
PPIG 2003 Blackwell: Tangible Programming 391

Cognitive Dimensions of Tangible Programming Languages
In Proceedings of the First Joint Conference of EASE and PPIG 2003, pp. 391-405

Alan Blackwell

Computer Laboratory
University of Cambridge

afb21@cl.cam.ac.uk

Abstract
We have in the past described several approaches to programming with tangible interfaces –
both complete programming languages implemented in physical form, and simpler physical
interfaces (for example the front panels of domestic appliances) that have some programmable
capabilities. In this paper, we explore the more generic possibilities of tangible interfaces as a
basis for programmable functionality. Our specific target is the development of a query
language that can be used in school classrooms, based on physical elements that contain radio
frequency ID (RFID) tags. This research project is still in progress, but an important early
stage has been a theoretical analysis, based on the Cognitive Dimensions of notations (CDs)
framework, that has provided guidance regarding what kinds of programming might be
feasible using such an interface. This is a novel use of the CDs framework, insofar as it does
not aim to evaluate a specific kind of interface, but rather investigates what kinds of interface
we might imagine making. We believe this to be a valuable perspective for the design of non-
WIMP interfaces and other ubiquitous computing innovations.

1. Introduction
There has been a steady trickle of proposals for programming languages where the basic elements of
the language are not displayed on a screen, but are actual physical objects. The AlgoBlocks system
(Suzuki & Kato 1995) is a paradigmatic example. In AlgoBlocks, lexical elements of the LOGO
language were assigned to sealed metal boxes, about 20 cm on each side. These could be assembled
by plugging each block, via connectors on the sides, into neighbouring blocks. A complete LOGO
program could be constructed by assembling a sufficient number of blocks on a tabletop.

The physical assembly approach to computer interfaces that was applied in AlgoBlocks had earlier
been pioneered by researchers such as Aish (1979), who built a system of intelligent modelling bricks
that could communicate with each other and with a host computer to describe their own arrangement
in three dimensions, and thus be used as a basis for 3D solid modelling. Physical or “tangible”
interfaces such as AlgoBlocks and Aish’s system are now becoming quite familiar through the prolific
work of Ishii’s Tangible Media Group at MIT (e.g. Lee et. al. 2000, Patten et. al. 2000), and in a
variety of initiatives (such as the European “disappearing computer” programme, Weiser’s
“ubiquitous computing”, and AT&T Research “sentient computing”) that integrate computational
interactions into the physical environment.

PPIG 2003 Blackwell: Tangible Programming 392

1.1 Defining Tangible User Interfaces

These Tangible User Interfaces (TUIs) are mainly distinguished by the fact that they are an alternative
(or supplement) to conventional display and input devices such as CRT/LCD monitors, keyboards,
mice, styli, touchpads, trackballs etc. Conventional user interfaces are mainly designed for text entry
and display, supplemented by 2D graphics and a pointer control device. Although the keyboard and
pointer control devices of conventional user interfaces are physical objects, they are not considered
TUIs. TUIs must also be distinguished from the virtual reality paradigm, where imaginary objects are
rendered in 3D, possible “immersive” (filling the whole field of view) and controlled by sensing the
position of the user’s body, head, or hands. TUIs, in contrast to either of these conventional
alternatives, employ actual physical objects that can be grasped, positioned and manipulated in the
real world. A variety of sensing devices can be used to detect the position of these objects, and feed
their configuration back to a host computer.

Few TUIs aspire to the status of AlgoBlocks as a complete programming language. Nevertheless,
there seems to be an intuitive appeal around the idea of building a computer program out of
something like Lego bricks (Resnick et. al. 1996). Unfortunately, there are substantial technical
challenges and expense involved in creating a large number of intelligent components with connectors
that are both physically and electrically robust. As a result the current programmable Lego product
(Mindstorms) simply puts a single microprocessor into a single brick, rather than composing a
programme out of multiple bricks, and the programming is done on screen then downloaded, rather
than assembled from Lego bricks (it is not, in fact, a TUI). In contrast, our Media Cubes system for
domestic programming (Blackwell and Hague 2001) is one example of a programming language that
is built solely out of tangible elements, as was the case with AlgoBlocks.

