on the boundary must be ordered. This is also achieved by
using an implicit clockwise ordering in the list of features that are in a given
subpart or object. Use of a linear list for this purpose created some problems,
in that the clockwise ordering of features on the boundary is circular. It is
possible to create circular lists in LISP, but they are difficult to operate on
— the reasoning system therefore had to allow for a “wrap-around” from the
last item in a list of features to the first, and vice-versa in the anticlockwise
direction.

Although size comparison between features on different objects would
have been useful, this system was not able to easily perform such compar-
ison. This resulted from the fact that feature sizes are expressed by the
relationship between the length of the feature axis, and the length of the
main object or subpart axis. The relative sizes of whole objects were ex-
pressed in a similar fashion. Comparison of two features therefore required
following a chain of qualitative size comparisons through two objects — by
the end of the chain, it was seldom possible to make any clear conclusion of
size relative to the feature at the start of the chain.

As described above, the sliding system searches exhaustively for all pos-
sible contact states. This exhaustive search terminates when a previous
contact state is repeated (when the moving object has circumnavigated all
obstacles). Detection of a repeated contact state is not trivial, because there
is no canonical ordering of the contact set (even though all contact lists and
object feature lists are guaranteed to be clockwise-ordered, they can start
and end at different points). It was therefore necessary to construct a func-
tion for comparing overall scene configurations after each sliding motion.

5.1.5 Summary of Sliding Issues

The essence of the sliding problem, both in the constraints specified, and in
the required solution, is that it deals with contacts between different objects.
The importance of contact to this basic problem immediately demonstrated
a deficiency in the ASSF representation as presented in chapter 4. The
ASSF representation described relative position of objects in terms of the
object axes, and this meant that any contact between the objects had to
be inferred from relative orientation and magnitude of objects, subparts,
features, and axes.

92

The global contact set therefore provided a useful way of operating di-
rectly with necessary state information, rather than having to derive it from
physical shape. The contact set was not ideal as a state description, espe-
cially because invariant information (contact between obstacles) was mixed
up with state information (contact between the moving object and obsta-
cles). It did, however, provide the basis for a reasoning system that operated
with ordered states — the contact history.

The contact history was a clear and natural way of representing motion.
All changes of state were recorded, and the use of a qualitatively significant
criterion for state change meant that most of the contact history information
was significant to the problem analysis. This is not always the case in such
simple history mechanisms, and it shows an advantage of the qualitative
representation, in that operations performed using qualitative data produce
more qualitatively interesting results.

The boundary list maintained for each object in the ASSF representation
was used rather more heavily than anticipated — in particular, it was essential
for the boundary list to have a strict clockwise ordering. This was not my
original intention for the ASSF system — on the contrary, those features on
the boundary of a shape were to be recognised as such by their position
attributes, in particular the fact that the feature was located at the full
extent of an object axis. For the sliding problem, however, all features that
can be involved in contact are on the boundary, and the fact that this list
was created by assuming a traversal of the boundary in a clockwise direction
provided a far more useful reference point than any data relating to shape
axes.

The importance of the boundary meant that a number of special LISP
functions had to be created to make the boundary easier to work with.
Examples of these are the “wrap-around” list operations to make the simple
linear list appear to be a continuous ring of clockwise and anticlockwise
neighbour relationships.

A more major issue was that the methods used to solve the sliding prob-
lem make use only of a relatively small subset of the facilities provided in
the proposed full ASSF shape representation. As an initial investigation, it
did not need most of the axially specified facilities, but attempts to extend
the sliding approach to include free-space motion soon showed that the rep-
resentation techniques for size, position and orientation were too clumsy for
the task of reasoning about complex and/or underconstrained interaction
between objects, even though it provided a very full description of shape for
individual objects.

93

It became clear in the course of this implementation that since interac-
tion between objects (whether or not it involves sliding) occurs exclusively
between the boundaries of the objects, the shape representation used should
therefore concentrate on providing an adequate boundary representation. It
was this concern that lead to the development of the EPB/PDO representa-
tion, because ASSF, while adequately meeting my initial goal of a completely
qualitative shape description method, failed to fully meet the requirements
of reasoning about motion and object interaction.

5.2 Reasoning About Path-Planning with EPB/PDO

5.2.1 The Path-Planning Problem

Path planning problems are a far more common concern in robotics than
the simple sliding problem presented in the previous section. The typical
problem formulation in path planning is the “(piano) mover’s problem”,
or “findpath problem”. This problem, like my sliding problem, involves a
number of obstacles and a single moving object. The difference between the
mover’s problem and the sliding problem is that in the mover’s problem, the
goal is to find a path through the obstacles while avoiding touching any of
them (rather than finding what can happen when maintaining contact with
them).!

The obstacles in my examples are all right angled polygons, with a mix-
ture of concave and convex vertices, and with multiple levels of detail on the
boundary. This is also true of the moving object. Most of the implemented
code allows for angles which are not right angles, and for curved edges, but
examples with these properties were not tested, for reasons explained later.

The reasoning performed in solving this problem was intended to com-
plement that performed in the sliding problem. It involves motion of the
moving object through free space, and discovery of non-contact paths be-
tween obstacles. The goal state is a position for the moving object which is
on the other side of the obstacles initially surrounding it, and provides un-
bounded movement away from those obstacles. The solution to the problem
also includes a suggested path which will enable the moving object to reach
that goal state.

The remainder of this section first discusses the implementation of the

!See [LP83] for a typical geometric algorithm which finds solutions to the mover’s
problem.

94

extended polygon boundary/partial distance ordering representation, and
then describes the reasoning strategies used to solve path planning problemms.
The overall stages in solving a problem are discussed first, and the method
of solution for each stage is then described.

5.2.2 EPB/PDO Implementation?

The most basic level at which an object boundary is represented is an un-
ordered set of boundary elements listed as a “property”? of the object. Ob-
jects have no other properties for the purpose of this system, but in a more
extensive reasoning system, the object may provide an interface between a
higher level of reasoning and the path planning mechanism.

The set of boundary elements includes both segments and junctions,
and these are distinguished by a type property, which identifies them as
one of the two types. The ordering of elements around the boundary is
established using “neighbourhood” properties on each boundary element.
The left property points to the boundary element on the left (anticlockwise)
of this one, and the right property points to that on the right. The left
and right pointers can be used to treat the boundary as a doubly linked
circular list.*

The left and right neighbourhood properties are not actually simple
pointers, but lists, where the list is ordered by detail resolution; the first
element of the list is the coarsest level of boundary detail, and the last is
the finest level of detail. The neighbourhood description is therefore used
to implement the web of boundary relationships at multiple levels of detail
that was proposed in chapter 4.

Boundary elements of both the segment and junction type have a shape
property. The shape of a segment may be either 1line, curve, or wiggle.
Curve and wiggle shape properties also include angle and bulge (for a

2Appendix A contains a complete LISP description of a scene using EPB/PDO. The
reader may wish to refer to this appendix for examples and further detail than is given in
this discussion.

3Where the ASSF implementation made extensive use of the LISP “defstruct”, the
EPB/PDO system was implemented using “properties”. A LISP atom can have any
number of properties, and new properties be defined dynamically (defstructs must be
explicitly defined by the programmer). Use of properties is more portable between different
LISPs, and the ability to define them dynamically seems to be more consistent with the
general style of LISP programming.

* Although a logical circular list is formed by these pointers, no list exists in the LISP
sense — it cannot be operated on by the LISP list operations.

95

curve), or wiggliness and bulge. The shape property of a junction lists
its angle and flex, which may be either convex or concave.’

Proximity of two boundary elements (or contact between them, since
contact is a special case of proximity) is represented as a property of each el-
ement. This is in contrast to the ASSF implementation, where relationships
are described globally, and the relationships associated with any particular
element must be found using a global search.

A proximity (or contact) relationship between two elements is repre-
sented by an independent pair of pointers to the two elements. Each element
has a property which lists all such proximity pairs that refer to it. There are
in fact two of these lists: the internal proximity property refers to proxim-
ities between this element and other elements on the boundary of the same
object. Internal proximities are invariant for rigid objects. The external
proximity property refers to proximities between this element and elements
on different objects. These proximities can change when objects move.

All segments also have a size property. This points to a global “equidis-
tance” list — part of the partial distance ordering — which lists all distances
in the scene that are the same size. The equidistance list specified by a
segment’s equidistant property will have at least one entry — the segment
itself.

The partial distance ordering, which relates the magnitude of all segment
sizes and proximities in the scene, is composed of a number of equidistance
lists. Each list specifies a set of equal distances — segments whose size is equal
to this distance, and proximities between elements which are separated by
this distance. The partial ordering is established with two properties of
each equidistance list — the larger and smaller properties. Each of these
is a pointer to another equidistance list. One special equidistance list is
the contact list. It has no smaller property, and its value is the list of
all boundary element proximities where the elements are in contact. In a
consistent distance ordering there will also be at least one equidistance list
which has no larger property.

There are five types of atom which may be pointed to by an entry on
an equidistance list. Segment size is one of these, internal, external or
overlap proximity pairs are another three, and the last is the synthetic
distance, which is the result of some geometric construction carried out
during problem solving (this is discussed further in section 5.2.5).

SLISP implementation note — shape properties are implemented using assoc lists with
the keys angle, bulge, wiggliness, and flex.

96

A portion of a scene representation, including the relationship between
objects, segments, junctions, proximity, and the partial distance ordering, is
illustrated in figure 5.12. This figure (which is a portion of a simple scene in
which a tripod is to move through a doorway) shows the representation of
an object boundary using left and right neighbourhood pointers between
segments and junctions. It also shows the arrangement of proximity pairs
relating boundary elements on different objects, and the comparison of seg-
ment size to proximity in the partial distance ordering. It does not include
object shape descriptions (multiple levels of boundary detail, or the shape
of individual boundary elements).

5.2.3 Stages in Path Planning

The overall strategy of the path planning system includes three general
stages (with a certain amount of interaction between the three). These
three stages are:

1. Find a gap between the obstacles surrounding the moving object in its
current position.

2. Check that the gap is big enough for the moving object to fit through.

3. Specify directions of motion which take the moving object to the open-
ing of the gap, and then through it.

These three stages appear relatively independent, but they affect each
other in the following ways:

e Where there is more than one possible gap, each candidate must be
evaluated in terms of its suitability for later planning stages. Infor-
mation about fit and motion must therefore be available to the gap
finder.

e The procedure for establishing the presence of a gap also establishes
the narrowest extent of the gap in terms of the partial distance or-
dering. This information will later be necessary when checking fit, so
must be passed on from the gap finding stage to the fit checking stage.

e In addition to the narrowest extent of the gap, an entry point must
be recorded, relative to which motion into the gap can be specified.
The gap finding stage records this information for use in the motion
specification stage.

97

Figure 5.12: Implementation of the EPB/PDO Representation

98

e Fit depends on the orientation of the moving object, which is deter-
mined in part by the direction of motion when approaching the gap.
This means that some information about direction of motion must be
available in the fit-checking stage, before motion is planned.

These factors make it impossible for the “stages” to be carried out in-
dependently, but it is still possible to separate the types of reasoning that
must be carried out to solve each part of the problem.

The path planning strategy becomes more complex if more complex fields
of obstacles are to be dealt with (where the moving object has to move in
turn through more than one gap). The implemented system does not deal
with this case, but it is discussed along with other possible extensions in the
final section of this chapter.

5.2.4 Gap Finding

The first task carried out by the gap finding part of the path planning
system is to establish whether path finding is necessary at all. If there are
any directions in which the moving object is not facing any obstacles, then it
can easily move into free space, by advancing in that direction. This initial
test is carried out so that the gap finding module can be easily integrated into
a more complex planning system. It would normally be used, for instance,
to identify the goal state of an obstacle field negotiation problem.

If there are no sides of the moving object which are free of obstacles,
the obstacles on every side are examined to find out whether there are gaps
between each obstacle and its neighbour.

Note that the term “side” when applied to the moving object means here
a segment on the coarsest boundary level. Initial motion planning takes
place at this coarse level, because details of the object shape only become
significant during actual motion. A “gap” is a path around the boundary
of an obstacle which starts at an obstructing boundary element, and ends
at a boundary element that meets the “free space” criterion. The obstacle
boundary between these two elements must not contact any other obstacle.

The search procedure used to find gaps is evident from this definition.
For every obstacle, the obstacle boundary is searched in both directions,
starting from a boundary element which is in proximity to the moving object.
The search is terminated when a portion of the boundary is in contact with
another obstacle, when a free-space element is encountered, or when the
searches from each direction meet.

99

Along the search path, a record is kept of the narrowest extent of the gap.
This is the smallest distance from an element along the gap to any other
obstacle, as found in the partial distance ordering. At any point, the search
for the nearest neighbour of a boundary element must exclude the moving
object itself (since proximity to the moving object will be recorded in the
partial distance ordering in the same way as proximity between obstacles).

5.2.5 Checking for Fit

The results of the gap finding search include a value in the partial distance
ordering which describes the narrowest extent of each gap. When checking
whether the moving object will fit through a gap, this narrowest extent must
be compared to the width of the moving object.

The “width” of the moving object depends on its orientation as it moves
through the gap, and it is necessary to find an expression for the effective
width of the moving object when moving in a given direction. This is done
by finding the extremities of the object at right angles to the direction of
motion, and then comparing the distance between these extremities to the
gap size.’

The current method for finding object extremities conducts a search
from a given boundary element, evaluating each element encountered to
find out how far it will protrude given the specified direction of motion.
Candidates for extremities are placed on a candidate list, so that they can
be evaluated further at a later stage. As soon as the search procedure has
accumulated enough of these candidates, another set of rules is used for
pairing extremities which are likely to be furthest apart. Single candidates
and paired candidates are pruned from the candidate list if other candidates
obviously protrude further.

Once the boundary search is complete, and a pruned set of extremity
candidates is found, qualitative expressions for the distance between the
extremities are derived. These expressions are related to the partial distance
ordering, and can use simple rules in “qualitative trigonometry”, together
with internal proximity information about the boundary elements of the
moving object.

The system aims to find an expression for the maximum possible value of
this distance between extremities. This is most easily done using the partial
distance ordering, where an item of the synthetic distance type is used as a

5Note that this technique is only applicable to translation — further facilities must be
provided to analyse simultaneous translation and rotation.

100

place-holder in equidistance lists for the unknown distance (the synthetic
type distinguishes it from measured distances). In most cases, an expression
for this synthetic object extremity can be derived either from the size of
boundary segments which are parallel to the unknown extremity, or in terms
of internal proximity.

The width found in this way may simply be equal to a known distance,
or it may be derived using operations in qualitative arithmetic. Typical
functions include simple binary addition and subtraction of distances in the
partial distance ordering.

Where it is not possible to directly assign a value to the extremity, this is
usually because there is no parallel segment, or internal proximity between
perpendicular segments, that can be used to find an appropriate expression.
In these cases an approximation to the value can be found using “qualitative
trigonometry”. The qualitative trigonometry rules listed in table 5.1 can be
used to find expressions for unknown distances across the interior of the
object in terms of the size of boundary segments, or internal proximities.
Such information is always far less constrained than the measured values
explicitly entered in the partial distance ordering, however, and is not often
used as the basis for a final decision on gap fit.

The last step in establishing effective width in motion is to compare the
remaining entries on the extremity candidate list, and find which are the
largest possible extremities for the object. In future, some further pruning
of the blackboard should be performed before this stage, in order to find
and remove impossibly large extremities. Such pruning would operate by
comparing the extremity candidates to the proximity of obstacles in the
context of the moving object, and checking to ensure the effective width is
not larger than the distance between surrounding obstacles.

The final qualitative expression for width of the moving object is com-
pared to the size of the narrowest extent of the gap, and one of three judge-
ments can be made from the partial distance ordering: either the moving
object definitely will fit through the gap, it definitely will not fit, or fit has
not been established. This last case enables further investigation to be per-
formed when other methods are available. These methods may involve the
application of more rigorous geometric reasoning, or physical measurement
performed by a robot. This system does not at present regard such gaps as
candidates, and simply continues to search for a known “definite fit” gap.

101

Qualitative Properties of Triangles

Triangle Angles Properties
A B o
B
A,
%
A o acute acute acute a<b+c
b<a+c*
c<a+b
right acute acute a>c
a>b
a
c
obtuse acute acute a>c
a>b
/\
c
b acute acute very-acute || a ~ b
c<<a
c<<b
a
c
b right acute very-acute || a = b
c<<a
c<<b
a>b
a
‘L b
obtuse acute very-acute || c << a
c<<b
a>b
x
¢ obtuse | very-acute | very-acute || a > b
a>c

* Note that these properties hold for all triangles.

Table 5.1: A Qualitative “Trig Table”.

102

5.2.6 Specifying Motion

In specifying motion toward a gap, the system must initially aim to position
the moving object at a point from which it can negotiate the first obstacle to
a straight path through the gap. This point is usually next to the junction
at the end of an obstructing segment. Later motions can then be expressed
in terms of further obstruction-passing points. These sub-goals for motion
past obstacles are called “via points”. The currently implemented system
only considers via-points whch can be reached using straight line motion,
but a more general system could include motion along curved lines, and
also include information regarding the required rotational orientation of the
moving object.

The system locates via points by finding what obstacle is on the near side
of a suitable gap, and then searching for the first junction at the entrance
to the gap. The via point is specified as a pair of boundary elements: this
junction, and the nearest boundary element on the other side of the gap.

The proposed motion is specified as the direction from one boundary
element on the moving object to one of the via point elements. This direction
is then translated into a direction of motion for each boundary element of the
moving object, so that any further obstructions to motion may be detected.

Directions of motion are also evaluated as to how “vague” they are.
This is discussed further in the next section; it provides some robustness by
allowing the system to evaluate the quality of its directional information,
and employ precise directions rather than vague ones where possible.

Motion specification is currently only translational — if rotational motion
was to be accomodated, substantial changes would be required. The simplest
way to extend the translational planning system would be to use sequen-
tial combinations of rotational and translational motion. Reasoning about
simultaneous rotation and translation in two dimensions would require the
use of a 3-dimensional configuration space, and new planning strategies and
directional reasoning, in addition to new methods for representing gap size,
finding moving object extremities, and specifying via points.

