
Presented at ICMC 2000, Berlin: Workshop on Notation and Music Information Retrieval in the Computer Age

Cognitive Dimensions and Musical Notation Systems

Alan F. Blackwell Thomas R.G. Green Douglas J.E. Nunn
Computer Laboratory Computer Based Learning Unit Audio and Music Technology
Cambridge University University of Leeds Anglia Polytechnic University

Alan.Blackwell@cl.cam.ac.uk Thomas.Green@ndirect.co.uk D.J.E.Nunn@anglia.ac.uk

Introduction
This paper approaches music notation as one example of a more general class of notation systems.
Our work on notation systems was originally motivated by the need to understand the factors affecting
the usability of programming languages (Blackwell 1996, Green & Petre 1996). Since then we have
considered an increasingly wide range of usability problems, some of which would not normally be
considered as notations, let alone programming languages (Green & Blackwell 1998, Blackwell &
Green 1999). A recent study of users of a music typesetting package (Blackwell & Green 2000) has
convinced us that music notation does indeed share the characteristics of the other notations that we
have investigated. This paper presents our case for a new approach to the usability of music notation,
using the results of that study as supporting evidence.

Notational systems: definition
Our research is concerned with the generic class of notational systems. A notational system includes
two main elements: a notation, and an environment (tools, editors) for manipulating that notation.
Notations are information-carrying representations. They usually have a set of rules for constructing
them and interpreting them. We recognise many kinds, including mathematical expressions,
diagrams, maps, timetables, human languages and of course music notation.

The environment for manipulating a notation can be a computer editor, but also includes ordinary
physical tools or materials. Pencil and paper, along with many accessories (erasers, scissors, paste,
rulers …) are a familiar environment that can be used to manipulate a wide range of notations. Even
pencil and paper notational systems have many interesting properties – for example the creative
options available to a composer may be significantly altered if he or she has left home without an
eraser. The effect of computer editors is far more interesting. In some cases, a notation and an editor
for creating it evolve together. In other cases, the notation is given by cultural context, and the
challenge is to create an editor that will assist users to manipulate the notation effectively. Both
phenomena have been observed in the development of music notation software. Both may have
radical effects on the potential offered to musicians by the software. The analysis of these effects
might broadly come under the heading of “usability”, though we really go much further than traditional
approaches to assessing usability.

Assessing the usability of an editor
There are clearly a huge range of musical technologies that fall within our definition of notational
systems. Not only conventional staff notation and typesetting software, but chord names, tablature,
sequencer charts, MIDI patch controls, waveform editors, and the playlists in an MP3 player are all
musical notations. They are aimed at very different classes of user, but all of them can be used for
making music. How can users choose a notational system that meets their needs, and how can
designers create new alternatives or improve the systems that they build?

Conventional evaluation techniques in Human Computer Interaction (HCI) are aimed at clearly-
defined tasks, such as ‘delete a word’. Faced with music, they fall short. Composition is not a clearly-
defined task; it requires sketching out possibilities, additions, deletions, firming up sketchy ideas,
building up skeletons and so on. Moreover, staff notation, like a programming language, contains
many subtleties. Frequently, one passage must echo another while being different (a theme returning
in a modified form); a musical structure must be adhered to; dependencies between the parts
(harmonic or rhythmic) must be observed; and so on.

Blackwell, Green & Nunn 2

Presented at ICMC 2000, Berlin: Workshop on Notation and Music Information Retrieval in the Computer Age

In these respects, music notation has much in common with a programming language. Most HCI
methods devised for evaluating word-processors fall short when it comes to evaluating programming
environments in exactly the same way that they fall short in evaluating music editors. You wouldn’t
assess the programmer’s editor EMACS in the same way as you’d assess a simple word-processor,
because it has a different purpose and it works on different material.

However, there is one HCI evaluation method that is specifically intended to evaluate systems such
as programming languages; that is, systems in which creative design is an important activity and in
which complex structures are being built and modified. That system is called the ‘Cognitive
Dimensions’ framework. First described by Green (1989) in rather general terms, it was applied to a
sample of visual programming environments by Green and Petre (1995) and has subsequently been
applied to a wide range of usability problems (Green & Blackwell 1998). We describe here how that
system can be applied to musical editing systems.