1.2 The WEBKIT Project

Based on earlier reports of our work on Media Cubes, we were invited to join WEBKIT, a European
research consortium with a very specific emphasis on physical user interfaces for querying the world-
wide web. The WEBKIT proposal had already specified an application area (school classrooms) and a
communication technology (radio frequency identification, or RFID) that would be used to implement
the interface. As these decisions had been taken before we joined the project, our first action was to
carry out an analysis of the interaction possibilities that these constraints might allow. The actual
functionality of the TUI had not been determined, although the proposal assumed some form of query
language. The application of the query language was unclear – it might be used purely for information
retrieval, for scripting, for data collection or presentation of authored material. Our theoretical
analysis was intended to identify any design constraints that would influence this decision on grounds
of feasibility.

This paper reports the results of that analysis. It is instructive not only as design research relevant to
tangible user interfaces, but also as an example of a design that is being carried out from first
principles, based on Cognitive Dimensions (CDs) analysis (Green 1989, Green & Petre 1996,
Blackwell & Green 2003).

2. The Analytic Framework
The transition from graphical user interfaces to tangible interfaces, like the historical transition from
textual to graphical interfaces, is motivated by concerns of usability. The intention is that tangible

PPIG 2003 Blackwell: Tangible Programming 393

user interfaces (TUIs) should make human interaction with a computer more efficient or effective for
some purposes, just as GUIs did. However, much of the development of GUIs has actually proceeded
without direct consideration of relevant psychological research, relying instead on popular intuitions
such as “a picture is worth a thousand words”. This tendency in GUI research has been criticised at
length (Blackwell 1996), and encourages unsafe assumptions that can be disproven experimentally
(Green, Petre & Bellamy 1991, Blackwell 2001).

The same tendency is now apparent in recent research into TUIs. As in earlier GUI research
publications, claims regarding the cognitive benefits of tangible interface are often based on loosely
defined and vague ideals such as “natural and intuitive” (e.g. Koike et. al. 2000, Lertsithichai &
Seegmiller 2001) rather than empirically supported cognitive theory. Similar ideals motivated the
WEBKIT project, whose title “intuitive physical interface to the world-wide web” is phrased as an
assumption, rather than a research question.

In this paper we consider the cognitive properties of TUIs from different perspectives, corresponding
in broad terms to the linguistic analysis levels of lexicon, syntax and semantics. At the lexical level,
the cognitive properties that are relevant to TUIs relate to their status as manipulable indexes and
mnemonic cues. At the syntactic/semantic level, the TUI constitutes a notational convention for a
physical query language that can be explored using Cognitive Dimensions.

At each level, we use the terms “textual”, “graphical” and “tangible” for the convenience of
researchers familiar with these terms in the computer science context. They do not have a simple one-
to-one correspondence with cognitive processes. Reading a book, for example, employs linguistic
processes, processes of visual perception, and physical manipulation skills. Even “textual” computer
systems share these characteristics, so the cognitive properties of TUIs must be explored without
assuming any necessary difference between human use of text, graphics and tangible interfaces.

2.1 Lexical Level: Tangible Symbols

Writing systems are distinguished according to whether they are alphabetic (using more-or-less
phonetic spelling) or ideographic (using a symbol to represent a concept). The lexical elements of
graphical user interfaces combine ideographic elements (icons) with alphabetic elements (labels). This
provides a number of benefits to the user:

 some visually distinctive icons can be located easily during visual search (the “pop-out”
effect)

 associating an image with a verbal stimulus can enhance memory (the “dual-coding” effect)

 presenting alternatives on the screen can improve memory retrieval (“recognition versus
recall”)

However the use of picture-plus-image codes in GUIs also brings some disadvantages:

 They require more screen area, so users must scroll to see them

 graphic vocabulary conventions are less well developed than verbal language, so icons other
than literal pictures may have reduced neural activation levels.

These advantages and disadvantages are likely to be exaggerated in tangible user interfaces

PPIG 2003 Blackwell: Tangible Programming 394

 It is likely that manipulation of physical objects will further enhance mnemonic effects by
multiple encoding

 But 3D arrangements of tangible items reduces retrieval performance with respect to 2D
arrangements (Cockburn & McKenzie 2002)

 Reaching to grasp a close physical object can be faster than moving a mouse pointer

 But moving to grasp a physical object that is out of reach is slower than scrolling a GUI
window

 We have relatively few conventional physical symbols, other than the conventions of literal
scale representation used in physical models.