5.2.7 Directional Reasoning

Reasoning about object motion requires the ability to represent direction.
There is no explicit directional information in the original scene description,
but it can be inferred from information such as the angle of curves and
junctions, or from “parallel proximity”; a segment which is in proximity to

103

another segment, with junctions at each end which are both equidistant from
that segment, is known to be parallel to it. The representation of direction
requires that the reasoning system be able to relate vertex angles or parallel
lines to directions of motion.

Any direction reference is specified relative to one boundary element on
a one object (i.e. there is no global direction such as “North”). Directions
can be specified as forward, back, left or right relative to the named
boundary element, where the named direction refers to a possible motion of
the object.

For directional reasoning purposes, a full set of relationships must be
established between these motion directions, and vertex angles. This is
achieved using functions that apply rules such as “The segment on the left
side of an acute, convex junction faces backward and to the left with respect
to the segment on the right side””. Other directional relationships include
the effects of reflection, and addition or subtraction of angles. These are all
defined by a set of direction functions.

The directional reasoning part of the system distinguishes between di-
rections that are precisely known, and directions that are “vague”. Precisely
known directions are based on right angles, and represent exact angular val-
ues. Forward, left, back, and right are all precise directions. Between
these directions are four quadrants (corresponding to acute and obtuse an-
gles), within which the angle value could be anywhere within the 90 degree
range. The “vague” directions describing these quadrants are “forward and
to the left” (£f1), “back and to the right” (br), “forward and to the right”
(fr), and “back and to the left” (bl). This organisation is obviously a re-
sult of the way the angle quantity space is structured in this implementation,
but the distinct nature of precise directions applies to some values in any
quantity space.

It is possible to perform some operations with vague directions — the
reflection of a vague direction is known (it is another vague direction), as is
the value of that direction plus or minus 90 degrees (also a vague direction).
No operation performed on a vague direction can return a precise direction,
however, and this limits the utility of vague directional information. In
addition, an acute or obtuse angle added to another vague direction results
in no certain direction at all, because the result may be in either of two
quadrants, or it may be a right angle.

"These “rules” are actually assoc lists which are interpreted to relate all possible
combinations of angles to directions

104

The reasoning system includes functions to discriminate between the
vague and precise directions where necessary, so that directional information
can be maintained that is as precise as possible given the input data. Most
functions of the system will continue to operate with vague information for as
long as possible, but will return an “unknown direction” token (the unknown
direction is represented by the atom ’? in lisp) when information becomes
too imprecise. The atom ’7 effectively acts as a ninth qualitative direction,
which is accepted as a legal input by directional reasoning functions, but
usually results in the propagation of unknown directions throughout the
system during geometric reasoning tasks.

The incorporation of “vague” and “unknown” directions makes the cur-
rent system robust enough to accept scene data involving imprecise qualita-
tive angle descriptions. This directional reasoning is, however, less powerful
than the partial distance ordering, and in most cases it was vague angle
information that resulted in the breakdown of geometric reasoning tasks,
rather than lack of precision in size information.

5.2.8 Summary of Path-Planning Issues

The EPB/PDO representation, as implemented for this system, provides a
number of advantages in reasoning about motion. An important advantage
is the way in which relationships between individual boundary elements are
explicit properties of the elements themselves. This fact removes the need to
search for information in global sets of relationships. Since most reasoning
about motion involves reasoning about interaction between objects, and
interaction between objects involves relationships between their boundaries,
the reasoning system can be greatly simplified by making this information
readily accessible.

Relative size information has been made more explicit in the EPB/PDO
representation than in the ASSF representation by using the partial distance
ordering. This extra information makes path planning easier, but accentu-
ates problems caused by the lack of directional information. As stated above,
the reason for failure of reasoning goals in this system is nearly always lack
of precise directional information. This occurs whenever angles other than
right angles are encountered — several non-right angles in a reasoning chain
result in a completely unknown overall angle.

This poor directional information is allowed for by the distinction be-
tween vague and precise angles. This distinction allows the system to per-
form well when large numbers of right angles are in the scene, and also allows

105

it to recognise where problems will result when there are not many right an-
gles. The result is a reasonably robust system for using scanty directional
information, but overall performance is limited by the lack of power of the
simple four quadrant description of qualitative direction and angles.

In finding the rules for “qualitative trigonometry”, it was clear that very
few rules could be stated on the basis of right, acute, and obtuse only.
The number of rules was more than doubled by the addition of two new qual-
itative angle ranges — very-acute and very-obtuse. This would continue
to be true as new ranges were added, until in the extreme case the qualita-
tive trigonometry table had as many entries as a numeric table. Although
this would increase the power of the reasoning system, it is contrary to the
objectives of this study, and the development of an alternative approach
to qualitative expression of direction (perhaps based on a “partial angle
ordering”, or on order of magnitude reasoning) would be more valuable.

The use of multiple levels of detail on the object boundary did reduce re-
liance on precise directional information. Complex pieces of boundary with
many “vague” angles were often represented at a coarser level of detail with
fewer angles, and this enabled the system to perform coarse path planning
more confidently. In addition to this, the lack of allowance for curved bound-
ary segments in my implementation was of little importance for coarse path
planning, because most curves can be represented at a coarse level of detail
by two straight segments with a junction between them, where the angle of
the junction approximates the curve. The places where this is not practical
include calculation of extremities, which must include the bulge of the curve
rather than the position of the extra junction, and reasoning about rotation
involving curves.

The implementation of this system has shown that it is possible, using
qualitative reasoning techniques, to solve practical path planning problems.
The natural robustness available to a qualitative system is evident in the
application of the partial distance ordering, and of relative angle precision.
Both in angle and magnitude reasoning, the system is able to select from
different data and geometric constructions to find the most precise data
available. However imprecise that data is, the system can continue with its
reasoning process, until it recognises that the data is now insufficient. In
this case, it is still able to act on the lack of data, and ask a robot or an
operator to gather more data.

106

5.3 Future Enhancements

The system implemented still includes only the features required to solve the
path planning problem for very simple cases, and does not include the com-
plete features of the EPB/PDO representation as described in the previous
chapter (most notably, it lacks any reasoning about curves). In addition,
the methods used for checking fit through a gap need to be completed and
extended. Nevertheless, the implementation carried out has demonstrated
the major advantages and disadvantages of this approach, and important
enhancements other than the simple completion of the originally proposed
system can be identified. Three directions that I see as important initial
steps for future work are described in this section.

5.3.1 Integration of two approaches

There are a number of sub-problems within the path planning problem which
could be solved by the methods used for the sliding problem. For instance,
the safest route through a narrow gap is to slide along one side of the gap.

Although the sliding system was implemented before I developed the
EPB/PDO representation, the methods used would be easily adapted to
this representation. In fact, an implementation using EPB/PDO would be
simpler than the one using ASSF. If this was done, it would not be difficult to
integrate the two planning methods into a system that could choose between
different motion strategies during path planning.

The main characteristics of these two strategies are boundary following
for the sliding system, and straight line motion between a series of via points
(such as the narrowest point in a gap, and the entrance to a gap) in the path
planning system. A framework which could direct either of these strategies
could also include further strategies, such as rotation, wiggling into place, or
other motion strategies regularly used by people. The addition of new mo-
tion strategies to an overall task planning structure provides an interesting
basis for comparison to human acquisition of manipulation skills, as shown
in Sussman’s HACKER system [Sus75].

5.3.2 Searching for Complex Paths

The path planning system described above has the goal of reaching a state
in which the moving object is in “free space”. It assumes that there will
only be one layer of obstacles between the current location of the moving

107

object, and free space on the other side of the obstacles. In a more complex
scene, where the obstacles compose a “maze” which the moving object must
traverse, a high level strategy is necessary to oversee the planning of paths
between layers of obstacles.

The basic methods used by the present path planning system could be
retained in this case; once it is possible to plan a path between two objects,
it is possible in general to plan a path through many, taking them two at
a time (access to a via point between two obstacles might, however, be
restricted by a third obstacle).

Complex path planning of this type could be carried out with the aid of
a supervisory system, which would be informed of all possible via points be-
tween obstacles, and would recommend the order in which to approach them.
The supervisor would make use of some search strategy to organise these
decisions. A “hill climbing” search would be sufficient, if a satisfactory func-
tion was provided for evaluating how close the moving object was to leaving
the maze. This function would be used to replace the “free space” goal of
the current system. If the supervisory search strategy involved backtrack-
ing, it would be necessary to extend the spatial reasoning system, providing
facilities for retracting state changes in the scene representation that had
resulted from previous envisionments.

5.3.3 Unfastening Problems

The initial goal of this research, as mentioned in the introduction to the
thesis, was to find a technique for reasoning about unfastening. All unfas-
tening problems can be described at a basic level as the removal of a part in
an assembly into a position where its motion is unconstrained. The sliding
configuration and “free space” goals used for the above qualitative reasoning
systems were chosen as first steps in solving unfastening problems.

The main distinction between unfastening and the kind of planning prob-
lem discussed above is that fasteners normally involve a locking mechanism
which is interlocked with the object fastened. Real world fasteners usually
rely also on distortion of the fastener or fastened object. The stress result-
ing from this distortion, combined with friction, prevents the fastener or
fastened object from moving.

Reasoning about the separation of interlocked objects requires a combi-
nation of the sliding and path planning methods discussed above, together
with some enhancements — for example, a coarse boundary description of
interlocked objects shows their edges as overlapping (as in the “two combs”

108

example in the last chapter). Reasoning about such interlocking objects
would require a different approach to that used for coarse path planning,
since there is no question of the whole object fitting between via points.

The extension of these techniques to real world fasteners would also
require substantial additions to the qualitative representation used. Most
real world fasteners involve three dimensional features, in addition to non-
rigid behaviour. Another limitation is that motion in unfastening often
includes rotation in addition to translation.

These problems have been noted by others (see especially Sedas and
Talukdar [ST87]), and other treatments of fastening, whether using a qual-
itative approach or not, also tend to concentrate on two dimensional cases,
without rotation, and assuming rigid objects. It is clear that the number of
new issues involved in real world fastening mean that fastening analysis is
considerably more complex than the type of tasks addressed by my imple-
mentation. It is interesting to note, however, that this qualitative technique
has performance that is comparable to other systems addressing the same
problem, while offering a number of advantages over those systems. These
advantages are discussed further in the next chapter.

109

Chapter 6

Conclusions

The qualitative spatial reasoning methods described in this thesis can be
evaluated from two different points of view. The first is the field of qualita-
tive physics, where the significance of these methods lie in the fact that they
can do things other qualitative reasoning systems cannot do. The second
is the field of robotics, where the significance of the methods is that they
provide new techniques for the type of reasoning that robots usually do.

From either point of view, it is necessary to define some criteria by
which the usefulness of a new representation or reasoning method can be
evaluated. This concluding chapter is divided into two main sections, each
of which discusses the qualitative spatial reasoning methods in terms of
a different set of evaluation criteria; the first section considers qualitative
reasoning systems, and the second, robot reasoning systems.

6.1 Evaluating Spatial Qualitative Reasoning

Spatial reasoning, as a very basic human ability, has always been a priority in
the investigation of Al reasoning systems. Hayes identified spatial reasoning
as a particularly important component of the Naive Physics project, and
spatial domains have often been chosen for experimental Qualitative Physics
systems. This consensus on the importance of qualitative spatial reasoning
has not, however, resulted in many qualitative systems that have general
purpose spatial reasoning abilities.

The issue that most clearly separates the requirements of spatial reason-
ing from previous research in qualitative reasoning is the representation of
state. Qualitative physics systems reason about their domains by identify-

110

ing and forecasting changes of state in a network of discrete devices. It is
difficult to describe general motion in terms of change of state in a network,
because free space is continuous, not discrete. Previous approaches to state-
based qualitative spatial reasoning have involved the division of free space
into a network of “discrete” regions, abstraction of physical devices so that
they can be represented simply as linked nodes, or simplification of motion
to mean only transitions between previously identified contact states.

Existing qualitative spatial reasoning systems have usually incorporated
a preprocessing stage which uses conventional numeric techniques to deter-
mine possible qualitative motion states. The qualitative part of the system
then analyses the dynamics of this qualitative description. The disadvantage
of this technique is that the qualitative part of the system does not have
direct access to a description of the scene geometry. The range of problems
addressed by qualitative physics shows the consequences of using state in-
formation that does not include geometry — they can easily represent the
processes involved in a mechanism (energy transfer, change of state), but
they cannot reason about the simpler concepts of relative motion and con-
straint.

The partial distance ordering/extended polygon boundary representa-
tion of shape and position is a purely qualitative representation — it includes
no quantitative information at all. It is at least as powerful for spatial
description as the representations that have previously been used by quali-
tative reasoning systems in spatial domains. To illustrate this, the following
section discusses three well-known domains for qualitative spatial reason-
ing, and shows how the PDO/EPB representation could be used in those
domains.

6.1.1 Using PDO/EPB in Domains from Other Projects

In the roller coaster domain, motion of a block over the roller coaster can
be described in the same terms as the sliding problem presented in the last
chapter. The shape of the roller coaster, including discontinuities, can be
represented as an extended polygon boundary. Relative slope of segments
of the roller coaster can also be described. State can be represented, as in
de Kleer’s system, as a combination of qualitative position on a particular
segment of the roller coaster, and direction of motion. The only further infor-
mation required to predict future motion is a representation of the external
force acting on the system — gravity. In de Kleer’s system, gravity is implicit
in the representation, but a reasoning system acting on the PDO/EPB rep-

111

resentation could explicitly include gravity as an influence that encourages
closer proximity to the ground.

In the bouncing ball domain, it would also be necessary to include an
explicit description of gravity — Forbus’ representation includes gravity as
an implicit direction. The PDO/EPB representation can describe a moving
object with real size and shape (whereas the bouncing ball in FROB is just
a point mass), and it can describe flying, sliding, and collision, just as For-
bus’ system does (motions like these are all discussed in the last chapter as
ways of avoiding obstacles). The main advantage of this representation over
the one used by Forbus is that it can describe change of qualitative state
in the position of the ball without dividing space into problem-specific dis-
crete regions. State change could be expressed in terms of changing relative
proximity rather than absolute position, and this enables facilities such as
describing the relative state of two bouncing balls, rather than just a single
ball in a static world.

In the “mechanism world”, other qualitative analysis systems can de-
scribe only the motion of objects which are in contact. The PDO/EPB
representation can be used to describe both motion in free space, and mo-
tion of objects in contact. The advantages of describing relative position
globally are again apparent here, where the state of a mechanism may be
a function of many individual parts in relative motion. This representa-
tion could therefore provide a basis for more general qualitative analysis of
mechanisms, but it would have to be extended to include the influence of
moving objects on other objects which they are in contact with. Such an
extension could involve a qualitative version of the mechanics of pushing as
analysed by Mason [Mas86]. The PDO/EPB representation does not pro-
vide the process description of energy transfer which is the central part of
most mechanism analysis systems.

The facilities provided by the PDO/EPB representation can be used to
carry out the spatial reasoning tasks associated with other qualitative rea-
soning systems that operate in these various spatial domains. The PDO/EPB
methods do not require the use of a numeric preprocessing stage to carry out
geometric analysis of possible motion and constraint, and the representation
retains much of the spatial content of the scene — the scene geometry is not
reduced to a discrete network.

112

6.1.2 General Evaluation of a Qualitative Representation

One of the main goals in developing the representation described in this
thesis was to carry out spatial reasoning without any numerical geometric
processing, and without reducing the spatial content of sensory information.
The methods described in the last two chapters are successful to the degree
that they can perform some reasoning of this type, but it is also necessary to
evaluate whether they provide new capabilities when compared to existing
systems, and how useful they can be in more general applications.

The evaluation of general purpose representations is not easy in any area,
of computer application, because it is difficult to separate considerations that
apply uniquely to a given problem or domain from those that apply to any
problem. In practice, such evaluation can only be carried out by testing the
representation in a range of systems. The following list proposes a number
of evaluation criteria which are important features of a good qualitative
representation, but this list cannot be exhaustive until substantially more is
known about qualitative reasoning.

Some evaluation criteria for a qualitative representation are:

1. What new facilities does the representation provide?

2. How wide is its application domain?

3. Does it seem to be intuitively accurate?

4. Can it be related to a known body of theory?

5. Is it consistent with other qualitative methods?

6. How does it perform in comparison to conventional methods?

7. Does it allow the integration of numeric information when necessary?
8. Is it easy to match and compare descriptions of states?

9. Is it easy to match and compare descriptions of processes?

When considered in terms of these criteria for evaluating qualitative
representations, the following points can be noted about the PDO/EPB
representation:

113

PDO/EPB provides new qualitative methods for representing shape
and relative position of objects. It can be used for spatial reasoning
at a level that gives the reasoning system direct access to the scene
description data in qualitative form. The description is at a level that
is close to sensory data, and therefore includes no implicit functional
information — from a qualitative point of view, it is purely a structural
description.

PDO/EPB is applicable in its present form to any two dimensional spa-
tial reasoning problem. It can be used to plan and predict the effects
of motion, but cannot directly represent information about process or
influence.

The extended polygon boundary description is a more intuitive way of
describing an object boundary than methods which do not decompose
shape into qualitative elements. As a description of objects in general,
it does not really correspond to our intuitive impressions as well as the
ASSF scheme — humans seem to deal with complete objects in terms of
mass and area, rather than boundaries. The representation of relative
position in terms of proximity is very intuitive.

The type of geometry employed by a reasoning system that uses PDO/EPB
is more similar to Euclidean geometry than Cartesian geometry. Most
computational geometry systems employ Cartesian representations, so
Cartesian geometry is more familiar in computer applications. There

is, however, a large body of geometry theory that uses non-numeric
Euclidean methods. Descriptions of shape in terms of changing prox-
imity can make use of such methods.