Cognitive Dimensions in a Nutshell
Aim: Cognitive Dimensions (CDs) do not offer highly detailed analyses, predictions of time taken for
simple tasks, etc. Instead, they offer quick analyses that relate the typical user’s activity, the structure
of the notation, and the design of the editing system. These analyses can reveal mismatches which
can (and frequently do) provoke designers into further thought about improvements, as well as
providing a vocabulary with which users can identify and express usability concerns. The motto is:
quick but provocative.

Procedure: The first step is to consider the typical user’s activities at a generic level. We distinguish 6
activities, among them: transcription (e.g. writing out a score in a different key); search (e.g. finding all
the occurrences of a theme or motif); and creative design. Each of these activities has a desirable
profile of cognitive dimensions, which we consider next.

Cognitive Dimensions: The dimensions are the nub of this approach but we shall not go through them
in detail. Each dimension relates to the notation (programming language, staff notation, lute tablature,
or whatever) as operated on by the editor. The same notation may appear to have very different
usability characteristics when viewed in one editor or another.

To get an idea of how they work, here are some example dimensions (A full description, with multiple
examples and applications, is provided in Green & Blackwell 1998):

Viscosity is the work required in making a local change to the notation. Viscosity depends on the
notation: usually easy in a programming language like Basic (at a cost), sometimes hard in
Modula (depending on the change). Viscosity also depends on the editor: smart editors like
EMACS can reduce viscosity, but at a cost in abstractions (see below).

Hidden dependencies are where changing one thing surreptitiously changes another. This is
widespread in textual programming languages because expressions import values, types, data
structures, etc. Graphical programming languages can use data flow lines to make dependencies
explicit, but at a cost in diffuseness (see below).

Premature commitment occurs when users have to make their minds up too early: what
identifiers does this program need? Frequently a problem when writing a program with pen and
paper. Text editors reduce viscosity (they allow afterthoughts more easily than paper does) so
premature commitment is less of a problem.

Blackwell, Green & Nunn 3

Presented at ICMC 2000, Berlin: Workshop on Notation and Music Information Retrieval in the Computer Age

Diffuseness is a
measure of how
much or little can be
said in a few word or
symbols. If a notation
is too terse, it
encourages slips of
the pen; if too
diffuse, it takes too
long to get anything
done. Diffuseness
can be reduced by
abstractions (see
below).

Secondary notation provides a way for the user to add extra information that is not recognised
as part of the formal structure, as with comment lines in a program. Almost all programming
languages provide some sort of comment facility nowadays, but designers of other notational
systems sometimes forget how useful this is.

Abstractions wrap up several symbols into one, or do other similar jobs. They are ways to
change the fundamental notation. They can reduce diffuseness and increase clarity but they are
potentially hard to understand. Moreover, choosing the appropriate abstractions can itself be a
problem (premature commitment); changing them can difficult (viscosity); and changing one
abstraction can lead to unforeseen changes to other ones (hidden dependencies).

This is a reasonably representative sample, but there are many more – 13 (or so), so we won’t go
through them here, let alone describe them in detail.

Subdevices: Abstractions are created,
organised, named or maintained using some
kind of abstraction manager. Sometimes this
is a sophisticated sub-device such as a library
system, sometimes it’s rudimentary,
sometimes it is handled in the same
environment as the main notation; but
however it is handled, it is a sub-device.
Another kind of sub-device is a viewer,
allowing the program structure to be displayed
in a different form (e.g. a cross-referencer).
Sub-devices have their set of values on the
dimensions and are used for their own
activities, so they must be evaluated
separately.

Idealised Profiles: for a given activity, there will be an idealised set of requirements. For transcription,
viscosity is not important, nor are hidden dependencies. For creative design, they matter much more.

Evaluation proceeds by relating the profile of a given system to the idealised profile for the typical
user’s activity. Not only the main system but also the sub-devices need to be evaluated. (E.g. Word is
quite a good word processor but the manager for defining and maintaining style definitions is very
hard to use.)