The potential difficulties in using a tangible lexicon were anticipated over 200 years ago by Swift in
Gulliver’s Travels. The foolish professors of Lagado claim “that since Words are only Names for
Things, it would be more convenient for all Men to carry about them, such Things as were necessary
to express the particular Business they are to discourse on.” (Swift 1726, part 3, chapter 5). The idea
that people ought to carry huge collections of objects in order to save effort in talking is no more
sensible than the idea that TUIs are inherently superior to GUIs.

These observations from previous research lead us to conclude that the use of physical symbols in
TUIs will provide few benefits at the lexical encoding or retrieval level. There may be a slight
mnemonic advantage resulting from further modalities of encoding, but these are likely to be
compromised by the reduction in efficiency and exploitation of symbolic conventions that results
from the constraints of physical icons. At the lexical level, we conclude that TUIs will not be
“natural” or “intuitive” as intended for the WEBKIT project – these advantages must be sought at the
syntactic, or semantic levels.

2.2 Syntactic/Semantic Level: Tangible Notational Systems

In spoken language, most syntactic structure is carried through “one dimensional” arrangement of the
lexical items into a temporally ordered sequence. The placement of lexical items within this ordered
context carries meaning, so both syntax and semantics are determined by the ordering relations before
and after. The ways in which we can use spoken language are restricted by the structural ground of
syntax – one word must appear either after or before another, and it is not possible modify the start of
a spoken sentence once the speaker has moved on (words cannot be “un-said”).

Textual computer languages are also interpreted by the computer as a simple sequence, although use
of special layout characters within that sequence (such as linefeed to mark the end of a syntactic unit)
are seen by human readers as introducing a second dimension of arrangement on the page (the
relations left, right, up and down). Furthermore, computer languages are entered using editors that
allow changes to be made to earlier parts of the sequence (unlike spoken languages, text on a screen
can be “un-said”). These factors allow human writers to add extra information, for example by lining
up corresponding pieces of text underneath each other. When considered as a notational system, this
flexibility allows new possibilities for syntactic structure and corresponding semantic richness.

Graphical languages provide for a far greater range of relationships between their elements, including
connection, intersection, topological inclusion, superimposition and others. Different graphical
languages choose to exploit some of these graphical variables (Bertin 1981) for syntactic purposes,

PPIG 2003 Blackwell: Tangible Programming 395

but not necessarily all of them. A well-designed graphical notational system provides editors and
syntactic/semantic conventions that are easily used by human writers (e.g. not constraining the order
in which the notation is constructed, or making it too difficult to change) and readers (e.g. exploiting
the visual relationships between the elements to express consistent meanings).

The possible applications of graphical notations have been thoroughly analysed from a variety of
perspectives, including Bertin’s graphical semiotics (Bertin 1981) as well as Green’s CDs. Some of
these analyses are applicable to tangible notation systems, as discussed below. In general, Bertin’s
analysis forms a foundation for CDs, insofar as it specifies the form of the notational medium.

3. “Notational Variables” of Tangible Notations
Bertin, in a framework since updated by MacEachren (1995) and Engelhardt (2002), analysed the
information-carrying properties of graphical displays in terms of the conventions of ink placement on
a page. Variously called “graphical variables” or “variables of the plane”, they include size of marks,
their orientation, colour, texture etc. in addition to their position within a 2D coordinate frame. Each
of these variables can be made to correspond to a dimension of information, with some restricted to
expressing categorical or ordinal relations rather than the ratiometric relations of a continuous
positional dimension.

The domain of physical, tangible, objects is, of course, far more complex than the domain of ink
distribution. Every sensible property of the physical world could be used to express information, and
it is hard to predict which of these may be exploited in tangible interfaces of the future. Guided by
Bertin and his successors, this section attempts an initial survey by adaptation of that structure.