The PDO/EPB representation provides a two dimensional analogue to
the quantity space by the use of the proximity ordering. For reasoning
about motion and constraint, proximity is an important “quantity”.
There are no “distinguished points” in the proximity quantity space, so
it is constructed as a partial ordering for each scene, with no absolute
values. The angle representation currently uses a simple linear quan-
tity space. The types of operation carried out in both the direction
and proximity spaces are normal qualitative reasoning techniques.

The performance of the PDO/EPB representation in comparison to
conventional numeric techniques is discussed in more detail in the next
section, where conventional spatial reasoning methods for robots are

114

reconsidered. The qualitative methods are advantageous when data is
inexact or missing, while a system with access to exact numeric data
is able to solve many problems that a purely qualitative system could
not.

Numeric information can be integrated into the partial distance or-
dering, as discussed in chapter 4. Using a partial distance ordering
with integrated numeric data would allow a reasoning system to use
numeric techniques wherever approriate. Flow of information between
numeric and qualitative reasoning components could be achieved by
creating or adjusting entries in the ordering.

The qualitative state of a system under analysis is described solely by
the proximity ordering. Changes in state resulting from perturbations
to the system (motion of objects) are reflected in a new partial distance
ordering. The system described in the previous chapter is able to carry
out an envisionment process by postulating future states that can arise
from the current one. State matching or comparison can be carried out
simply by extracting a subset of the ordering that relates to objects
of interest. The sliding system actually carried out state matching for
recurring contact states across the whole global contact set.

The reasoning system based on the PDO/EPB representation that is
described in the last chapter maintains no explicit record of process.
Process could be described as a sequence of states, but the process
record would be completely implicit, making it very difficult to com-
pare different processes. Explicit representation of process and influ-
ence, which are basic parts of qualitative physics, must be added as
a different level of reasoning to the analysis of motion and constraint
that can be carried out with PDO/EPB.

In summary, the PDO/EPB representation has most of the features that

are expected of a representation for qualitative reasoning, and it can be
applied to problems that have been used in the past to test qualitative spatial
reasoning. It is able to answer a range of questions about object motion
without making use of numeric data, by retaining geometric information in
its qualitative scene description.

Although it is unable to explicitly represent influence or process (and

cannot therefore be called a complete qualitative physics system), it does
support a description of qualitative system state. The strategies used for

115

problem solving using the representation seem intuitive and natural to hu-
mans, which make them a good basis for “commonsense” reasoning systems.

6.2 Evaluating Qualitative Robot Reasoning

Very few attempts have been made (to date) to perform robot reason-
ing tasks using qualitative methods. Robot controllers receive information
about the world in a numeric form from sensors, and they must supply pre-
cise numeric information in order to position and control actuators. Most
established algorithms for analysing either sensory information or proposed
motion are purely numeric, and most robots are programmed numerically
(although the numeric nature of the program may be hidden from the pro-
grammer by the use of symbolic programming languages, or data capture
devices such as “teach pendants”).

One of the few examples of an application in which a qualitative rep-
resentation was used in a robot context is Burger and Bhanu’s system for
qualitative motion understanding [BB87]. The qualitative representation
used here was the output format of a sensory system which filtered infor-
mation gathered by a vehicle moving over outdoor landscapes. The use of
the term “qualitative” here implied mainly that the level of detail in the
description is similar to that used by people — the system did not carry out
qualitative reasoning of the type performed by qualitative physics systems.

There are no qualitative robot reasoning systems which can be used
as a direct basis for comparison when evaluating the application of the
PDO/EPB representation to robot reasoning, but the cases on which the
PDO/EPB representation was tested (described in the last chapter) are very
similar to some cases used to test experimental robot planning systems. One
example is the disassembly planner described by Sedas and Talukdar [ST87].
This system plans how to remove components of an assembly from a con-
strained position into free space — essentially the same as the path planning
problem formulation described in the last chapter. The PDO/EPB based
system essentially solves the same problem, but does so without making use
of numeric information.

There are three major advantages that the qualitative spatial reasoning
methods presented in this thesis might provide when applied to robot prob-
lems. These are: the ability to operate with incomplete information, the
ability to degrade gracefully, and the ability to support spatial reasoning
at a level which is easily related to human problem solving. The following

116

three sections briefly discuss each of these.

6.2.1 Reasoning with Incomplete Information

Incomplete information should preferably be ignored during problem solv-
ing unless the missing information is necessary to solve the problem. The
PDO/EPB representation provides for unkown information to be “hidden”
(and thereby ignored) by the use of multiple levels of detail. Areas of a
boundary which are irrelevant to a problem can be described extremely
coarsely — perhaps just as a “wiggle”.

In the case where information is incomplete, but the missing quantities
are required for the problem solution, the system must be able to hypothe-
sise a constrained range of values for the unknown quantity. This ability was
explained in the discussion of determination of fit in the path planning sys-
tem. An unknown magnitude, whether a calculated “synthetic” magnitude
or simply one that could not be measured, can be represented in the par-
tial distance ordering as being completely unconstrained. The qualitative
reasoning system can then make use of a repertoire of qualitative geometry
techniques for constraining the value.

There are few conventional robot reasoning systems which are as readily
able to operate with incomplete information. Firstly, numeric values are
represented either as having a known value, or not having a value: there is
no way of offering varying levels of detail to cover an intermittent lack of
fine resolution. Secondly, if a hypothetical value is assigned to an unknown
quantity, most systems cannot represent it as a range of plausible values, or
even distinguish it from exact (measured) quantities. Some solid modelling
systems do include facilities for representing tolerance information [RC86],
and at least one robot motion planning system accounts for errors in part
measurements or robot motion [Bro82a], but these numerical methods do
not apply to as wide a range of problems as the PDO/EPB method.

The ability to operate with incomplete information can be useful in plan-
ning and control tasks if information cannot be obtained (for instance, the
example given in the introduction: a partly hidden key which must be with-
drawn by making use of a hypothetical description of the hidden portion).
The ability to operate with hypothetical data is also an important facility
in design tasks — the use of a partial distance ordering allows a designer
to specify any (or no) constraints on an unknown value, and then continue
normal operations as if the value had been specified exactly. A qualitative
geometric reasoning system would be able to notify the designer as soon as

117

the constraints became insufficient or over-restrictive.

6.2.2 Providing Graceful Degradation

In the event that there is insufficient information for a robot reasoning sys-
tem to continue with its task, it should be able to “degrade gracefully”.
There are several components to graceful degradation (which is actually an
objective for any well designed computer system):

e The system should still carry out any functions that can usefully be
performed in the situation.

e [t should inform its operators of the failure and suspected cause.

e [t should remain capable of normal operation if improved information
becomes available.

e Above all it should not “crash” or take incorrect actions.

There are graceful degradation facilities built into the PDO/EPB repre-
sentation — in particular the partial distance ordering itself, and the “vague
direction” handling features. In either directional or magnitude reasoning,
information of varying precision can be accomodated, and the system is al-
ways aware of the possibility that the information available may not be suf-
ficient. The system is able to distinguish between reasoning failures caused
by insufficient information, and failures for other reasons, because all the
qualitative geometry functions can return tokens to represent “unknown” as
a valid result.

These facilities mean that the system can notify an operator of failure
resulting from incomplete information. It can continue reasoning as normal,
with the unknown token only propagating into areas that depend on the
missing value. When this value does become known it cannot automatically
be substituted back along the path where it was propagated (which might
be an ideal for recovery after graceful degradation), but the parts of the
reasoning process which need to be re-run can be directly identified.

Graceful degradation was one area in which the ASSF representation was
noticeably inferior to the PDO/EPB representation. Because it depended on
chains of relationships to establish relative positions or orientations of any
two parts, it was unable to continue reasoning if any piece of information
was missing. This handicap arose mainly because the way in which nu-
meric descriptions were converted to qualitative ones was clumsy (especially

118

the use of axis length to create local quantity spaces, and the axis-relative
location descriptions).

6.2.3 A Human Interface for Robot Programming

The ease with which a robot representation can be interpreted by humans is
particularly important when the robots are dependent on humans to do some
element of the reasoning involved in a task. This is not always considered in
discussions of artificial intelligence for robots, especially where hypothetical
autonomous robots (often anthropomorphic, and named “Robbie”) solve
problems that are normally only encountered by humans.

The majority of today’s robots do not however “reason” about their
workspace in any sense that we would recognise — they simply follow a
prescribed sequence of motions (in some cases they may also react to un-
expected events). A more realistic goal than the autonomous “Robbie” is
task-level programming (which is actually a proposed level of cooperation in
reasoning between a human and a robot) but even task-level programming
requires a wide range of reasoning ability. The reasoning requirements of
task-level programming include acquiring a description of the task from the
programmer, interpreting information about the workspace from sensory
information, planning actions, and using knowledge gained from previous
tasks.

Spatial representations for robots developed to date have generally been
specifically aimed at one of these functions. Programming representations
have been developed from computer aided design methods or from gen-
eral purpose computer languages, representations of sensory data have been
designed specifically for particular sensors or object matching tasks, and
motion planning systems have used ad hoc representations in order to apply
particular algorithms for geometric collision avoidance or pathfinding.

The PDO/EPB representation may be well suited for use in task-level
programming systems, for three reasons. Firstly, it describes things in a way
that seem natural to a programmer — the °
and to the left” operations are the way that we naturally describe qualitative
motion. Likewise, the description of shape seems natural to people — consider
the following extended polygon boundary description of a light bulb: “Most
of this shape is a circular curve, turning through about three-quarters of a
circle. Each end of the curve extends into a wiggly section; the wiggles are
parallel to each other. The last side is a complicated convex shape. It curves
inward on each side, and curves outward in the middle”. This description

‘move towards” or “move forward

119

is easy for a human to construct, and is sufficient for qualitative spatial
reasoning.

Secondly, the PDO/EPB representation can be used to reason about
motion down to the level of individual robot movements. This is the range
over which a unified representation is needed by systems such as Lozano-
Perez’s LAMA system. The robot movements are controlled according to
“motion strategies” (INSERT, for example, which defines a strategy for
inserting a cylinder into a round hole). The high level reasoning system
need not have any information regarding the low level strategies, other than
what effect they have. This is analagous to human motion — we plan our
actions qualitatively, but individual motions use local feedback information,
independent of that high level reasoning.

Thirdly, it would be possible to construct a PDO/EPB description di-
rectly from sensory data, so that a robot could update its internal repre-
sentation of the world during performance of a task. The EPB shape rep-
resentation is very similar to representations output by vision systems such
as Mackerras’ [Mac87b], and the proximity ordering transform can be car-
ried out directly on a stored image after edge filtering and polygon segment
identification.

The level of complexity in the qualitative PDO/EPB representation is
therefore appropriate to the kind of reasoning problems that arise when
a human must instruct a robot at the task level — that is, in human-like
terms. The intuitive nature of the PDO/EPB representation is therefore as
significant for robot applications as the advantages of graceful degradation,
and of operation with incomplete data during reasoning.

6.2.4 Robot Reasoning with PDO/EPB

The PDO/EPB representation is capable of supporting at least some basic
functions of a robot reasoning system; the path planning and sliding exam-
ples are typical (although simplified) problems in robotics. In solving these
problems, the system based on the PDO/EPB representation demonstrates
the ability to perform primitive qualitative reasoning about the effects of
moving objects in the physical world.

This representation is sufficient to solve the kind of problems that hu-
mans expect to be able to solve using qualitative techniques (without mea-
suring workpieces, for instance). Qualitative shape description is sufficient
for spatial reasoning to be carried out at the commonsense level at which
humans often operate, and it may therefore be sufficient for robot operation

120

to a human-like standard of performance.

The PDO/EPB representation was designed with robot applications in
mind, and it incorporates the facilities recommended for robot reasoning in
chapter 4. These facilities include reasoning in local contexts (decoupling
object relationships in the scene using the proximity transform), multiple
levels of detail (in the extended polygon boundary), and relative size de-
scription (in the partial distance ordering).

There are of course many limitations of qualitative techniques even when
compared to current robot control methods. The loss of accurate positional
information would not be acceptable for a robot that has any need to use
geometric motion analysis techniques for instance. The methods presented
also apply only to two dimensional cases; many three dimensional situations
can be reduced to two dimensional motion, but most robots, even at the
current level of robot technology, need to plan and operate in three dimen-
sions.

6.3 Summary

The main achievement of the research described in this thesis has been the
development of a representation to support qualitative spatial reasoning.
The three key elements of this representation are the qualitative extended
polygon boundary for shape description, the proximity transform for describ-
ing relative position, and the partial distance ordering for relating boundary
size and proximity information.

The extended polygon boundary is a simple and effective qualitative
description of shape, at a level which is easily constructed or interpreted
by humans. An EPB shape description can include multiple levels of detail
for individual portions of an object boundary, or for complete objects. The
basic elements of the EPB description could be provided directly from a
sensory system.

The proximity transform can extract useful qualitative information di-
rectly from two dimensional data describing a scene at a sensory (pixel or
edge detection) level. It provides a basis for a quantity space which can
describe two dimensional relative position and orientation. The distinction
between “internal” and “external” proximity provides a consistent way of
comparing shape to position.

The partial ordering is a well established technique for use in qualitative
reasoning systems (although the quantity space is more often used in qualita-

121

tive physics). The application of a partial ordering to distance information,
allowing the comparison of proximity information to object size, results in
the partial distance ordering. This ordering has many important benefits for
robust reasoning. The consistent treatment of feature size, distance between
objects, and “synthetic” quantities resulting from geometric constructions,
simplifies the implementation of qualitative geometric reasoning functions.

A qualitative proximity description of a scene constitutes a qualitative
description of a unique state — a combination of objects in known relative
positions. This state description can be used for envisionment purposes,
without requiring any division of space into discrete regions. Envisionment
of future states resulting from motion can be used for spatial reasoning
problems such as path planning.

As a planning system, qualitative methods based on the PDO/EPB rep-
resentation can carry out some tasks that are required in robot reasoning.
The robust nature of the qualitative geometric reasoning provides the ad-
vantages for robotics of an ability to reason with incomplete information,
and graceful degradation of the overall reasoning system. The human-like
level at which this spatial reasoning is carried out gives it natural advantages
for applications where humans interact with robot reasoning systems (such
as task-level robot programming).

The PDO/EPB representation is a non-numeric technique for describing
and reasoning about shape, space, position and motion at a simple geometric
level. It has been developed together with qualitative spatial reasoning
programs that can solve simple, but useful problems in spatial reasoning. It
is an alternative approach to major reasoning tasks in qualitative mechanical
physics and in robotics.

6.4 Future Research Directions

A number of desirable extensions to the current implementation of the
PDO/EPB representation have been identified in the last two chapters.
These include:

e Inclusion of order of magnitude information, and even optional nu-
meric information, in the partial distance ordering.

e Partial ordering of angles, rather than using a simple quantity space.
e Integration of the system for reasoning about sliding (currently using

the ASSF representation) with the free space motion reasoning system.

122

e Extension to three dimensions.

The presently described reasoning system can also be extended to be-
come more useful either as a basis for qualitative physics, or for robotic
reasoning:

e As a qualitative physics system, it would require a more explicit rep-
resentation of process.

e A more complete investigation of qualitative reasoning as a basis for
task-level programming would be particularly interesting, but would
eventually require an interface to a real robot.

e The fastener analysis problems mentioned in the introduction to the
thesis as a challenge to current technology in robotics may well benefit
from qualitative reasoning, but fasteners, being real mechanical ob-
jects, could be more difficult to describe qualitatively than the “blocks
world” objects of my examples.

Qualitative spatial reasoning is a feasible approach to a number of prob-
lems in artificial intelligence. With further refinement, the methods de-
scribed in this thesis should prove useful to both robotics and qualitative
physics.

123

Appendix A

EPB/PDO Representation
Example

This appendix lists a complete description of a simple scene using the
EPB/PDO representation, implemented in LISP. The scene described has
been used as input for the path planning system. A scale drawing of the
scene, with labels showing how boundary elements have been named, is in
figure A.1.

The remainder of the appendix is a listing of the LISP representation.

124

Figure A.1: Scene for EPB/PDO Example (drawn to scale)

125

; The following code describes a scene with four objects in it,
; objects A,B,C and D.

; All atom names can be arbitrary, but for this example, they are
; named in the following mnemonic fashion:

; A segment atom is named with the object name, followed by a
; number; e.g. A3.

; A junction atom is named with the object name, followed by the
; numbers of the segments on either side; e.g. A3-4

; Object A has 14 sides, but can be regarded at coarser levels of
; detail, as represented by sides 15 to 20.

(putprop ’A ’ (A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
A11 A12 A13 A14 A15 A16 A17 A18 A19 A20
A1-2 A2-3 A3-4 A4-5 A5-6 A6-7 A7-8 A8-9 A9-10
A10-11"A11-12 A12-13 A13-14 A14-1 A15-16 A17-18 A18-19)

’boundary)
; Objects B and C have four sides, and D has six:

(putprop ’B ’(B1 B2 B3 B4 B1-2 B2-3 B3-4 B4-1) ’boundary)
(putprop ’C ’(C1 C2 C3 C4 C1-2 C2-3 C3-4 C4-1) ’boundary)
(putprop ’D ’(D1 D2 D3 D4 D5 D6 D1-2 D2-3 D3-4 D4-5
D5-6 D6-1)
’boundary)

; Note that default shape for a segment is a straight line

; (rather than curved or wiggly). No shape property therefore
; needs to be defined for a straight line, because assoc

; will return (curved nil), (wiggly nil) if the assoc list

; 1s empty.