Remember that no dimension is good or bad on its own. It can only be evaluated when the user’s
activities are known. Furthermore there is no perfect system for all purposes – changing one
dimension often has resulting trade-off effects on others. The dimensions describe the potential
design options, but are not a panacea for usability.

000230-GENERATE-KEY.
*
* ** NUMBERS 214031, 2531017 AND 999999937 ARE PRIME **
COMPUTE RNG-SEED = RNG-SEED * 214031 + 2531017.
DIVIDE RNG-SEED BY 999999937 GIVING RNG-TEMP REMAINDER RNG-SEED.
MOVE RNG-SEED TO ST-ENT-FLD1(ST-I).

000230-EXIT.
EXIT.

Extract of Cobol source code for Random Number Generator

void GenerateKey(void)
{
RngSeed = RngSeed*214031+2531017;
RngSeed %= 999999937;
StEntFld1[st-i] = RngSeed;
}

Equivalent C source code

Goldwave audio editor, showing ‘expression evaluator’ sub-
device with entirely different notation.

Blackwell, Green & Nunn 4

Presented at ICMC 2000, Berlin: Workshop on Notation and Music Information Retrieval in the Computer Age

Cognitive Dimensions and Music Systems
Common Practice Notation with pencil and paper has high viscosity (editing requires an eraser), a few
abstractions (such as key signature, ornaments, and tablature), a few hidden dependencies (changing
a key signature changes the notes), some premature commitment (a new instrument cannot be added
in its logical position unless a blank stave was left), and is quite diffuse (no way to write “play broken
chords in a simple sequence until the singer starts”). Tonic sol-fa reduces the viscosity in some ways
(easy to change the key – which reduces the cost of the premature commitment).

Let us now consider a generic software sequencer. Sequencers offer several views, usually including
a ‘piano-roll’, staff notation, and an event list; all of these can be edited.

In general, viscosity is low – as there are multiple views of the same data, it can be changed easily in
the most appropriate view. However, in some sequencers, the piano-roll notation may not show the
note velocities. Even recent sequencers usually show them separately. Typically the interval between
a note offset and the next onset cannot be displayed or edited directly.

There are few hidden dependencies. However, controller messages on one track may affect how
other tracks play. Some sequencers allow a block of data to be repeated (e.g. using ‘ghost parts’ in
Cubase), in which case editing the data affects all the copies of it.

Premature commitment is low, as the work can be built in any order, although where audio files are
involved, we must typically first choose whether the work is destined for 44100 or 48000 Hz.

Usually diffuseness is low, as the MIDI data displayed is a fairly concise description. Arguably,
though, a crescendo mark would be much briefer than a series of controller changes.

The printed score may
include secondary
notation, such as
expression or ornament
marks. An ideal music
system might recognise
the meaning of these
marks, and modify the
performance appropriately, but here they are like comments in a program: meaningful to the human
reader, but the readers interpretation of the printed notation differs from the MIDI data to be played.

A typical sequencer usually has many sub-devices, each with their own methods of control. These
include dialogue boxes, software mixers, plug-in effects and synthesisers, ‘in-line’ MIDI processors,
and so on.

Secondary notation – expression marks and ornaments

Blackwell, Green & Nunn 5

Presented at ICMC 2000, Berlin: Workshop on Notation and Music Information Retrieval in the Computer Age

The CD framework also applies to other
programs. Let’s compare two software
synthesisers, Csound and Audio Architect.
Csound, like other acoustic compilers, uses a
very terse description. Audio Architect has a
graphical interface that reveals some otherwise
hidden dependencies, but relies on Windows
dialogue boxes for data entry, thus reducing
visibility.

Comparison of Programming Notations and Music Notation
In order to test our hypothesis that the usability of music notation systems can be assessed in the
same way as the usability of programming languages, we constructed a questionnaire that allowed
system users to consider the usability of their systems in the terms offered by the Cognitive
Dimensions framework. The questionnaire approach has important advantages over methods such as
watching users, analysing keystrokes, or analysing audio/video recordings of computer use, because
it allows experienced users directly to convey their own experiences of the software.