3.1 Positional Variables

The most obvious distinction between the two dimensional plane and the three dimensional physical
world is the increased number of positional variables in the physical world. If physical objects are
placed on a flat surface, they can be used in all the ways defined for the plane. In addition to use of
the plane, physical objects can be placed at different elevations above the flat surface. This is however
a restricted dimension as (unlike virtual reality representations), objects can only be placed above the
surface if resting on another object. This is often characterized as offering 2.5 dimensions rather than
3 dimensions of positional freedom. The restriction is analogous to the restriction on spoken language
– it is possible to add another word after one that has already been spoken, but it is not possible to add
a word before one that has already been spoken. Interestingly, it is also possible to achieve the same
effect to some extent in a 2D representation by partially superimposing multiple marks. Gestalt
principles of boundary perception allow us to recognize a small number of such superimposed marks.

3.2 Orientational Variables

Orientation of physical objects also allows, at first sight, a greater number of degrees of freedom, in
that physical objects can be rotated on three different axes. However objects will not rest in arbitrary
orientations on three different axes. They can be rotated in place when resting on a flat surface
(carrying one continuous dimension of information), and can be balanced on any flat side (carrying a
categorical dimension of information) with the restrictions that a) the user must be able to identify the
side, and b) this may interfere with rotational position. Identification is not trivial – if an identification

PPIG 2003 Blackwell: Tangible Programming 396

mark is placed on the flat side concerned, this will not be visible when the object rests on that side.
This can effectively limit the number of available sides to shapes where the human viewer sees a
direct correspondence between the side that it rests on and the side that is labeled (cubes and some
prisms, but not solids with larger numbers of sides at non-orthogonal angles such as icosahedra or
dodecahedra). Rotational position must be encoded by the human viewer in terms of reference points
on the object itself, and also a frame of reference within the environment. The reference points on the
object, furthermore, must be available for unambiguous interpretation regardless of which side the
object is resting on. This restriction has meant that many tangible user interfaces simply use flat
elements with only two possible resting positions – one side or the other side.

3.3 Temporal Variables

The temporal behaviour of physical objects is very different to that of graphical elements. The
position of graphical marks on paper is persistent, whereas the position of physical objects can be
easily modified (unless glued in place). Computer displays allow graphical marks to be moved by the
user, and also to be animated by the computer for a variety of purposes, including restoration of the
display to its state before the user modified it. Tangible displays can be moved by the user, but cannot
usually be animated by the computer. This means that previous states of the display cannot be
restored automatically, and also that tangible interfaces are generally input-only devices. These
temporal characteristics mean that tangible interfaces can either express a single configuration,
created interactively before “freezing” by transfer to the computer, or else a series of configurations,
each of which is transient from the user’s perspective, though they may be stored in the computer.
This use of a temporal sequence to represent sequence is a natural mapping, but has severe
disadvantages, as noted in the Cognitive Dimensions analysis below.

3.4 Structural Variables

The shape of physical objects allows for a wide range of structural variables. Physical objects can be
articulated so that parts of the object move relative to each other. They can also employ fastenings so
that parts can be added or removed. There are hundreds of such mechanical elements, analysed in
frameworks such as Reuleaux’s collection of kinematic pairs (1876). The level of complexity at
which a physical object ceases to be a reconfigurable structural token and becomes a mechanism is
arguable. For the purposes of tangible interfaces, the information carrying potential is probably best
defined by the availability of digital encoding devices such as rotary encoders, strain gauges,
gravitational accelerometers and so on.

3.5 Material Variables

The material properties of physical tokens can also be used to carry information. These could include
density, heat conductivity, surface friction, rigidity, surface hardness and many others, as well as
more familiar sensory codes such as colour, odour etc. Most material properties are a manufactured
feature of a physical object, and cannot easily be altered by users. The space of material properties is
also not fully orthogonal (it is difficult to find materials that are both flexible and have high surface
hardness), limiting the freedom with which they can encode abstract information.

PPIG 2003 Blackwell: Tangible Programming 397

3.6 Surface Markings

In addition to all the properties listed above, physical objects can also have markings placed on their
surface. In most cases such markings are identical to those we consider as textual or graphical
representations - they are not part of the physical object, and have a psychological status independent
of the surface on which they are imposed (Ittelson 1996). This is, of course, a desirable attribute of
many information-carrying objects. Paper is valuable precisely because it facilitates the use of surface
markings with minimal attention to the physical properties of the object. Previous research projects
into tangible interfaces have often found that it is important that users be allowed to make markings
on the surface of the tangible tokens. This is discussed further under the heading of secondary
notation below.