; Segments on boundary of object A at the finest detail level:
(putprop ’Al ’A ’object)

(putprop ’Al ’segment ’type)

(putprop ’Al ’(A14-1) ’left)

(putprop ’Al ’(A1-2) ’right)

(putprop ’Al ’EQ9 ’equidistant)

(putprop ’A1 °(I1 I3 I4 I41 I46 I53) ’internal)

(putprop ’Al1 ’(E1) ’extermal)

(putprop ’A2 ’A ’object)
(putprop ’A2 ’segment ’type)
(putprop ’A2 ’(A1-2) ’left)
(putprop ’A2 ’(A2-3) ’right)
(putprop ’A2 ’EQ3a ’equidistant)
(putprop ’A2 ’(I8) ’internal)
(putprop ’A2 ’(E2) ’external)

(putprop ’A3 ’A ’object)
(putprop ’A3 ’segment ’type)
(putprop ’A3 ’(A2-3) ’left)

126

(putprop ’A3 ’(A3-4) ’right)

(putprop ’A3 ’EQl ’equidistant)

(putprop ’A3 ’(I9 I9a I9 I9c I10 I11 Illa I44 I50) ’internal)
(putprop ’A3 ’(E3) ’external)

(putprop ’A4 ’A ’object)

(putprop ’A4 ’segment ’type)

(putprop ’A4 ’(A3-4) ’left)

(putprop ’A4 ’(A4-5) ’right)

(putprop ’A4 ’EQ5 ’equidistant)

(putprop ’A4 ’(I13 I14 I39 I51) ’internal)
(putprop ’A4 ’(E4) ’external)

(putprop ’A5 ’A ’object)

(putprop ’A5 ’segment ’type)

(putprop ’A5 ’(A4-5) ’left)

(putprop ’A5 ’(A5-6) ’right)

(putprop ’A5 ’EQ2 ’equidistant)

; Ab has no internal proximities - it is down an alleyway
(putprop ’A5 ’(E5) ’external)

(putprop ’A6 ’A ’object)

(putprop ’A6 ’segment ’type)

(putprop ’A6 ’(A5-6) ’left)

(putprop ’A6 ’(A6-7) ’right)

(putprop ’A6 ’EQ3 ’equidistant)
(putprop ’A6 ’(I14 I38) ’internal)
(putprop ’A6 ’(E6 E7 E8 E29) ’external)

(putprop ’A7 ’A ’object)

(putprop ’A7 ’segment ’type)

(putprop ’A7 ’(A6-7) ’left)

(putprop ’A7 ’(A7-8) ’right)

(putprop ’A7 ’EQl ’equidistant)

(putprop ’A7 ’(I9c I28) ’internal)

; A7 has no external proximities - it is down an alleyway

(putprop ’A8 ’A ’object)
(putprop ’A8 ’segment ’type)
(putprop ’A8 ’(A7-8) ’left)
(putprop ’A8 ’(A8-9) ’right)
(putprop ’A8 ’EQla ’equidistant)
(putprop ’A8 ’(I18) ’internal)
(putprop ’A8 ’(E8) ’external)

(putprop ’A9 ’A ’object)
(putprop ’A9 ’segment ’type)
(putprop ’A9 ’(A8-9) ’left)
(putprop ’A9 ’(A9-10) ’right)
(putprop ’A9 ’EQ1 ’equidistant)
;internal and external alleyways

(putprop ’A10 ’A ’object)
(putprop ’A10 ’segment ’type)
(putprop ’A10 ’(A9-10) ’left)

127

(putprop ’A10 ’(A10-11) ’right)
(putprop ’A10 ’EQla ’equidistant)
(putprop ’A10 ’(I18) ’internal)
(putprop ’A10 ’(E10) ’external)

(putprop ’Al11 ’A ’object)

(putprop ’All ’segment ’type)

(putprop ’A11 ’(A10-11) ’left)

(putprop ’A11 ’(A11-12) ’right)

(putprop ’A11 ’EQ1l ’equidistant)

(putprop ’A11 ’(I3 I19 I4 I25) ’internal)

(putprop ’A12 ’A ’object)

(putprop ’A12 ’segment ’type)

(putprop ’A12 ’(A11-12) ’left)

(putprop ’A12 ’(A12-13) ’right)

(putprop ’A12 ’EQ3 ’equidistant)

(putprop ’A12 ’(I20) ’internal)

(putprop ’A12 ’(E10 E11 E6 E27) ’external)

(putprop ’A13 ’A ’object)

(putprop ’A13 ’segment ’type)
(putprop ’A13 ’(A12-13) ’left)
(putprop ’A13 ’(A13-14) ’right)
(putprop ’A13 ’EQ6 ’equidistant)
(putprop ’A13 ’(I1 I23) ’internal)
(putprop ’A13 ’(E12) ’external)

(putprop ’A14 ’A ’object)

(putprop ’Al14 ’segment ’type)

(putprop ’A14 ’(A13-14) ’left)

(putprop ’A14 ’>(A14-1) ’right)

(putprop ’A14 ’EQ10 ’equidistant)

(putprop ’A14 ’(I20 I21 I22 I8 I36 I43 I54) ’internal)
(putprop ’A14 ’(E13 E14) ’external)

; Junctions on boundary of object A at the fine detail level
(putprop ’A1-2 ’A ’object)
(putprop ’A1-2 ’junction ’type)
(putprop ’A1-2 ’((angle right)

(flex convex))

’shape)

(putprop ’A1-2 7 (A1) ’left)
(putprop ’A1-2 ?(A2) ’right)
(putprop ’A1-2 ’(I29) ’internal)
(putprop ’A1-2 ’(E15 El1ba) ’external)

(putprop ’A2-3 ’A ’object)
(putprop ’A2-3 ’junction ’type)
(putprop ’A2-3 ’((angle right)
(flex concave))
’shape)

128

(putprop
(putprop
(putprop
(putprop

(putprop
(putprop
(putprop

(putprop
(putprop
(putprop
(putprop

(putprop
(putprop
(putprop

(putprop
(putprop
(putprop
(putprop

(putprop
(putprop
(putprop

(putprop
(putprop
(putprop
(putprop

(putprop
(putprop
(putprop

(putprop
(putprop
(putprop
(putprop

(putprop
(putprop
(putprop

(putprop
(putprop
(putprop
(putprop

’A2-3
’A2-3
’A2-3
’A2-3
’A3-4
’A3-4
’A3-4

*(A2) ’left)

> (A3) ’right)

> (I22 I19 I45) ’internal)
’(E16) ’external)

’A ’object)

’junction ’type)

’((angle right)
(flex convex))

’shape)

’A3-4
’A3-4
’A3-4
’A3-4
’A4-5
’A4-5
’A4-5

> (A3) ’left)

> (A4) ’right)

> (I30) ’internal)

> (E17 E17a) ’external)

’A ’object)

’junction ’type)

’((angle right)
(flex convex))

’shape)

’A4-5
’A4-5
’A4-5
’A4-5
’A5-6
’A5-6
’A5-6

’ (A4 A16) ’left)

> (A5 A20) ’right)

> (I30 I31 I49) ’internal)
’(E18 E18a) ’external)

’A ’object)

’junction ’type)

’((angle right)
(flex convex))

’shape)

’A5-6
’A5-6
’A5-6
’A5-6
’A6-7
’A6-7
’A6-7

> (AB) ’left)

> (A6 A17) ’right)
’(I31) ’internal)
’(E19 E19a) ’external)

’A ’object)

’junction ’type)

’((angle right)
(flex concave))

’shape)

’A6-7
’A6-7
’A6-7
’A6-7
’AT-8
’AT-8
’AT-8

’(A6) ’left)

> (A7) ’right)

>(I10 I13 I37) ’internal)
> (E20) ’external)

’A ’object)

’junction ’type)

’((angle right)
(flex concave))

’shape)

’AT-8
’AT-8
YAT-8
YAT-8

* (A7) ’left)

> (A8) ’right)

> (I9b I27 I32) ’internal)
> (E20) ’external)

129

(putprop
(putprop
(putprop

(putprop
(putprop
(putprop
(putprop

(putprop
(putprop
(putprop

(putprop
(putprop
(putprop
(putprop

(putprop
(putprop
(putprop

(putprop
(putprop
(putprop
(putprop

(putprop
(putprop
(putprop

(putprop
(putprop
(putprop
(putprop

(putprop
(putprop
(putprop

(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop

’A8-9 ’A ’object)

’A8-9 ’junction ’type)

’A8-9 ’((angle right)
(flex convex))

’shape)

’A8-9 ’(A8) ’left)

’A8-9 ’(A9) ’right)

’A8-9 ’(I33) ’internal)

’A8-9 ’(E7) ’external)

’A9-10 ’A ’object)
’A9-10 ’junction ’type)
’A9-10 ’ ((angle right)
(flex convex))
’shape)
’A9-10 ’(A9) ’left)
7A9-10 ’(A10) ’right)
’>A9-10 ’(I33) ’internal)
’A9-10 ’(E11) ’external)

’A10-11 ’A ’object)
’A10-11 ’junction ’type)
’A10-11 ’ ((angle right)
(flex concave))
’shape)
’A10-11 ’ (A10) ’left)
’A10-11 ’(A11) ’right)
’A10-11 ’(I9a I26 I32) ’internal)
’A10-11 ’ (E21) ’external)

’A11-12 ’A ’object)
’A11-12 ’junction ’type)
’A11-12 ’((angle right)
(flex concave))
’shape)
’A11-12 7 (A11) ’left)
’A11-12 7 (A12) ’right)
’A11-12 ’ (I3 I21 I24) ’internal)
’A11-12 ’ (E21) ’external)

’A12-13 ’A ’object)
’A12-13 ’junction ’type)
’A12-13 ’((angle right)
(flex convex))
’shape)
’A12-13 ’ (A12 A19) ’left)
’A12-13 *(A13) ’right)
’A12-13 ’(I34) ’internal)
’A12-13 ’(E22 E19a) ’external)
’A13-14 ’A ’object)
’A13-14 ’junction ’type)
’A13-14 ’((angle right)

(flex convex))
’shape)

130

(putprop ’A13-14 °(A13 A20) ’left)
(putprop ’A13-14 ’(A14) ’right)
(putprop ’A13-14 ’(I34 I35) ’internal)
(putprop ’A13-14 ’(E23 E23a) ’external)

(putprop ’A14-1 ’A ’object)
(putprop ’A14-1 ’junction ’type)
(putprop ’A14-1 ’((angle right)

(flex convex))

’shape)

(putprop ’A14-1 ’(A14) ’left)
(putprop ’A14-1 > (Al A15) ’right)
(putprop ’A14-1 (I35 I29 I48) ’internal)
(putprop ’A14-1 ’(E24) ’external)

E Segments on boundary of object A at coarse detail levels:

(putprop ’A15 ’A ’object)
(putprop ’A15 ’segment ’type)
(putprop ’A15 ’(A14-1) ’left)
(putprop ’A15 ’(A15-16) ’right)
(putprop ’A15 ’EQ10 ’equidistant)

(putprop ’A15 ’(I23 I24 I25 I26 I27 128 I42 I47 I55)

(putprop ’A15 ’(E25) ’external)

(putprop ’A16 ’A ’object)

(putprop ’A16 ’segment ’type)

(putprop ’A16 ’(A15-16) ’left)

(putprop ’A16 ’(A4-5) ’right)

(putprop ’A16 ’EQ10 ’equidistant)

(putprop ’A16 ’(I36 I37 I38 I40 I52) ’internal)
(putprop ’A16 ’(E26) ’external)

(putprop ’A17 ’A ’object)

(putprop ’A17 ’segment ’type)
(putprop ’A17 ’(A5-6) ’left)
(putprop ’A17 ’(A17-18) ’right)
(putprop ’A17 ’EQla ’equidistant)
(putprop ’A17 ’(I39 I40) ’internal)
(putprop ’A17 ’>(E27 E28) ’external)

(putprop ’A18 ’A ’object)

(putprop ’A18 ’segment ’type)
(putprop ’A18 ’(A17-18) ’left)
(putprop ’A18 ’(A18-19) ’right)
(putprop ’A18 ’EQ2 ’equidistant)
(putprop ’A18 ’(I41 I42) ’internal)
; In an alleyway - no externals

(putprop ’A19 ’A ’object)
(putprop ’A19 ’segment ’type)
(putprop ’A19 ’(A18-19) ’left)
(putprop ’A19 ’(A12-13) ’right)

131

’internal)

(putprop ’A19 ’EQla ’equidistant)
(putprop ’A19 ’(I43) ’internal)
(putprop ’A19 ’(E29 E28) ’external)

(putprop ’A20 ’A ’object)

(putprop ’A20 ’segment ’type)

(putprop ’A20 ’(A4-5) ’left)

(putprop ’A20 ’(A13-14) ’right)

(putprop ’A20 ’EQ10 ’equidistant)

(putprop ’A20 ’(I44 I45 I46 I47) ’internal)
(putprop ’A20 ’(E30) ’external)

> .
; Junctions that occur between coarse segments only:
H

(putprop ’A15-16 ’A ’object)
(putprop ’A15-16 ’junction ’type)
(putprop ’A15-16 ’((angle right)

(flex convex))

’shape)

(putprop ’A15-16 ’(A15) ’left)
(putprop ’A15-16 ’(A16) ’right)
(putprop ’A15-16 ’(I48 I49) ’internal)
(putprop ’A15-16 ’(E31 E3la) ’external)

(putprop ’A17-18 ’A ’object)
(putprop ’A17-18 ’junction ’type)
(putprop ’A17-18 ’((angle right)

(flex concave))

’shape)

(putprop ’A17-18 ’(A17) ’left)
(putprop ’A17-18 ’(A18) ’right)
(putprop ’A17-18 ’(I50 I51 I52) ’intermal)
(putprop ’A17-18 ’(E32) ’external)

(putprop ’A18-19 ’A ’object)
(putprop ’A18-19 ’junction ’type)
(putprop ’A18-19 ’((angle right)

(flex concave))

’shape)

(putprop ’A18-19 ’(A18) ’left)
(putprop ’A18-19 ’(A19) ’right)
(putprop ’A18-19 ’(I50 I51 I52) ’internal)
(putprop ’A18-19 ’(E32) ’external)

132

E The following is a description of shape B:
’

(putprop ’Bl ’B ’object)
(putprop ’Bl ’segment ’type)
(putprop ’B1l ’(B4-1) ’left)
(putprop ’Bl ’(B1-2) ’right)
(putprop ’Bl ’EQ20 ’equidistant)
(putprop ’B1l ’(I56) ’internal)

(putprop ’B2 ’B ’object)
(putprop ’B2 ’segment ’type)
(putprop ’B2 ’(B1-2) ’left)
(putprop ’B2 ’(B2-3) ’right)
(putprop ’B2 ’EQ4 ’equidistant)
(putprop ’B2 ’(I57) ’internal)

(putprop ’B3 ’B ’object)

(putprop ’B3 ’segment ’type)

(putprop ’B3 ’(B2-3) ’left)

(putprop ’B3 ’(B3-4) ’right)

(putprop ’B3 ’EQ20 ’equidistant)

(putprop ’B3 ’(I56) ’internal)

(putprop ’B3 ’(E33 E34 E35 E17 E31 E25 E16 E15 E1 E24 E37 E38 E39)
’external)

(putprop ’B4 ’B ’object)
(putprop ’B4 ’segment ’type)
(putprop ’B4 ’(B3-4) ’left)
(putprop ’B4 ’(B4-1) ’right)
(putprop ’B4 ’EQ4 ’equidistant)
(putprop ’B4 ’(I57) ’internal)

(putprop ’B1-2 ’B ’object)
(putprop ’B1-2 ’junction ’type)
(putprop ’B1-2 ’((angle right)

(flex convex))

’shape)

(putprop ’B1-2 ’(B1) ’left)
(putprop ’B1-2 ’(B2) ’right)
(putprop ’B1-2 ’(I58 I59) ’internal)

(putprop ’B2-3 ’B ’object)
(putprop ’B2-3 ’junction ’type)
(putprop ’B2-3 ’((angle right)

(flex convex))

’shape)

(putprop ’B2-3 ?(B2) ’left)
(putprop ’B2-3 ?(B3) ’right)
(putprop ’B2-3 ’(I59 I60) ’internal)
(putprop ’B2-3 ’(E40) ’external)

(putprop ’B3-4 ’B ’object)
(putprop ’B3-4 ’junction ’type)

133

(putprop

(putprop
(putprop
(putprop
(putprop

(putprop
(putprop
(putprop

(putprop
(putprop
(putprop

; The following is a

(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop

(putprop
(putprop
(putprop
(putprop
(putprop
(putprop

(putprop
(putprop
(putprop
(putprop
(putprop
(putprop

(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop

’B3-4 ’((angle right)

’shape)

(flex convex))

'B3-4 ’(B3) ’left)
'B3-4 ’(B4) ’right)

’B3-4 ’(I60 I61)

’B3-4 ’(E41) ’external)
’B4-1 ’B ’object)

’B4-1 ’junction ’type)
’B4-1 ’ ((angle right)

’shape)

(flex convex))

’B4-1 ’(B4) ’left)
’B4-1 ’(B1) ’right)
’B4-1 ’(I58 I61) ’internal)

’C1 ’C ’object)

’Cl ’segment ’type)

’C1 7 (C4-1) ’left)

’C1 ’(C1-2) ’right)

’C1 ’EQ10 ’equidistant)
’C1 ’(I62) ’internal)
’C1 ’(E33) ’external)

’C2 ’C ’object)

’C2 ’segment ’type)

’C2 ’(C1-2) ’left)

702 7 (C2-3) ’right)

’C2 ’EQ17 ’equidistant)
’C2 ’(I63) ’internal)

’C3 ’C ’object)

’C3 ’segment ’type)

’C3 ’(C2-3) ’left)

’C3 ’(C3-4) ’right)

’C3 ’EQ10 ’equidistant)
’C3 ’(I62) ’internal)
’C4 ’C ’object)

’C4 ’segment ’type)

’C4 ’(C3-4) ’left)

’C4 ’(C4-1) ’right)

’C4 ’EQ17 ’equidistant)

’C4 ’(I63) ’internal)

’C4 ’ (E42 E43 E44 E18a E26 E4 El17a E3la El5a)

’C1-2 ’C ’object)
’C1-2 ’junction ’type)
’C1-2 ’((angle right)

’shape)

(flex convex))

’internal)

description of shape C:

134

’external)

(putprop ’C1-2 ’(C1) ’left)