We gave this questionnaire to eight programmers and eight music academics, and compared their
responses to see whether their usability concerns were similar (Blackwell & Green 2000). The
programmers described their experiences with the usability of a range of programming systems, while
the music academics considered music typesetting packages. Both programmers and music
academics were able to criticise the systems they use in response to a reasonably concise
description of the cognitive dimensions, and the descriptions were mostly acceptably clear. In fact
music academics were more productive than programmers in their ability to reflect on the potential
modifications that could be made to their tools. This is very encouraging. The detailed results of that
study are available in the paper referenced below, which can be found online. The same
questionnaire will be distributed at this ICMC and results presented in a future paper.

Acknowledgements
Alan Blackwell’s research is funded by the Engineering and Physical Sciences Research Council
under EPSRC grant GR/M16924 “New paradigms for visual interaction”.

w 0 68
f 1 0 0 512 512 10 15 10 6 9 4 5 2 8 3 2 1 3
f 2 0 0 513 513 5 0.001 512 1
f 3 0 0 512 512 10 15 12 8 9 4 5 3 4
f 0 1 .882353
s
w 0 60
i 1 0 0 0.5 0.5 9.04 3400 0.02 0.03
i 2 0 0 0.5 0.5 9.01 3400 0.02 0.03
i 3 0 0 1 1 8.09 3400 0.02 0.03
i 4 0 0 0.5 0.5 8.01 3400 0.02 0.03
i 5 0 0 0.5 0.5 7.09 3400 0.02 0.03
i 7 0 0 1 1 7.09 3400 0.02 0.03
i 8 0 0 1 1 6.09 3800 0.02 0.03
(etc.)

sr = 22050
kr = 441
ksmps = 50
nchnls = 1

 ;p4 amps here doubled
; guitar

instr 1
kamp linseg 0.0, 0.015, p4*2, p3-0.065, p4*2, 0.05, 0.0
asig pluck kamp, p5, p5, 0, 1
af1 reson asig, 110, 80
af2 reson asig, 220, 100
af3 reson asig, 440, 80
aout balance 0.6*af1+af2+0.6*af3+0.4*asig, asig

out aout
endin

Csound score and orchestra files

Audio Architect

Blackwell, Green & Nunn 6

Presented at ICMC 2000, Berlin: Workshop on Notation and Music Information Retrieval in the Computer Age

References
Blackwell, A.F. & Green, T.R.G. (2000). A Cognitive Dimensions questionnaire optimised for users. In A.F.

Blackwell & E. Bilotta (Eds.) Proceedings of the Twelth Annual Meeting of the Psychology of Programming
Interest Group, 137-152

Blackwell, A.F. & Green, T.R.G. (1999). Investment of attention as an analytic approach to Cognitive Dimensions.
In T.R. G. Green, R. Abdullah & P. Brna (Eds.) Collected Papers of the 11th Annual Workshop of the
Psychology of Programming Interest Group (PPIG-11), pp. 24-35.

Blackwell, A.F. (1996). Metacognitive theories of visual programming: What do we think we are doing?
Proceedings IEEE Symposium on Visual Languages. Los Alamitos, CA: IEEE Computer Society Press, pp.
240-246.

Green, T.R.G. & Blackwell, A. F. (1998). Cognitive Dimensions of information artefacts: a tutorial. Version 1.2,
October 1998. (revision of “Cognitive Dimensions of notations and other Information Artefacts” at HCI’98)
Available at http://www.ndirect.co.uk/~thomas.green/workStuff/Papers/

Green, T.R.G. & Petre, M. (1996). Usability analysis of visual programming environments: a 'cognitive
dimensions' approach. Journal of Visual Languages and Computing, 7,131-174.

Green, T.R.G. (1989). Cognitive dimensions of notations. In A. Sutcliffe & L. Macaulay (Eds.), People and
Computers V. Cambridge University Press.

Several of these publications are available online, from:
http://www.cl.cam.ac.uk/~afb21/publications/index.html