3.7 Design Implications

Physical objects provide a rich set of information-carrying variables. Many of these can be used for
relational purposes, as would be required in constructing a physical programming or query language
as required in WEBKIT. Structural variables are particularly well-suited to carrying relational
information. Orientation can be used to express a small number of categories. Exploitation of these
variables is limited mainly by the Cognitive Dimensions of Notation use (discussed in the next
section), and by the technical limitations of RFID tags (discussed in the section after that).

4. Cognitive Dimensions of Tangible Notations
This section assumes that the reader is familiar with the Cognitive Dimensions of Notations
framework. Research based on the framework has been published many times at this conference in the
past. A recent overview of the framework (with some recent modifications) can be found in Blackwell
and Green (2003), or Blackwell, Britton et. al. (2001). The discussion in this paper does include some
terms that have been added to the framework subsequently to better-known early publications such as
(Green 1989, Green & Petre 1996).

4.1 Medium, Marks and Environment

Tangible user interfaces fall into the class of “transient” notation, in that users do not create
permanent marks. The medium on which the notation is “written” is the medium of space, and
“marks” on that medium result from the presence of an object at a particular spatial location. A
collection of objects arranged in a particular way can thus carry meaning in the same way as a
collection of marks made with a pencil on a piece of paper. Moving any one of the objects changes
the meaning, hence the transience of the notation when compared to paper and pencil, where the
pencil can be removed while leaving the marks. In a more complex transient notation, marks can also
be located relative to each other in time as well as space. This can be regarded as a kind of manual
animation, in which the motion of objects, their removal and addition, all carry meaning. Inspecting
the current state of the objects will reveal only the end product - the meaning of the notational
message can only be revealed by replaying the sequence of actions. In this case, the “marks” of the
notation consist not just of objects, but of events that are located in space and time.

Although the arrangement of physical objects, when used as a notational system, is transient, physical
objects can be used as an interface to create a less transient notation - for example one that is
displayed on a computer screen in response to the user’s manipulation of the objects. In this case, the

PPIG 2003 Blackwell: Tangible Programming 398

notation on the screen is a new notational layer, which can be analysed separately from the transient
arrangement of the physical objects. The notation as it is displayed on the screen is not a tangible
notation in the sense discussed here. It may be a graphical notation, in which case the contribution of
the physical interface can be assessed in terms of whether it makes the manipulation of the graphical
notation more or less difficult than (say) using a mouse to manipulate it.

4.2 Activities

In the classroom context assumed for the WEBKIT project, construction of queries or other scripted
interaction is often likely to involve transcription, as a teacher demonstrates a program that should be
constructed, or students try for themselves programs that have been provided in books.

Students attempting new programs are most likely to do this in a lesson context where they have
access to a record of previous programs that can be used as a template. This will involve transcription
followed immediately by modification to adapt the previous example to the new case.

Neither the languages nor the classroom context are likely to require regular incrementation of
previous programs, other than in the specific teaching strategy where students are provided with
purposely incomplete programs. In this case, the required completion has been anticipated by a
teacher, so will be adapted to the notational environment available.

Search within a specific program is trivial, as the whole program is likely to have only a few
elements. For the same reason, there is little opportunity for exploratory design, as programs are
restricted to a relatively small number of overall structures, and these are of limited complexity.

4.3 Visibility

Transient notations have inherent problems of visibility. If the notation uses space and time as its
medium, a message produced in that notation can only be viewed by viewing a movie of the marking
events. If that movie is paused, the visible display is only a temporal “slice” out of the sequence. It is
very difficult to compare two alternatives (juxtaposability), because the two movies must either be
displayed simultaneously (with the user’s attention divided) or viewed one after another (with the user
remembering all the details in the first while comparing them to the second).

If a tangible interface is used to create a stored expression, the stored version will be invisible as soon
as the tangible objects are moved. It is not normally practical to have the computer move the tangible
objects in order to make visible some stored configuration. The usual solution to this is to introduce
another notational layer that can be viewed on the screen, thereby overcoming the visibility problems
of the tangible notation layer.