(putprop ’C1-2 ’(C2) ’right)
(putprop ’C1-2 ’(I64 I65) ’internal)
(putprop ’C1-2 ’(E40) ’external)

(putprop ’C2-3 ’C ’object)
(putprop ’C2-3 ’junction ’type)
(putprop ’C2-3 ’((angle right)

(flex convex))

’shape)

(putprop ’C2-3 7(C2) ’left)
(putprop ’C2-3 ’(C3) ’right)
(putprop ’C2-3 ’(I65 I66) ’internal)

(putprop ’C3-4 ’C ’object)
(putprop ’C3-4 ’junction ’type)
(putprop ’C3-4 ’((angle right)

(flex convex))

’shape)

(putprop ’C3-4 ’(C3) ’left)
(putprop ’C3-4 ’(C4) ’right)
(putprop ’C3-4 ’(I66 I67) ’internal)
(putprop ’C3-4 ’(E45) ’external)

(putprop ’C4-1 ’C ’object)
(putprop ’C4-1 ’junction ’type)
(putprop ’C4-1 ’((angle right)

(flex convex))

’shape)

(putprop ’C4-1 ’(C4) ’left)
(putprop ’C4-1 ’(C1) ’right)
(putprop ’C4-1 ’(I64 1I67) ’internal)
(putprop ’C4-1 ’(E34) ’external)

; The following is a description of shape D:

’

(putprop ’D1 ’D ’object)
(putprop ’D1 ’segment ’type)
(putprop ’D1 ’(D6-1) ’left)
(putprop ’D1 ’(D1-2) ’right)
(putprop ’D1 ’EQ4 ’equidistant)
(putprop ’D1 ’(I68) ’internal)
(putprop ’D1 ’(E39) ’external)

(putprop ’D2 ’D ’object)

(putprop ’D2 ’segment ’type)

(putprop ’D2 ’(D1-2) ’left)

(putprop ’D2 ’(D2-3) ’right)

(putprop ’D2 ’EQ14 ’equidistant)
(putprop ’D2 ’(I69) ’internal)
(putprop ’D2 ’(E13 E23 E44) ’external)

(putprop ’D3 ’D ’object)
(putprop ’D3 ’segment ’type)

135

(putprop
(putprop
(putprop
(putprop
(putprop

(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop

(putprop
(putprop
(putprop
(putprop
(putprop
(putprop

(putprop
(putprop
(putprop
(putprop
(putprop
(putprop

(putprop
(putprop
(putprop

(putprop
(putprop
(putprop
(putprop

(putprop
(putprop
(putprop

(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop

(putprop
(putprop

’D3 ’(D2-3) ’left)

'D3 ’(D3-4) ’right)

’D3 ’EQ15a ’equidistant)

’D3 ?(I70) ’internal)

’D3 ?(E37 E12 E22 E19 E5) ’external)

’D4 ’D ’object)

’D4 ’segment ’type)
’D4 > (D3-4) ’left)

’D4 ’ (D4-5) ’right)
’D4 ’EQ4 ’equidistant)
’D4 ’(I71) ’internal)
’D4 ’ (E42) ’external)

’D5 ’D ’object)

’D5 ’segment ’type)

’D5 ’(D4-5) ’left)

'D5 ’ (D5-6) ’right)

’D5 ’EQ16a ’equidistant)
’D5 ’(I68 I70) ’internal)

’D6 ’D ’object)

’D6 ’segment ’type)

’D6 ’(D5-6) ’left)

'D6 ’ (D6-1) ’right)

’D6 ’EQ15 ’equidistant)
’D6 ’(I69 I71) ’internal)

’D1-2 ’D ’object)
’D1-2 ’junction ’type)
’D1-2 ’((angle right)

(flex convex))
’shape)
’D1-2 (D1) ’left)
'D1-2 ’(D2) ’right)
’D1-2 ’(I72) ’internal)
’D1-2 ’(E38 E14) ’extermnal)

’D2-3 ’D ’object)

’D2-3 ’junction ’type)

’D2-3 ’ ((angle right)
(flex concave))

’shape)

’D2-3 ’(D2) ’left)

’D2-3 ’(D3) ’right)

’D2-3 ’(I73) ’internal)

’D2-3 ’(E23a) ’external)

’D3-4 ’D ’object)

’D3-4 ’junction ’type)

’D3-4 ’ ((angle right)
(flex convex))

’shape)

’D3-4 ’(D3) ’left)

’D3-4 ’(D4) ’right)

136

(putprop
(putprop

(putprop
(putprop
(putprop

(putprop
(putprop
(putprop
(putprop

(putprop
(putprop
(putprop

(putprop
(putprop
(putprop

(putprop
(putprop
(putprop

(putprop
(putprop
(putprop
(putprop

’D3-4 ’(I74) ’internal)
’D3-4 ’(E43) ’external)

’D4-5 ’D ’object)
’D4-5 ’junction ’type)
’D4-5 ’ ((angle right)

(flex convex))
’shape)
’D4-5 ’(D4) ’left)
’D4-5 ’(D5) ’right)
’D4-5 ’(I74 I75) ’intermnal)
’D4-5 ’(E45) ’external)

’D5-6 ’D ’object)
’D5-6 ’junction ’type)
’D5-6 ’((angle right)
(flex convex))
’shape)
’D5-6 ’(D5) ’left)
’D5-6 ’(D6) ’right)
’D5-6 ’(I73 I75 1I76) ’internal)

’D6-1 ’D ’object)
’D6-1 ’junction ’type)
’D6-1 ’ ((angle right)

(flex convex))
’shape)
’D6-1 ’(D6) ’left)
’D6-1 ’(D1) ’right)
’D6-1 ’(I76 I72) ’internal)
’D6-1 ’(E41) ’external)

137

Z Internal proximity pairs for the whole scene:
’

(setf I1 ’(A1 A13))
(setf I3 7 (A1 A11-12))
(setf I4 ’(A1 Al11))

(setf I8 ’(A2 A14))

(setf I9 ’(A3 Al11))
(setf I9a ’(A3 A10-11))
(setf I9b ’(A3 A7-8))
(setf I9¢c ’(A3 AT))
(setf I10 ’(A3 A6-7))
(setf I11 (A3 A18))
(setf Illa ’(A3 A17-18))

(setf I13 ’(A4 A6-7))
(setf I14 ’ (A4 A6))

(setf I18 ’(A8 A10))
(setf I19 ’(A11 A2-3))
(setf I20 ’(A12 A14))

(setf I21 ’(A14 A11-12))
(setf I22 ’(A14 A2-3))

(setf I23 ’(A15 A13))
(setf I24 ’(A15 A11-12))
(setf I25 ’(A15 Al1))
(setf I26 ’(A15 A10-11))
(setf I27 ’(A15 A7-8))
(setf I28 ’(A15 A7))

(setf I29 ’(A1-2 A14-1))
(setf 130 ’(A3-4 A4-5))
(setf I31 ’(A4-5 A5-6))
(setf I32 ’(A7-8 A10-11))
(setf I33 ’(A8-9 A9-10))
(setf I34 ’(A12-13 A13-14))
(setf I35 ’(A13-14 A14-1))

(setf I36 ’(A16 Al14))
(setf I37 ’(A16 A6-7))
(setf I38 ’(A16 A6))

(setf I39 ’(A17 A4))
(setf I40 ’(A17 A16))

(setf I41 ’(A18 Al))
(setf I42 ’(A18 A15))

(setf I43 ’(A19 A14))

(setf I44 ’(A20 A3))
(setf I45 ’(A20 A2-3))

138

(setf I46 ’(A20 A1))
(setf I47 ’(A20 A15))

(setf I48 ’(A15-16 A14-1))
(setf I49 ’(A15-16 A4-5))

(setf I50 ’(A17-18 A3))
(setf I51 ’(A17-18 A4))
(setf I52 ’(A17-18 A16))

(setf I53 ’(A18-19 A1))
(setf I54 ’(A18-19 A14))
(setf I55 ’(A18-19 A15))

(setf 156 ’(B1 B3))
(setf I57 ’(B2 B4))

(setf I58 ’(B1-2 B4-1
(setf I59 ’(B1-2 B2-3
(setf I60 ’(B2-3 B3-4
(setf I61 ’(B3-4 B4-1

(setf I62 ’(C1 C3))
(setf I63 ’(C2 C4))

(setf I64 ’(C1-2 C4-1))
(setf I65 ’(C1-2 C2-3))
(setf I66 ’(C2-3 C3-4))
(setf 167 ’(C3-4 C4-1))
(setf 168 ’(D1 D5))
(setf I69 ’(D2 D6))
(setf I70 ’(D3 D5))
(setf I71 ’(D4 D6))

(setf I72 ’(D1-2 D6-1))
(setf I73 ’(D2-3 D5-6))
(setf I74 ’(D3-4 D4—5)g

)

NN
R g

(setf I75 ’(D4-5 D5-6)
(setf 176 ’(D5-6 D6-1)

E External proximity pairs:
’

(setf E1 ’(A1 B3))
(setf E2 (A2 C4))
(setf E3 ’(A3 B3))
(setf E4 (A4 C4))
(setf E5 ’ (A5 D3))
(setf E6 ’(A6 A12))
(setf E7 ’ (A6 A8-9))
(setf E8 ’ (A6 A8))
(setf E10 ’(A10 A12))
(setf E11 ’(A12 A9-10))
(setf E12 ’(A13 D3))
(setf E13 ’(A14 D2))
(setf E14 ’(A14 D1-2))
(setf E15 ’(A1-2 B3))
(setf Elba ’(A1-2 C4))
(setf E16 ’(A2-3 B3))
(setf E17 ’(A3-4 B3))

139

(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf

(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf

(setf
(setf
(setf
(setf

E17a ’(A3-4 C4))

E18 ’(A4-5 D3))

E18a ’(A4-5 C4))

E19 ’(A5-6 D3))

E19a ’(A5-6 A12-13))
E20 ’(A6-7 A7-8))

E21 ’(A10-11 A11-12))
E22 ’(A12-13 D3))

E23 ’(A13-14 D2))
E23a ’(A13-14 D2-3))
E24 ’(A14-1 B3))

E25 ’(A15 B3))

E26 ’(A16 C4))

E27 7 (A17 A12))

E28 ’(A17 A19))

E29 ’(A19 A6))

E30 ’(A20 D3))

E31 ’(A15-16 B3))
E31la ’(A15-16 C4))
E32 ’(A17-18 A18-19))

E33 ’(B3 C1))

E34 ’(B3 C4-1))
E35 ’(B3 D3-4))
E37 ’(B3 D3))

E38 (B3 D1-2))
E39 ’ (B3 D1))

E40 ’(B2-3 C1-2))
E41 ’(B3-4 D6-1))

E42 ’(C4 D4))

E43 ’(C4 D3-4))
E44 °(C4 D2))

E45 ’(C3-4 D4-5))

140

; sizes are equal:

E Equidistance lists define which proximities and segment
’
’

(setf

(setf
(setf
(setf

(setf
(setf
(setf

(setf
(setf
(setf
(setf
(setf
(setf

(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf

contact ’(E33 E34 E40))

EQ1

’(E8 E21 E10 E20 E7 E11 I33 I32 I18 A3 A7 A9 Al1))

EQla ’(A8 A10 A17 A19))

EQ2
EQ3

» (E32 E29 E27 E28 E19a E6 I14 I13 I31 I37 I38 I51
152 I40 I39 A5 A18))
» (E42 E43 E45 A6 A12))

EQ3a ’(I9 I9a I9 I9c I10 I19 I50 A2))

EQ4

EQ5
EQ6
EQ7
EQ8
EQ9
EQ10

EQ11
EQ12
EQ13
EQ14

»(I11 Illa I56 I59 I61 I69 I70 I72 I73 I74 E23 E13
E14 B2 B4 D1 D4))

»(I30 I45 I44 A4))

»(I34 I20 I21 I43 I54 A13))

» (I3 I4 I24 I25 I26 I27 I28))

»(I563 I55 I41 I42))

»(I22 I8 I29 Al))

»(I63 164 166 146 147 I48 I49 I36 I35 Il I23 El
E15 E24 E25 E31 A14 A15 A16 A20 C1 C3))

»(E3 E16 E17))

» (E38 E39 E41))

»(E30 E22 E19 E18 E12 E5 E23a))

»(E31a E26 E18a E17a E4 D2))

EQ14a ’(E2 El5a))

EQ15

» (176 168 D6))

EQ15a ’(D3))

EQ16

» (E37 E35 E44))

EQ16a ’(I71 I75 D5))

EQ17
EQ20

(167 165 162 C2 C4))
»(I60 I58 I57 Bl B3))

141

E Pointers from external proximity pairs to associated
; equidistance lists:
’

(putprop ’E33 ’contact ’equidistant)
(putprop ’E34 ’contact ’equidistant)
(putprop ’E40 ’contact ’equidistant)
(putprop ’E8 ’EQl ’equidistant)
(putprop ’E21 ’EQ1l ’equidistant)
(putprop ’E10 ’EQl ’equidistant)
(putprop ’E20 ’EQl ’equidistant)
(putprop ’E7 ’EQl ’equidistant)
(putprop ’E11 ’EQl ’equidistant)
(putprop ’E32 ’EQ2 ’equidistant)
(putprop ’E29 ’EQ2 ’equidistant)
(putprop ’E27 ’EQ2 ’equidistant)
(putprop ’E28 ’EQ2 ’equidistant)
(putprop ’E19a ’EQ2 ’equidistant)
(putprop ’E6 ’EQ2 ’equidistant)
(putprop ’E42 ’EQ3 ’equidistant)
(putprop ’E43 ’EQ3 ’equidistant)
(putprop ’E45 ’EQ3 ’equidistant)
(putprop ’E23 ’EQ4 ’equidistant)
(putprop ’E13 ’EQ4 ’equidistant)
(putprop ’E14 ’EQ4 ’equidistant)
(putprop ’El ’EQ10 ’equidistant)
(putprop ’E15 ’EQ10 ’equidistant)
(putprop ’E24 ’EQ10 ’equidistant)
(putprop ’E25 ’EQ10 ’equidistant)
(putprop ’E31 ’EQ10 ’equidistant)
(putprop ’E3 ’EQ11 ’equidistant)
(putprop ’E16 ’EQ11 ’equidistant)
(putprop ’E17 ’EQ11 ’equidistant)
(putprop ’E38 ’EQ12 ’equidistant)
(putprop ’E39 ’EQ12 ’equidistant)
(putprop ’E41 ’EQ12 ’equidistant)
(putprop ’E30 ’EQ13 ’equidistant)
(putprop ’E22 ’EQ13 ’equidistant)
(putprop ’E19 ’EQ13 ’equidistant)
(putprop ’E18 ’EQ13 ’equidistant)
(putprop ’E12 ’EQ13 ’equidistant)
(putprop ’E23a ’EQ13 ’equidistant)
(putprop ’E5 ’EQ13 ’equidistant)
(putprop ’E31a ’EQ14 ’equidistant)
(putprop ’E26 ’EQ14 ’equidistant)
(putprop ’E18a ’EQ14 ’equidistant)
(putprop ’El17a ’EQ14 ’equidistant)
(putprop ’E4 ’EQ14 ’equidistant)
(putprop ’E2 ’EQ14a ’equidistant)
(putprop ’El5a ’EQl4a ’equidistant)
(putprop ’E37 ’EQ16 ’equidistant)

142

(putprop ’E35 ’EQ16 ’equidistant)
(putprop ’E44 ’EQ16 ’equidistant)

; Pointers from internal proximity pairs to equidistance lists:
(putprop ’I33 ’EQl ’equidistant)
(putprop ’I32 ’EQ1 ’equidistant)
(putprop ’I18 ’EQ1 ’equidistant)
(putprop ’I14 ’EQ2 ’equidistant)
(putprop ’I13 ’EQ2 ’equidistant)
(putprop ’I31 ’EQ2 ’equidistant)
(putprop ’I37 ’EQ2 ’equidistant)
(putprop ’I38 ’EQ2 ’equidistant)
(putprop ’I51 ’EQ2 ’equidistant)
(putprop ’I52 ’EQ2 ’equidistant)
(putprop ’I40 ’EQ2 ’equidistant)
(putprop ’I39 ’EQ2 ’equidistant)
(putprop ’I9 ’EQ3a ’equidistant)
(putprop ’I9a ’EQ3a ’equidistant)
(putprop ’I9b ’EQ3a ’equidistant)
(putprop ’I9c ’EQ3a ’equidistant)
(putprop ’I10 ’EQ3a ’equidistant)
(putprop ’I19 ’EQ3a ’equidistant)
(putprop ’I50 ’EQ3a ’equidistant)
(putprop ’I11 ’EQ4 ’equidistant)
(putprop ’Illa ’EQ4 ’equidistant)
(putprop ’I56 ’EQ4 ’equidistant)
(putprop ’I59 ’EQ4 ’equidistant)
(putprop ’I61 ’EQ4 ’equidistant)
(putprop ’I69 ’EQ4 ’equidistant)
(putprop ’I70 ’EQ4 ’equidistant)
(putprop ’I72 ’EQ4 ’equidistant)
(putprop ’I73 ’EQ4 ’equidistant)
(putprop ’I74 ’EQ4 ’equidistant)
(putprop ’I30 ’EQ5 ’equidistant)
(putprop ’I45 ’EQ5 ’equidistant)
(putprop ’I44 ’EQ5 ’equidistant)
(putprop ’I34 ’EQ6 ’equidistant)
(putprop ’I20 ’EQ6 ’equidistant)
(putprop ’I21 ’EQ6 ’equidistant)
(putprop ’I43 ’EQ6 ’equidistant)
(putprop ’I54 ’EQ6 ’equidistant)
(putprop ’I3 ’EQ7 ’equidistant)
(putprop ’I4 ’EQ7 ’equidistant)
(putprop ’I24 ’EQ7 ’equidistant)
(putprop ’I25 ’EQ7 ’equidistant)
(putprop ’I26 ’EQ7 ’equidistant)
(putprop ’I27 ’EQ7 ’equidistant)
(putprop ’I28 ’EQ7 ’equidistant)
(putprop ’I53 ’EQ8 ’equidistant)
(putprop ’I55 ’EQ8 ’equidistant)

143

(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop

’T41
’T42
7122

’I29
’163
’164
’166
’146
1147
’148
’T49
’136
’I35

’EQ8 ’equidistant)
’EQ8 ’equidistant)
’EQ9 ’equidistant)
’I18 ’EQ9 ’equidistant)
’EQ9 ’equidistant)

’EQ10
’EQ10
’EQ10
’EQ10
’EQ10
’EQ10
’EQ10
’EQ10
’EQ10

’equidistant)
’equidistant)
’equidistant)
’equidistant)
’equidistant)
’equidistant)
’equidistant)
’equidistant)
’equidistant)

’I1 ’EQ10 ’equidistant)

’I23
*176
’168
’I67
’165
7162
171
’I75
’160
’158
»I57

’EQ10
’EQ15
’EQ15
YEQ17
YEQ17
YEQ17

’equidistant)
’equidistant)
’equidistant)
’equidistant)
’equidistant)
’equidistant)

’EQ16a ’equidistant)
’EQ16a ’equidistant)

’EQ20
’EQ20
’EQ20

’equidistant)
’equidistant)
’equidistant)

144

E Note that the name Inn rather than Enn does not yet

; mean anything. We still have to describe whether each
; proximity is internal or external:

’

(putprop ’I1 ’internal ’type)

(putprop ’I3 ’internal ’type)

(putprop ’I4 ’internal ’type)

(putprop ’I8 ’internal ’type)

(putprop ’I9 ’internal ’type)

(putprop ’I9a ’internal ’type)
(putprop ’I9b ’internal ’type)
(putprop ’I9c ’internal ’type)
(putprop ’I10 ’internal ’type)
(putprop ’I11 ’internal ’type)
(putprop ’Illa ’internal ’type)
(putprop ’I13 ’internal ’type)
(putprop ’I14 ’internal ’type)
(putprop ’I18 ’internal ’type)
(putprop ’I19 ’internal ’type)
(putprop ’I20 ’internal ’type)
(putprop ’I21 ’internal ’type)
(putprop ’I22 ’internal ’type)
(putprop ’I23 ’internal ’type)
(putprop ’I24 ’internal ’type)
(putprop ’I25 ’internal ’type)
(putprop ’I26 ’internal ’type)
(putprop ’I27 ’internal ’type)
(putprop ’I28 ’internal ’type)
(putprop ’I29 ’internal ’type)
(putprop ’I30 ’internal ’type)
(putprop ’I31 ’internal ’type)
(putprop ’I32 ’internal ’type)
(putprop ’I33 ’internal ’type)
(putprop ’I34 ’internal ’type)
(putprop ’I35 ’internal ’type)
(putprop ’I36 ’internal ’type)
(putprop ’I37 ’internal ’type)
(putprop ’I38 ’internal ’type)
(putprop ’I39 ’internal ’type)
(putprop ’I40 ’internal ’type)
(putprop ’I41 ’internal ’type)
(putprop ’I42 ’internal ’type)
(putprop ’I43 ’internal ’type)
(putprop ’I44 ’internal ’type)
(putprop ’I45 ’internal ’type)
(putprop ’I46 ’internal ’type)
(putprop ’I47 ’internal ’type)
(putprop ’I48 ’internal ’type)
(putprop ’I49 ’internal ’type)
(putprop ’I50 ’internal ’type)

145

(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop

(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop

’I51 ’internal
152 ’internal
153 ’internal
’I54 ’internal
’I55 ’internal
’I56 ’internal
’I57 ’internal
’I58 ’internal
’I59 ’internal
160 ’internal
’I61 ’internal
162 ’internal
163 ’internal
164 ’internal
165 ’internal
166 ’internal
167 ’internal
168 ’internal
169 ’internal
’I70 ’internal
’I71 ’internal
’I72 ’internal
’I73 ’internal
’I74 ’internal
’I75 ’internal
’I76 ’internal

’El
’E2
’E3
’E4
’E5
’E6

external
external
external
external
external
external
’E7 ’external
’E8 ’external
’E10 ’external
’E11l ’external
’E12 ’external
’E13 ’external
’E14 ’external
’E15 ’external

)
)
)
)
)
)
)
)

’E1Ba ’external ’type)

O Y

>type)
>type)
>type)
’type)
’type)
>type)
>type)
’type)
’type)
’type)
>type)
>type)
’type)
’type)
’type)
>type)
>type)
’type)
’type)
’type)
>type)
>type)
’type)
’type)
’type)
>type)

type)
type)
type)
type)
type)
type)
type)
type)
’type)
’type)
>type)
>type)
>type)
’type)

’E16 ’external ’type)
’E17 ’external ’type)

’E17a ’external ’type)

’E18 ’external ’type)

’E18a ’external ’type)

’E19 ’external ’type)

’E19a ’external ’type)

’E20 ’external ’type)
’E21 ’external ’type)
’E22 ’external ’type)

146

(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop
(putprop

’E23 ’external ’type)

’E23a ’external ’type)

’E24
’E25
’E26
YE27
’E28
’E29
’E30
’E31

’E31a ’external ’type)

’E32
’E33
’E34
’E35
YE37
’E38
’E39
’E40
’E41
YE42
’E43
’E44
’E45

’external
’external
’external
’external
’external
’external
’external
’external

’external
’external
’external
’external
’external
’external
’external
’external
’external
’external
’external
’external
’external

>type)
’type)
’type)
>type)
>type)
’type)
’type)
’type)

>type)
’type)
’type)
’type)
>type)
>type)
’type)
’type)
’type)
>type)
>type)
’type)
’type)

147

E Finally, even though the names for equal distances are
; already alphabetically ordered, the partial ordering must
; be established in lisp:

’

(putprop ’contact ’EQ1 ’larger)
(putprop ’EQ1l ’contact ’smaller)
(putprop ’EQ1l ’EQla ’larger)
(putprop ’EQla ’EQl ’smaller)
(putprop ’EQla ’EQ2 ’larger)
(putprop ’EQ2 ’EQla ’smaller)
(putprop ’EQ2 ’EQ3 ’larger)
(putprop ’EQ3 ’EQ2 ’smaller)
(putprop ’EQ3 ’EQ3a ’larger)
(putprop ’EQ3a ’EQ3 ’smaller)
(putprop ’EQ3a ’EQ4 ’larger)
(putprop ’EQ4 ’EQ3a ’smaller)
(putprop ’EQ4 ’EQ5 ’larger)
(putprop ’EQ5 ’EQ4 ’smaller)
(putprop ’EQ5 ’EQ6 ’larger)
(putprop ’EQ6 ’EQ5 ’smaller)
(putprop ’EQ6 ’EQ7 ’larger)
(putprop ’EQ7 ’EQ6 ’smaller)
(putprop ’EQ7 ’EQ8 ’larger)
(putprop ’EQ8 ’EQ7 ’smaller)
(putprop ’EQ8 ’EQ9 ’larger)
(putprop ’EQ9 ’EQ8 ’smaller)
(putprop ’EQ9 ’EQ10 ’larger)
(putprop ’EQ10 ’EQ9 ’smaller)
(putprop ’EQ10 ’EQ11 ’larger)
(putprop ’EQ11 ’EQ10 ’smaller)
(putprop ’EQ11 ’EQ12 ’larger)
(putprop ’EQ12 ’EQ11l ’smaller)
(putprop ’EQ12 ’EQ13 ’larger)
(putprop ’EQ13 ’EQ12 ’smaller)
(putprop ’EQ13 ’EQ14 ’larger)
(putprop ’EQ14 ’EQ13 ’smaller)
(putprop ’EQ14 ’EQl4a ’larger)
(putprop ’EQi4a ’EQ14 ’smaller)
(putprop ’EQ14a ’EQ15 ’larger)
(putprop ’EQ15 ’EQl4a ’smaller)
(putprop ’EQ15 ’EQ1l5a ’larger)
(putprop ’EQ15a ’EQ15 ’smaller)
(putprop ’EQ15a ’EQ16 ’larger)
(putprop ’EQ16 ’EQ15a ’smaller)
(putprop ’EQ16 ’EQl6a ’larger)
(putprop ’EQ16a ’EQ16 ’smaller)
(putprop ’EQ16a ’EQ17 ’larger)
(putprop ’EQ17 ’EQl6a ’smaller)
(putprop ’EQ17 ’EQ20 ’larger)
(putprop ’EQ20 ’EQ17 ’smaller)

148

(putprop ’EQ17 ’EQ20 ’larger)
(putprop ’EQ20 ’EQ17 ’smaller)

149

Appendix B

Robot Fastening and
Disassembly Projects

The early stages of this research involved an investigation into the feasibil-
ity of systems to solve two problems in robotics. The first was a general
approach to acquiring assembly descriptions by disassembling. The second
was a general method for reasoning about mechanical fastening (necessary
to solve the disassembly problem in real-world situations). The investigation
of qualitative reasoning described in the body of the thesis arose from the
latter of these two topics, but there are many other interesting projects that
might be carried out in studying this overall area.

This appendix contains a “navigation chart” which I constructed at
the start of my research to show the relationships between these possible
projects, ranging from abstract geometric reasoning to physical control of
robot manipulators. The chart has been included here both to illustrate my
view of the wider context of this project, and also as a resource for readers
who have a further interest in the disassembly /fastening problem.

150

Bibliography

[ABS5]

[ABB*75]

[AIb81]

[AMBFS83]

[And77]

[And85]

[APT75)

[APK82]

P. Allen and R. Bajcsy. Object recognition using vision and
touch. In Proceedings International Joint Conference on Arti-
ficial Intelligence, 1985.

A. P. Ambler, H. G. Barrow, C. M. Brown, R. M. Burstall, and
R. J. Popplestone. A versatile system for computer controlled
assembly. 6(2), 1975.

James Albus. Brains, Behaviour, and Robotics. BYTE Books,
Peterborough N.H., 1981.

James S. Albus, Charles R. McLean, Anthony J. Barbera, and
M.L. Fitzgerald. Hierachical control for robots in an automated
factory. In Proceedings 13th International Symposium on In-

dustrial Robots, and Robots 7, volume 2, Dearborn Michigan,
April 1983. Robotics International of SME.

John H. Andreae. Thinking with the Teachable Machine. Aca-
demic Press, London, 1977.

Peter Merrett Andreae. Justified generalization: Acquiring
procedures from examples. Technical Report 834, MIT Ar-
tificial Intelligence Laboratory, January 1985.

A. P. Ambler and R. J. Popplestone. Inferring the positions of
bodies from specified spatial relationships. 6(2), 1975.

A. P. Ambler, R. J. Popplestone, and K. G. Kempf. An ex-
periment in the offline programming of robots. In Proceedings
12th International Symposium on Industrial Robots, 6th Inter-
national Conference on Industrial Robot Technology, 1982.

157

[BA84a|

[BA84b]

[Balg4]

[Bar84]

[BB83]

[BB87]

[BCT2)

[BCF&86]

[BDARP83]

Michael Brady and Philip E. Agre. The mechanics mate.
In Proceedings European Conference on Artificial Intelligence,

1984.

Michael Brady and Haruo Asada. Smoothed local symmetries
and their implementation. AI Memo 757, MIT AI Lab, Febru-
ary 1984.

D. H. Ballard. Task frames in robot manipulation. In Proceed-
ings of the National Conference of the American Association
for Artificial Intelligence, 1984.

H. G. Barrow. VERIFY: A program for proving correctness of
digital hardware designs. In D. G. Bobrow, editor, Qualitative
Reasoning about Physical Systems. Elsevier Science Publishers,
1984.

Alan Bundy and Lawrence Byrd. Using the method of fibres
in Mecho to calculate radii of gyration. In Dedre Gentner and
Albert L. Stevens, editors, Mental Models. Lawrence Erlbaum
Associates, 1983.

Wilhelm Burger and Bir Bhanu. Qualitative motion under-
standing. In Proceedings International Joint Conference on
Artificial Intelligence, 1987.

H. G. Barrow and G. F. Crawford. The Mark 1.5 Edinburgh
Robot Facility, volume 7 of Machine Intelligence, chapter 25,
pages 465—480. Edinburgh University Press, 1972.

Rodney A. Brooks, Jon Connell, and Anita Flynn. A mobile
robot with onboard parallel processor and large workspace arm.
In Proceedings of the National Conference of the American As-
sociation for Artificial Intelligence, 1986.

R. Bardelli, P. Dario, D. de Rossi, and P.C. Pinotti. Piezo and
pyroelectric polymers skin-like tactile sensors for robots and
prostheses. In Proceedings 13th International Symposium on
Industrial Robots, and Robots 7, volume 2, Dearborn Michigan,
April 1983. Robotics International of SME.

158

[Ben83]

[BF84]

[BGS2

[BHS2]

[BHS6]

[Big86]

[Bla86]

[Blag8]

[BLi87]

[Bob84a)

Harry L. Benjamin. The development of a production robot
tactile position sensor. In Proceedings 13th International Sym-
posium on Industrial Robots, and Robots 7, volume 2. Robotics
International of SME, 1983.

David A. Bourne and Mark S. Fox. Autonomous manufactur-
ing: Automating the job shop. IEEE Computer, September
1984.

John W. Boyse and Jack E. Gilchrist. GMSolid: Interactive
modeling for design and analysis of solids. IEEE Computer
Graphics and Applications, 2(2), March 1982.

G. Bancon and B. Huber. Depression and dual grippers with
their possible applications. In Proceedings 12th International
Symposium on Industrial Robots, 6th International Conference
on Industrial Robot Technology, 1982.

Robert C. Bolles and Patrice Horaud. 3DPO: a three di-
mensional part orientation system. International Journal of
Robotics Research, 5(3), 1986.

Anton Bigelmaier. Profile of a geometrical knowledge base for
CAD systems. Computers and Graphics, 10(4):297-306, 1986.

Alan Blackwell. Artificial intelligence and New Zealand manu-
facturing industry. In Proceedings of First N.Z. Conference on
Robotics and Handling Automation (ROBHANZ 86), Novem-
ber 1986.

Alan Blackwell. Qualitative Geometric Reasoning Using a Par-
tial Distance Ordering, pages 217-229. Artificial Intelligence
Developments and Applications. North-Holland, Amsterdam,
1988.

A. Peter Blicher. A shape representation based on geomet-
ric topology: Bumps, gaussian curvature, and the topological
zodiac. In Proceedings International Joint Conference on Ar-
tificial Intelligence, 1987.

D. G. Bobrow, editor. Qualitative Reasoning about Physical
Systems. Elsevier Science Publishers, 1984.

159

[Bob84b]

[BPYAS5]

[Brag84]

[Bra85a]

[Bra85b]

[Bro81]

[Bro82a]

[Bro82b]

[Bro83]

[Bro85a]

[Bro85b]

[Bro86]

[BRST78]

D. G. Bobrow. Qualitative reasoning about physical systems:
An introduction. In D. G. Bobrow, editor, Qualitative Reason-
ing about Physical Systems. Elsevier Science Publishers, 1984.

Michael Brady, Jean Ponce, Alan Yuille, and Haruo Asada.
Describing surfaces. Al Memo 822, MIT Al Lab, January 1985.

Michael Brady. Intelligent Robots: Connecting Perception to
Action, chapter 14. The Al Business: The Commercial Uses of
Artificial Intelligence. MIT Press, 1984.

Michael Brady. Artificial intelligence and robotics. 26:79-121,
1985.

David J. Braunegg. Function from form. Technical report, MIT
Al Lab, November 1985.

Rodney A. Brooks. Symbolic reasoning among 3D models and
2D images. 17:285-348, 1981.

Rodney A. Brooks. Symbolic error analysis and robot planning.
AI Memo 685, MIT AI Lab, September 1982.

Christopher M. Brown. PADL-2: A technical summary. IEEE
Computer Graphics and Applications, 2(2), March 1982.

Rodney A. Brooks. Planning collision free motions for pick and
place operations. AI Memo 725, MIT Al Lab, May 1983.

Rodney A. Brooks. A mobile robot project. Working Paper
265, MIT AI Lab, February 1985.

Rodney A. Brooks. A robust layered control system for a mobile
robot. AI Memo 864, MIT AI Lab, September 1985. Also
published in IEEE Robotics and Automation, Vol. 2, Number
1, March 1986.

Rodney A. Brooks. Achieving artificial intelligence through
building robots. AT Memo 899, MIT AI Lab, May 1986.

M. Briot, M. Renaud, and Z. Stojiljkovic. An approach to
spatial pattern recognition of solid objects. IEEE Transactions
on Systems, Man, and Cybernetics, 8(9), September 1978.

160

[Bun78]

[Byl8§]

[Cal87]

[Car83]

[Cas87]

[CB85a)

[CB85b]

[CB87]

[CF87]

[Con85]

[Con87]

Alan Bundy. Will it reach the top? Prediction in the mechanics
world. 10(2):129-146, April 1978.

Tom Bylander. A critique of qualitative simulation from a
consolidation viewpoint. IEEE Transactions on Systems, Man,
and Cybernetics, 18(2), April 1988.

Philippe Caloud. Towards continuous process supervision. In
Proceedings International Joint Conference on Artificial Intel-
ligence, 1987.

Jaime G. Carbonell. Learning by Analogy: Formulating and
Generalising Plans from Past Experience, volume 1 of Machine
Learning, pages 163—-190. Tioga Publishing, 1983.

Malcolm S. Casale. Free-form solid modeling with trimmed
surface patches. IEEE Computer Graphics and Applications,
7(1), January 1987.

Jonathan H. Connell and Michael Brady. Generating and gen-
eralizing models of visual objects. AI Memo 823, MIT Al Lab,
July 1985.

Jonathan H. Connell and Michael Brady. Learning shape de-
scriptions. In Proceedings International Joint Conference on
Artificial Intelligence, 1985.

Jonathon H. Connell and Michael Brady. Generating and gen-
eralizing models of visual objects. 31(1):159-183, February
1987.