4.4 Diffuseness

A common criticism of graphical notations is that they are diffuse – they take up a lot of screen real
estate to convey an equivalent quantity of information to text. This problem is exacerbated in the case
of tangible notations, which take up even more space in three dimensions. Tokens can be made
smaller, but are then difficult to manipulate. The need to choose a fixed size, either large or small,
illustrates another challenge of tangible notations – the scale cannot be zoomed, as physical objects
stay the same size. An advantage over graphical displays is that it is relatively easy to see detail in

PPIG 2003 Blackwell: Tangible Programming 399

context, by attending to local features within a field of view not limited by the size of a screen as
physical objects can be placed all around a room.

4.5 Viscosity

It is easy to modify arrangements of physical objects in space, especially where there are no structural
constraints connecting them. It is far more difficult to modify a sequence of events in time. Once the
sequence has been demonstrated, it is very hard to make a small change to that sequence without
travelling back in time. The only option is to demonstrate the whole sequence again, resulting in
extremely high viscosity.

4.6 Secondary Notation

Spatial arrangement and grouping of tangible elements can provide a valuable channel either for
personal prompting, or to illustrate related teaching objectives. Spatial secondary notation will be
transient in the case of a tangible interface. An important opportunity for persistent secondary
notation is the ability to annotate tangible elements by sticking things onto them, writing on them, or
otherwise changing their appearance in ways that will not change their system status.

4.7 Hidden Dependencies

It is possible to indicate fixed relationships between tangible elements through morphological
similarity, but these require interpretation and search by the user. Transient dependencies can only be
suggested by physical proximity, and even this does not indicate specific properties of the
relationship. Some tangible interfaces have used wiring panels to indicate relationships with physical
connections (Patten, Griffith & Ishii 2000), but these are subject to tangling, making it difficult for
users to trace the connections. There is no convenient tangible equivalent to the ubiquitous node and
link formalism that is used to indicate relationships between independent graphical elements in 2D.
As a result TUIs seem more likely to suffer from hidden dependencies than GUIs.

4.8 Role Expressiveness

The true power of tangible notations lies in their rich correspondence to physical objects used in other
contexts. This provides many opportunities to model elements of the notation on familiar objects, and
thereby exploit the associations of those objects to express the role of that element within the notation.
A great deal of emphasis has been placed in WEBKIT on using objects that are already relevant to the
classroom situation.

4.9 Premature Commitment

As with visibility, this is a serious problem in the case where the notation includes a dynamic element.
If the order in which the user constructs the query notation is itself a part of the notation, then the user
has no choice with regard to the order in which a specific query might be created. This is a
particularly serious form of premature commitment, although it might be acceptable if the only
activity required is transcription (because a given query can then be constructed in order from the
example given). If the notation only involves arrangements of objects in space, rather than ordering of
events in time, this problem will not arise to the same extent.

PPIG 2003 Blackwell: Tangible Programming 400

4.10 Progressive Evaluation

If a tangible interface is used as a manipulation interface for a graphical display, then the display can
give continual feedback regarding the status of the expression being constructed. If the tangible
notation involves any arrangement of objects that must be complete before it can be interpreted, the
separation between the physical objects and computational domain may make it difficult for users to
monitor the results of their work so far. This separation does not occur in a GUI.

4.11 Provisionality

Various strategies are available for provisional arrangement of tangible notations. Objects might be
arranged outside the context in which their positions are sensed, or with the computer interface turned
off. As physical objects are always manipulable, there is no problem in “playing around” while
thinking about potential arrangements. TUIs could well be superior to GUIs in this respect.

4.12 Abstraction

If new functions are assigned to tangible elements, there are quite severe physical limitations on the
types of abstraction that can be expressed. Constant values can be assigned to physical tokens, but
variables and functions are less straightforward. As objects can only be present in one place at a time,
it can be difficult to represent parameter binding, and separating definition from invocation results in
the problems with hidden dependencies and visibility already noted. This is more severe than for
GUIs, where function invocation can be expressed by using some identifier or visual token that relates
the invocation site to the definition site. Those identifiers are copies of some part of the actual
declaration, and as noted previously, it is less straightforward to copy elements of a TUI than of a
GUI.