John W. Collins and Kenneth D. Forbus. Reasoning about flu-
ids via molecular collections. In Proceedings of the National

Conference of the American Association for Artificial Intelli-
gence, pages 590-594, 1987.

Jonathan H. Connell. Learning shape descriptions: Generating
and generalizing models of visual objects. Technical Report
853, MIT AI Lab, September 1985.

Jonathan H. Connell. Creature design with the subsumption
architecture. In Proceedings International Joint Conference on
Artificial Intelligence, 1987.

161

[Cro82]

[Cro87]

[CW8S]

[D’A87]

[DADS6]

[Dav84al

[Dav84b]

[Dav85]

[DARS5)

[Dix86]

[dK77]

A. G. Cronshaw. Automatic chocolate decoration by robot
vision. In Proceedings 12th International Symposium on Indus-
trial Robots, 6th International Conference on Industrial Robot
Technology, 1982.

James L. Crowley. Coordination of action and perception in a
surveillance robot. IEEE Expert, 2(4), 1987.

Kai-Hsiung Chang and William G Wee. A knowledge-based
planning system for mechanical assembly using robots. IEEE
Ezpert, March 1988.

Bruce D’Ambrosio. Extending the mathematics in qualitative
process theory. In Proceedings of the National Conference of
the American Association for Artificial Intelligence, pages 595—
599, 1987.

Richard J. Doyle, David J. Atkinson, and Rajkumar S. Doshi.
Generating perception requests and expectations to verify the
execution of plans. In Proceedings of the National Conference
of the American Association for Artificial Intelligence, 1986.

Ernest Davis. Shape and function of solid objects: Some ex-
amples. Technical Report 137, New York University, October
1984.

Randall Davis. Diagnostic reasoning based on structure and
behaviour. In D. G. Bobrow, editor, Qualitative Reasoning
about Physical Systems. Elsevier Science Publishers, 1984.

Ernest Davis. An ontology of physical actions. Technical report,
MIT AI Lab, 1985.

P. Dario and D. de Rossi. Tactile sensors and the gripping
challenge. IEEE Spectrum, August 1985.

John R. Dixon. Artificial intelligence and design: A mechanical
engineering view. In Proceedings of the National Conference of
the American Association for Artificial Intelligence, 1986.

Johan de Kleer. Multiple representations of knowledge in a
mechanics problem solver. In Proceedings International Joint
Conference on Artificial Intelligence, pages 299-304, 1977.

162

[dK79]

[dK84]

[dKBS0]

[dKBS2]

[dKB83]

[dKB84]

[dKBS6]

[DL84]

[dM87]

[AMSS6]

Johan de Kleer. Qualitative and quantitative reasoning in clas-
sical mechanics. In P H Winston and R H Brown, editors,
Artificial Intelligence: An MIT Perspective. MIT Press, 1979.

Johan de Kleer. How circuits work. In D. G. Bobrow, editor,
Qualitative Reasoning about Physical Systems. Elsevier Science
Publishers, 1984.

Johan de Kleer and John Seely Brown. Mental models of phys-
ical mechanisms and their acquisition. In Cognitive Skills and
Their Acquisition. Erlbaum, 1980.

Johan de Kleer and John Seely Brown. Foundations of envision-
ing. In Proceedings of the National Conference of the American
Association for Artificial Intelligence, 1982.

Johan de Kleer and John Seely Brown. Assumptions and am-
biguities in mechanistic mental models. In Dedre Gentner and
Albert L. Stevens, editors, Mental Models. Lawrence Erlbaum
Associates, 1983.

Johan de Kleer and John Seely Brown. A qualitative physics
based on confluences. In D. G. Bobrow, editor, Qualitative
Reasoning about Physical Systems. Elsevier Science Publishers,
1984.

Johan de Kleer and John Seely Brown. Theories of causal
ordering. 29(1):33-62, July 1986.

Bruno Dufay and Jean-Claude Latombe. An approach to au-
tomatic robot programming based on inductive learning. In-
ternational Journal of Robotics Research, 3(4), 1984.

Joseph di Martino. On multi-level machines for continuous
speech recognition. In Proceedings International Joint Confer-
ence on Artificial Intelligence, 1987.

Luiz S. Homem de Mello and Arthur C. Sanderson. And/or
graph representation of assembly plans. In Proceedings of the
National Conference of the American Association for Artificial
Intelligence, 1986.

163

[Don86]

[Don87]

[DRD87]

[Ela86)]

[ELP86]

[EUY*72]

[FAS6]

[Fah73]

[Fal86)

[Fal87]

[FFGS6]

Bruce R. Donald. A theory of error detection and recovery:
Robot motion planning with uncertainty in the geometric mod-
els of the robot and environment. Although unpublished when
I saw it, this should since be listed in the MIT AT lab. publi-
cations list, June 1986.

Bruce R. Donald. A search algorithm for motion planning with
six degrees of freedom. 31(3):295-353, March 1987.

Philippe Dague, Olivier Raiman, and Philippe Deves. Trou-
bleshooting: when modeling is the trouble. In Proceedings of
the National Conference of the American Association for Arti-
ficial Intelligence, pages 600-605, 1987.

Taha 1. Elareef. Flavour system and message passing as rep-
resentation of knowledge for solid modelling in CAD expert
system. Computers and Graphics, 10(4):351-358, 1986.

Michael Erdmann and Tomas Lozano-Perez. On multiple mov-
ing objects. AI Memo 883, MIT AI Lab, May 1986.

Masakazu Ejiri, Takeshi Uno, Hauo Yoda, Tatsuo Goto, and
Kiyoo Takeyasu. A prototype intelligent robot that assembles

objects from plan drawings. IEEE Transactions on Computers,
21(2), February 1972.

W. Friedrich and G. Arndt. Vision-aided flexible component
handling. In Proceedings of First N.Z. Conference on Robotics
and Handling Automation (ROBHANZ 86), November 1986.

Scott E. Fahlman. A planning system for robot construction
tasks. Technical Report 283, MIT Al Lab, May 1973.

Boi Faltings. A theory of qualitative kinematics in mechanisms.
Research report, University of Illinois, May 1986.

Boi Faltings. A theory of qualitative kinematics in mechanisms.
In Proceedings International Joint Conference on Artificial In-
telligence, 1987.

Brian Falkenhainer, Kenneth D. Forbus, and Dedre Gentner.
The structure-mapping engine. In Proceedings of the National

164

[FGS6]

[FH84]

[FH86]

[Fin84]

[Fle8bal

[Fle85b)]

[FN71]

[FNF87]

[For81]

[For82]

Conference of the American Association for Artificial Intelli-
gence, 1986.

Kenneth D. Forbus and Dedre Gentner. Causal reasoning about
quantities. In Proc. of the eighth annual meeting of the Cogni-
tive Science Society, August 1986.

Ronald S. Fearing and John M. Hollerbach. Basic solid me-
chanics for tactile sensing. Al Memo 771, MIT AI Lab, March
1984.

O.D. Faugeras and M. Hebert. The representation, recognition,
and locating of 3D objects. International Journal of Robotics
Research, 5(3), 1986.

Aryeh Finegold. The Engineer’s Apprentice, chapter 9. The Al
Business: The Commercial Uses of Artificial Intelligence. MIT
Press, 1984.

Margaret Morrison Fleck. Local rotational symmetries. Tech-
nical Report 852, MIT Al Lab, August 1985.

Alan Fleming. Analysis of uncertainties in a structure of parts.
In Proceedings International Joint Conference on Artificial In-
telligence, 1985.

Richard E. Fikes and Nils J. Nilsson. STRIPS: A new ap-
proach to the application of theorem proving to problem solv-
ing. 2:189-208, 1971.

Kenneth D. Forbus, Paul Nielsen, and Boi Faltings. Qualita-
tive kinematics: A framework. Technical Report UTUCDCS-
R-87-1352, Dept. of Computer Science, University of Illinois at
Urbana-Champaign, June 1987.

Kenneth D. Forbus. A study of qualitative and geometric
knowledge in reasoning about motion. Technical Report 615,
MIT AI Lab., February 1981.

Kenneth D. Forbus. Modeling motion with qualitative pro-
cess theory. In Proceedings of the National Conference of the
American Association for Artificial Intelligence, 1982.

165

[For83]

[For84a]

[For84b]

[For86]

[For87]

[FT87]

[Fun80]

[GBT75]

[GB87]

[GDGT85]

[Gel63]

Kenneth D. Forbus. Qualitative reasoning about space and mo-
tion. In Dedre Gentner and Albert L. Stevens, editors, Mental
Models. Lawrence Erlbaum Associates, 1983.

Kenneth D. Forbus. Qualitative process theory. Technical Re-
port 789, MIT Al Lab, July 1984.

Kenneth D. Forbus. Qualitative process theory. In D. G. Bo-
brow, editor, Qualitative Reasoning about Physical Systems. El-
sevier Science Publishers, 1984.

Kenneth D. Forbus. Interpreting measurements of physical sys-
tems. In Proceedings of the National Conference of the Amer-
ican Association for Artificial Intelligence, 1986.

Kenneth D. Forbus. The logic of occurrence. In Proceedings
International Joint Conference on Artificial Intelligence, pages
409-415, 1987.

B. Faverjon and P. Tournassoud. The mixed approach for mo-
tion planning: Learning global strategies from a local planner.
In Proceedings International Joint Conference on Artificial In-
telligence, 1987.

B. V. Funt. Problem-solving with diagrammatic representa-
tions. 13(3):201-230, May 1980.

D. D. Grossman and M. W. Blasgen. Orienting mechanical
parts by computer controlled manipulator. IEEE Transactions
on Systems, Man, and Cybernetics, 5(5), September 1975.

Douglas S. Green and David C. Brown. Qualitative reasoning
during design about shape and fit: A preliminary report. In
Ezpert Systems in Computer-Aided Design. IFIP, 1987.

Maria Gini, Rajkumar Doshi, Marc Gluch, Richard Smith, and
Imran Zualkernan. The role of knowledge in the architecture
of a robust robot control. In Proceedings IEEE Conference on
Robotics and Automation, 1985.

H. Gelernter. Realization of a geometry-theorem proving ma-
chine. In Edward A. Feigenbaum and Julian Feldman, editors,
Computers and Thought, pages 134-152. McGraw-Hill, 1963.

166

[Gen84]

[GHLG63]

[Gous6]

[Gre83]

[Gro76]

[GSCTS3]

[GT78]

[GTIS0]

[GZS8S]

[HAS5]

M. R. Genesereth. The use of design descriptions in automated
diagnosis. In D. G. Bobrow, editor, Qualitative Reasoning about
Physical Systems. Elsevier Science Publishers, 1984.

H. Gelernter, J. R. Hansen, and D. W. Loveland. Empirical
explorations of the geometry-theorem proving machine. In Ed-
ward A. Feigenbaum and Julian Feldman, editors, Computers
and Thought, pages 153-163. McGraw-Hill, 1963.

Laurent Gouzenes. Strategies for solving collision-free trajecto-
ries problems for mobile and manipulator robots. International
Journal of Robotics Research, 4(4), 1986.

James G. Greeno. Conceptual entities. In Dedre Gentner and
Albert L. Stevens, editors, Mental Models. Lawrence Erlbaum
Associates, 1983.

D. D. Grossman. Procedural representation of three-
dimensional objects. IBM Journal of Research and Develop-
ment, 20(6), November 1976.

William A. Gruver, Barry 1. Soroka, John J. Craig, and Timo-
thy L. Turner. Evaluation of commercially available robot pro-
gramming languages. In Proceedings 13th International Sympo-
stum on Industrial Robots, and Robots 7, volume 2, Dearborn
Michigan, April 1983. Robotics International of SME.

D. D. Grossman and R. H. Taylor. Interactive generation of
object models with a manipulator. IEEE Transactions on Sys-
tems, Man, and Cybernetics, 8(9), September 1978.

T. Goto, K. Takeyasu, and T. Inoyama. Control algorithm
for precision insert operation robots. IEEE Transactions on
Systems, Man, and Cybernetics, 10(1), January 1980.

David C. Gossard, Robert P. Zuffante, and Hiroshi Sakurai.
Representing dimensions, tolerances, and features in MCAE
systems. IEEE Ezpert, March 1988.

John M. Hollerbach and Christopher G. Atkeson. Character-
ization of joint-interpolated arm movements. Al Memo 849,
MIT AI Lab, June 1985.

167

[HAS7]

[Hay78]

[Hay83]

[Hil82]

[Hol79]

[Hor79]

[HR86)]

[HSS84]

[HWS6]

[Ino74]

[Ino79]

Patrick J. Hayes and James F. Allen. Short time periods. In
Proceedings International Joint Conference on Artificial Intel-
ligence, 1987.

Patrick J. Hayes. The naive physics manifesto. In D. Michie,
editor, Expert Systems in the Micro-Electronic Age. Edinburgh
University Press, 1978.

Patrick J. Hayes. The second naive physics manifesto.
Cognitive Science Technical Report URCS-10, University of
Rochester, October 1983.

Robin Hillyard. The build group of solid modelers. IEEE Com-
puter Graphics and Applications, 2(2), March 1982.

John M. Hollerbach. Understanding manipulator control by
synthesising human handwriting. In P H Winston and R H
Brown, editors, Artificial Intelligence: An MIT Perspective.
MIT Press, 1979.

B. K. P. Horn. Kinematics, statics, and dynamics of two dimen-
sional manipulators. In P H Winston and R H Brown, editors,
Artificial Intelligence: An MIT Perspective. MIT Press, 1979.

Mark L. Hornick and Bahram Ravani. Computer-aided off-
line planning and programming of robot motion. International
Journal of Robotics Research, 4(4), 1986.

J. E. Hopcroft, J. T. Schwartz, and M Sharir. On the com-
plexity of motion planning for multiple independent objects;
PSPACE-hardness of the “Warehouseman’s Problem”. Inter-
national Journal of Robotics Research, 3(4), 1984.

John Hopcroft and Gordon Wilfong. Motion of objects in con-
tact. International Journal of Robotics Research, 4(4), 1986.

H. Inoue. Force feedback in precise assembly tasks. Al Memo
308, MIT AI Lab, August 1974.

H. Inoue. Force feedback in precise assembly tasks. In P H
Winston and R H Brown, editors, Artificial Intelligence: An
MIT Perspective. MIT Press, 1979.

168

[Ino85]

[1S85]

[1S86a]

[IS86b]

[ISKM87]

[JBS6]

[Jos87]

[TWKB84]

[KAS6]

[KBC86]

[KC87]

H. Inoue. Building a bridge between AI and robotics. In Pro-
ceedings International Joint Conference on Artificial Intelli-
gence, 1985.

Jehuda Ish-Shalom. The CS language concept: A new approach
to robot motion design. International Journal of Robotics Re-
search, 4(1), 1985.

Y. Iwasaki and H. A. Simon. Causality in device behaviour.
29(1):3-32, July 1986.

Y. Iwasaki and H. A. Simon. Theories of causal ordering: Reply
to de Kleer and Brown. 29(1):63-72, July 1986.

Masaru Ishii, Shigeyuki Sakane, Masayoshi Kakikura, and
Yoshio Mikami. A 3-D sensor system for teaching robot paths
and environments. International Journal of Robotics Research,

6(2), 1987.

R. A. Jarvis and J. C. Byrne. Robot navigation: Touching,
seeing and knowing. In Proceedings of 1st Australian Artificial
Intelligence Conference, 1986.

Leo Joskowicz. Shape and function in mechanical devices. In
Proceedings of the National Conference of the American Asso-
ciation for Artificial Intelligence, pages 611-615, 1987.

S. C. Jacobsen, J. E. Wood, D. F. Knutti, and K. B. Biggers.
The UTAH/M.I.T. dextrous hand: Work in progress. Interna-
tional Journal of Robotics Research, 3(4), 1984.

Y. C. Kim and J. K. Aggarwal. Rectangular parallelepiped cod-
ing: A volumetric representation of three-dimensional objects.
IEEE Robotics and Automation, 2(3), 1986.

A. C. Kak, K. L. Boyer, C. H. Chen, R.J. Safranek, and H. S.
Yang. A knowledge-based robotic assembly cell. IEEE Expert,
1(2):63-85, 1986.

Benjamin J. Kuipers and Charles Chiu. Taming intractible
branching in qualitative simulation. In Proceedings Interna-
tional Joint Conference on Artificial Intelligence, 1987.

169

[KDS6]

[Kem85]

[Kha85)

[KJ86]

[KL88]

[KMMNS85]

[Kna85|

[KTTP83]

[Kui82]

[Kuis4]

[Kui86]

S. K. Kambhampati and L. S. Davis. Multiresolution path
planning for mobile robots. IEEE Robotics and Automation,
2(3), 1986.

K. G. Kempf. Manufacturing and artificial intelligence.
Robotics, 1(1), 1985.

O. Khatib. Real-time obstacle avoidance for manipulators and
mobile robots. In Proceedings IEEE Conference on Robotics
and Automation, 1985.

Thomas F. Knoll and Ramesh C. Jain. Recognizing par-
tially visible objects using feature indexed hypotheses. IEEE
Robotics and Automation, 2(1), March 1986.

Benjamin J. Kuipers and Tod S. Levitt. Navigation and map-
ping in large-scale space. AI Magazine, 9(2), 1988.

D. Kapur, J. Mundy, D. Musser, and P. Narendran. Reasoning
about three dimensional space. In Proceedings IEEE Confer-
ence on Robotics and Automation, 1985.

T. M. Knasel. Fifth international conference on assembly au-
tomation. Robotics, 1(1), 1985.

D.R. Kemp, G.E. Taylor, P.M. Taylor, and A. Pugh. A sensory
gripper for handling textiles. In Proceedings 13th International
Symposium on Industrial Robots, and Robots 7, volume 2, Dear-
born Michigan, April 1983. Robotics International of SME.

Benjamin J. Kuipers. Getting the envisionment right. In Pro-
ceedings of the National Conference of the American Associa-
tion for Artificial Intelligence, 1982.

Benjamin J. Kuipers. Commonsense reasoning about causality:
Deriving behaviour from structure. In D. G. Bobrow, editor,
Qualitative Reasoning about Physical Systems. Elsevier Science
Publishers, 1984.

Benjamin J. Kuipers. Qualitative simulation. 29(3):289-338,
September 1986.

170

[LB83]

[Len83]

[LF87]

[LKG65]

[Low87]

[LP76]

[LP79)]

[LP82]

[LP83]

[LP85)

[LP8S]

[LPBS5]

D. B. Lenat and J. S. Brown. Why AM and Eurisko appear to
work. In Proceedings of the National Conference of the Amer-
ican Association for Artificial Intelligence, 1983.

D. B. Lenat. The Role of Heuristics in Learning by Discovery:
Three Case Studies, volume 1 of Machine Learning, pages 243—
306. Tioga Publishing, 1983.

Y.C. Lee and K.S. Fu. Machine understanding of CSG: Extrac-
tion and unification of manufacturing features. IEEE Computer
Graphics and Applications, 7(1), January 1987.

J. Y. S. Luh and R. J. Krolak. A mathematical model for
mechanical part description. Communications of the ACM,
8(2), February 1965.

David G. Lowe. Three-dimensional object recognition from
single two-dimensional images. 31(3):355-395, March 1987.

Tomas Lozano-Perez. The design of a mechanical assembly
system. Technical Report 397, MIT Al Lab, December 1976.

Tomas Lozano-Perez. A language for automated mechanical
assembly. In P H Winston and R H Brown, editors, Artificial
Intelligence: An MIT Perspective. MIT Press, 1979.

Tomas Lozano-Perez. Robot programming. AI Memo 698a,
MIT AI Lab, December 1982.

Tomas Lozano-Perez. Spatial planning: A configuration space
approach. IEEE Transactions on Computers, 32(2), February
1983.

Tomas Lozano-Perez. Compliance in robot manipulation.
25(1), January 1985.

Mark Lee and Chris Price. Towards deeper systems: When
will they ever understand? In Proceedings of the New Zealand
Conference on Expert Systems, May 1988.

Tomas Lozano-Perez and Rodney A. Brooks. An approach to
automatic robot programming. Al Memo 842, MIT Al Lab,
April 1985.

171

[LPD83]

[LPMT83]

[LPW79]

[LS83]

[LW77]

[Lyo85]

[MAST]

[Mac84]

[Mac87a)

[Mac87b]

Du Lian, Steven Peterson, and Max Donath. A three-fingered,
articulated, robotic hand. In Proceedings 13th International
Symposium on Industrial Robots, and Robots 7, volume 2, Dear-
born Michigan, April 1983. Robotics International of SME.

Tomas Lozano-Perez, Matthew T. Mason, and Russell H. Tay-
lor. Automatic synthesis of fine-motion strategies for robots.
AT Memo 759, MIT AI Lab, December 1983.

Tomas Lozano-Perez and M. Wesley. An algorithm for planning
collision-free paths among polyhedral obstacles. Communica-
tions of the ACM, 22:560-570, 1979.

A. Levas and M. Selfridge. Voice communications with robots.
In Proceedings 13th International Symposium on Industrial
Robots, and Robots 7, volume 2, Dearborn Michigan, April
1983. Robotics International of SME.

L. I. Lieberman and M. A. Wesley. Autopass: an automatic
programming system for computer controlled mechanical as-
sembly. IBM Journal of Research and Development, 21(4), July
1977.

Damian M. Lyons. A simple set of grasps for a dextrous hand.
In Proceedings IEEE Conference on Robotics and Automation,
1985.

Seshashayee S. Murthy and Sanjaya Addaanki. PROMPT: an
innovative design tool. In Proceedings of the National Con-
ference of the American Association for Artificial Intelligence,
pages 637-642, 1987.

B. A. MacDonald. Designing Teachable Robots. PhD thesis,
University of Canterbury, 1984.

B. A. MacDonald. Improved robot design. Transactions
of the Institution of Professional Engineers New Zealand,
14(1/EMCh), March 1987.

P. Mackerras. Formulating and testing simple boundary hy-
potheses in textured images. In Proceedings Australian Joint
Conference on Artificial Intelligence (AI’87), November 1987.

172

[Mas81]

[Mas85]

[Mas86]

[MBS6]

[McCT79]

[McC83]

[Mey81]

[MF87]

[MHCMS86]

[MS87]

Matthew T. Mason. Compliance and force control for computer
controlled manipulators. IEEE Transactions on Systems, Man,
and Cybernetics, 11(6), June 1981.

Matthew T. Mason. The mechanics of manipulation. In Pro-
ceedings IEEE Conference on Robotics and Automation, 1985.

Matthew T. Mason. Mechanics and planning of manipula-
tor pushing operations. International Journal of Robotics Re-
search, 5(3), 1986.

Raymond J. Mooney and Scott W. Bennett. A domain inde-
pendent explanation-based generalizer. In Proceedings of the
National Conference of the American Association for Artificial
Intelligence, 1986.

Pamela McCorduck. Machines that Think. W. H. Freeman and
Company, 1979.

Michael McCloskey. Naive theories of motion. In Dedre Gen-
tner and Albert L. Stevens, editors, Mental Models. Lawrence
Erlbaum Associates, 1983.

Jeanine Meyer. An emulation system for programmable sen-
sory robots. IBM Journal of Research and Development, 25(6),
November 1981.

Sanjay Mittal and Felix Frayman. Making partial choices in
constraint reasoning systems. In Proceedings of the National
Conference of the American Association for Artificial Intelli-
gence, pages 631-636, 1987.

R. L. Madarasz, L. C. Heiny, R. F. Cromp, and N. M. Mazur.
The design of an autonomous vehicle for the disabled. IEEE
Robotics and Automation, 2(3), 1986.

Michael L. Mavrovouniotis and George Stephanopoulos. Rea-
soning with orders of magnitude and approximate relations. In
Proceedings of the National Conference of the American Asso-
ciation for Artificial Intelligence, pages 626—630, 1987.

173

[MUBS3]

[Ngu85a]

[Ngu85b]

[NR76]

[PABSO]

[PCRS6]

[Pen86al

[Pen86b]

[Pen87]

[P1i85]

[Pop79]

Tom M. Mitchell, Paul E. Utgoff, and Ranan Banerji. Learning
by Ezperimentation: Acquiring and Refining Problem-Solving
Heuristics, volume 1 of Machine Learning, pages 163-190.
Tioga Publishing, 1983.

Van-Duc Nguyen. The synthesis of force-closure grasps in the
plane. AI Memo 861, MIT AI Lab, September 1985.

Van-Duc Nguyen. The synthesis of stable grasps in the plane.
Al Memo 862, MIT AI Lab, October 1985.

David Nitzan and Charles Rosen. Programmable industrial au-
tomation. IEEE Transactions on Computers, 25(12), December
1976.

R. J. Popplestone, A. P. Ambler, and I. M. Bellos. An inter-
preter for a language for describing assemblies. 14(1), 1980.

Tsaiyun Phillips, Robert Cannon, and Azriel Rosenfeld. De-
composition and approximation of three-dimensional solids.
Computer Vision, Graphics, and Image Processing, 33(3):307—
317, March 1986.

Alex P. Pentland. Parts: Structured descriptions of shape. In
Proceedings of the National Conference of the American Asso-
ciation for Artificial Intelligence, 1986.

Alex P. Pentland. Perceptual organisation and the representa-
tion of natural form. 28(3):293-331, May 1986.

Alex P. Pentland. A new sense for depth of field. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 9(4),
July 1987.

Philip I. Plimmer. Common sense reasoning about physical
devices. Victoria University of Wellington Research Project
Report, October 1985.

R. J. Popplestone. Relational programming. In J.E. Hayes,
D. Michie, and L.I. Mikulich, editors, Machine Intelligence 9,
chapter 7. Ellis Horwood, 1979.

174

[Pug82]

[Rai86]

[RCS6]

[RJ88]

[RKHS?5]

[RS8S]

[RT82]

[Rus84]

[RV82]

[Sac87]

Alan Pugh. Second generation robotics. In Proceedings 12th In-
ternational Symposium on Industrial Robots, 6th International
Conference on Industrial Robot Technology, 1982.

Olivier Raiman. Order of magnitude reasoning. In Proceedings
of the National Conference of the American Association for
Artificial Intelligence, 1986.

A. A. G. Requicha and S. C. Chan. Representation of geometric
features, tolerances, and attributes in solid modelers based on
constructive geometry. IEEE Robotics and Automation, 2(3),
1986.

A. Ravishankar Rao and Ramesh Jain. Knowledge represen-
tation and control in computer vision systems. IEEE Ezpert,
March 1988.

Whitman Richards, Jan J. Koenderink, and D. D. Hoffman.
Inferring 3D shapes from 2D codons. Al Memo 840, MIT Al
Lab, April 1985.

Gudula Retz-Schmidt. Various views on spatial prepositions.
Al Magazine, 9(2), 1988.

M. H. Raibert and J. E. Tanner. A VLSI tactile array sen-
sor. In Proceedings 12th International Symposium on Indus-
trial Robots, 6th International Conference on Industrial Robot
Technology, 1982.

Paul M. Russo. Intelligent Robots: Myth or Reality, chapter 16.
The AI Business: The Commercial Uses of Artificial Intelli-
gence. MIT Press, 1984.

A. A. G. Requicha and H. B. Voelcker. Solid modeling: A his-
torical summary and contemporary assessment. IEEE Com-
puter Graphics and Applications, 2(2), March 1982.

Elisha Sacks. Hierachical reasoning about inequalities. In Pro-
ceedings of the National Conference of the American Associa-
tion for Artificial Intelligence, pages 649654, 1987.

175

[SB87]

[SFS6]

[Shm86]

[Sie86]

[Sim82]

[Sim86]

[SJ85]

[SL83]

[SLK86]

[SMS87]

Sargur N. Srihari and Radmilo M. Bozinovic. A multi-level
perception approach to reading cursive script. In Proceedings
International Joint Conference on Artificial Intelligence, 1987.

Devika Subramanian and Joan Feigenbaum. Factorization in
experiment generation. In Proceedings of the National Con-
ference of the American Association for Artificial Intelligence,
1986.

James G. Shmolze. Physics for robots. In Proceedings of the
National Conference of the American Association for Artificial
Intelligence, 1986.

David Mark Siegel. Contact sensors for dextrous robotic hands.
Technical Report 900, MIT AI Lab, June 1986.

Reid Simmons. Spatial and temporal reasoning in geologic map
interpretation. In Proceedings of the National Conference of the
American Association for Artificial Intelligence, 1982.

Reid Simmons. “Commonsense” arithmetic reasoning. In Pro-
ceedings of the National Conference of the American Associa-
tion for Artificial Intelligence, 1986.

Alberto Maria Segre and Gerald De Jong. Explanation-based
manipulator learning: Acquisition of planning ability through
observation. In Proceedings IEEE Conference on Robotics and
Automation, pages 555-560, 1985.

M. Selfridge and A. Levas. Teaching robots by example. In Pro-
ceedings 13th International Symposium on Industrial Robots,
and Robots 7, volume 2, Dearborn Michigan, April 1983.
Robotics International of SME.

Michael O. Shneier, Ronald Lumia, and Ernest W. Kent.
Model-based strategies for high-level robot vision. Computer
Vision, Graphics, and Image Processing, 33(3):293-306, March
1986.

Marc G. Slack and David P. Miller. Path planning through time
and space in dynamic domains. In Proceedings International
Joint Conference on Artificial Intelligence, 1987.

176

[SS86]

[SS88]

[ST87]

[Sta83a]

[Sta83b]

[Sug86]

[Sus75]

[SV86]

[Ten86]

[TKO82]

A. Sharma and S. A. R. Scrivener. Constructing 3-D object
models using multiple simulated 2.5-D sketches. International
Journal of Man-Machine Studies, 24(6):633—-644, June 1986.

Mark Segal and Carlo H. Sequin. Partitioning polyhedral ob-
jects into nonintersecting parts. IEEE Computer Graphics and
Applications, 8(1), January 1988.

Sergio W. Sedas and Sarosh N. Talukdar. Disassembly plan-
ner for redesign. Internal document from Engineering Design
Research Center, Carnegie Mellon University, 1987.

Craig Stanfill. The decomposition of a large domain: Reasoning
about machines. In Proceedings of the National Conference
of the American Association for Artificial Intelligence, August
1983.

Craig Stanfill. Form and Function: The Representation of Ma-
chines. PhD thesis, University of Maryland, 1983.

Kokichi Sugihara. Machine Interpretation of Line Drawings.
The MIT Press Series in Artificial Intelligence. MIT Press,
Cambridge, Massachusetts, 1986.

Gerald Jay Sussman. A Computer Model of Skill Acquisition.
Elsevier, 1975.

M. Selfridge and W. Vannoy. A natural language interface to a
robot assembly system. IEEE Robotics and Automation, 2(3),
1986.

Josh Tenenburg. Planning with abstraction. In Proceedings
of the National Conference of the American Association for
Artificial Intelligence, 1986.

J. P. Trevylan, P. D. Kovesi, and M. C. H. Ong. Techniques
for surface representation and adaptation in automated sheep
shearing. In Proceedings 12th International Symposium on

Industrial Robots, 6th International Conference on Industrial
Robot Technology, 1982.

177

[TO83]

[TPBS1]

[Tre79]

[TST82]

[Vil84]

[VP86]

[VWS86]

[WAS85]

[Wel87]

[WFS6]

Masaharu Takano and Gotaro Odawara. Development of new
type of mobile robot TO-ROVER. In Proceedings 13th Inter-
national Symposium on Industrial Robots, and Robots 7, vol-
ume 2. Robotics International of SME, 1983.

K. Takase, R. P. Paul, and E. J. Berg. A structured approach
to robot programming and teaching. IEFE Transactions on
Systems, Man, and Cybernetics, 11(4), April 1981.

Kenneth R. Treer. Automated Assembly. Society of Manufac-
turing Engineers, Dearborn, Michigan, 1979.

P. M. Taylor, K. K. W. Selke, and G. E. Taylor. Closed loop
control of an industrial robot using visual feedback from a sen-
sory gripper. In Proceedings 12th International Symposium on
Industrial Robots, 6th International Conference on Industrial
Robot Technology, 1982.

Philippe Villers. Intelligent Robots: Moving toward Megassem-
bly, chapter 15. The AI Business: The Commercial Uses of
Artificial Intelligence. MIT Press, 1984.

Raul E. Valdes-Perez. Spatio-temporal reasoning and linear
inequalities. AT Memo 875, MIT AI Lab, May 1986.

W. K. Veitschegger and C. H. Wu. Robot accuracy analysis
based on kinematics. IEEE Robotics and Automation, 2(3),
1986.

Harry West and Haruhiko Asada. A method for the design of
hybrid position/force controllers for manipulators constrained
by contact with the environment. In Proceedings IEEE Con-
ference on Robotics and Automation, 1985.

Daniel S. Weld. Comparative analysis. In Proceedings Interna-
tional Joint Conference on Artificial Intelligence, 1987.

E. K. Wong and K. S. Fu. A hierachical orthogonal space
approach to three-dimensional path planning. IEEE Robotics
and Automation, 2(1), March 1986.

178

[WHKSS]

[Wils4]

[Wil86]

[WL85]

[WLPL*80]

[WMS1]

[Woj87]

[Woo84]

[WP84]

[Wri83]

Ellen L. Walker, Martin Herman, and Takeo Kanade. A frame-
work for representing and reasoning about three-dimensional
objects for vision. AI Magazine, 9(2), 1988.

Brian C. Williams. Qualitative analysis of MOS circuits. In
D. G. Bobrow, editor, Qualitative Reasoning about Physical
Systems. Elsevier Science Publishers, 1984.

Brian C. Williams. Doing time: Putting qualitative reasoning
on firmer ground. In Proceedings of the National Conference of
the American Association for Artificial Intelligence, 1986.

M.C. Wu and C.R. Liu. Automated process planning and ex-
pert systems. In Proceedings IEEE Conference on Robotics and
Automation. IEEE Computer Society Press, March 1985.

M. A. Wesley, T. Lozano-Perez, L. I. Lieberman, M. A. Lavin,
and D. D. Grossman. A geometric modelling system for au-
tomated mechanical assembly. IBM Journal of Research and
Development, 24(1), January 1980.

M. A. Wesley and G. Markowsky. Fleshing out projections.
IBM Journal of Research and Development, 25(6), November
1981.

Zbigniew Wojcik. Rough approximation of shapes in pattern
recognition. Computer Vision, Graphics, and Image Process-
ing, 40(2), November 1987.

Tony C. Woo. Interfacing solid modelling to CAD and CAM:
Data structures and algorithms for decomposing a solid. IEEE
Computer, December 1984.

Patrick H. Winston and Karen A. Prendergast. From the Blocks
World to the Business World, chapter 22. The AI Business:
The Commercial Uses of Artificial Intelligence. MIT Press,
1984.

Allen J. Wright. End effector technology and programmed au-
tomatic exchange. In Proceedings 13th International Sympo-
stum on Industrial Robots, and Robots 7, volume 2, Dearborn
Michigan, April 1983. Robotics International of SME.

179

[xZ87] Wei xiong Zhang. Goal-level automatic robot programming —
system and approach. In Proceedings Australian Joint Confer-
ence on Artificial Intelligence (A1’87), November 1987.

[Yea85)] W. K. Yeap. An ASR [absolute space representation| of the en-
vironment. Technical report, Department of Computer Science,
University of Otago, Dunedin, N.Z., 1985.

[YFK84] Hiroshi Yoshiura, Kikuo Fujimura, and Tosiyasu L Kunii. Top-
down counstruction of 3D mechanical object shapes from engi-
neering drawings. IEEE Computer, December 1984.

[Yin87] B. Yin. Using vision data in an object-level robot language —
RAPT. International Journal of Robotics Research, 6(1), 1987.

[Zad79] L. A. Zadeh. A theory of approximate reasoning. In J.E. Hayes,
D. Michie, and L.I. Mikulich, editors, Machine Intelligence 9,
chapter 7. Ellis Horwood, 1979.

180