4.13 Design Implications

Relying on a temporal sequence of object placements results in several serious usability problems that
limit the complexity of tasks that can be undertaken with tangible notation elements. Tangible
elements also provide some notational advantages, but these are most likely to be realized in cases
where sequence of object placement is not the primary syntactic medium. The alternatives are to
distinguish physical positioning of elements, and to allow element configurations to persist beyond
the interactional context. In any case, it is essential that users be provided with some means to
annotate the resulting elements or configurations for their own use.

5. Notational Potential of RFID Tags
The previous sections have described the potential usability benefits of tangible interfaces on the basis
of human manipulation and perception, without concentrating on which manipulation styles can be
sensed by using RFID tags, as chosen in the WEBKIT project. This section reviews the sources of
information that can be used to define the syntactic structure of a TUI, and relates them to this
technology. It is the interaction between these technical constraints and the notational concerns
discussed in the previous sections that finally determine the envelope of possible designs for our
language.

PPIG 2003 Blackwell: Tangible Programming 401

RFID devices have previously been used in a variety of TUI prototypes, and they bring significant
advantages to WEBKIT. They were chosen because they are small and cheap (a few pence each), so
can be used economically in the classroom situation, where unattached components of teaching
hardware are quickly lost. They include no power source (being powered by induction when brought
close to the RFID antenna), so need not include batteries – recharging or replacement of worn
batteries is another major source of difficulty when classroom equipment must be maintained by
teachers.

5.1 Detection of Proximity

RFID aerials are tuned to detect the presence of tags at a specific distance (or detection envelope)
from the aerial – but the detection envelope is a fixed property of the reader, not modifiable under
computer control. This means that the actual distance of a tag from the aerial cannot be determined,
only the fact that it is either within the detection envelope or outside it (with some zone of uncertainty
about the envelope perimeter).

The orientation of a tag relative to the reader cannot be determined. It is possible that some
orientations may reduce electromagnetic coupling so that it appears the tag has moved outside the
detection envelope. This would have the additional consequence that orientation cannot be used for
purposes of secondary notation (as cues to the user).

Multiple readers having relatively small, non-overlapping detection envelopes can be placed in an
array in order to detect relative position of tags (to a resolution determined by the number of aerials).
There is no other means by which an RFID reader can determine spatial position of a tag, beyond the
fact that the tag has or has not been detected within its envelope.

5.2 Detection of Tag Identity

When responding to the detection envelope, all tags transmit a unique ID. If tangible interaction
elements are grouped into classes, it will be necessary to establish the correspondence between a
given tag ID and the class of notational elements to which it belongs.

5.3 Detection of Tag State

Some tags include memory, allowing information to be written to the tag, and echoed back to a
reader. This tag state is not, of course, visible to the user. Tag state is only relevant if the tag is being
used to carry information between computers – if the tag was used only with a single computer, the
state of that tag could be stored in the computer, and indexed by the tag ID. Tag state introduces the
possibility that the history of a user’s interaction with that tag can be associated with the tag.

5.4 Detection of Sequence

Typical RFID interfaces are able to detect presence of a tag within a period of one to two seconds
(although this may vary for low frequency and high frequency type tags). This is too slow for accurate
judgment of rhythm to communicate additional channels of information (such as double clicks). As
tags have unique identifiers, the order with which they are moved in and out of the envelope can be
detected, especially if they are moved with one hand. If one tag is held in each hand, and they are
moved toward the reader in rapid succession, it is likely that the reader may misread a sequence that
appears quite unambiguous to the user. This means that if sequence is used as an element of the

PPIG 2003 Blackwell: Tangible Programming 402

notation, it will be necessary to take some care over situations in which the user might work with both
hands.

5.5 Detection of Relations between Tags

Syntactic formalisms require that there be some kind of relations between the lexical elements. RFID
readers are actually quite limited in the range of relations between tags that can be detected. Low
frequency tags allow the reader to uniquely identify all tags that are within the detection envelope at
the same time. Using this technology, users can employ a notation in which the syntax is based on
simultaneous presence of any two (or more) tags are present on the reader at the same time.

This is not the case with high frequency tags, where readers are only able to identify a single tag ID at
a given time. In this case, the only way for a user to establish a relationship between tags is to place
them within the aerial envelope one after another (a temporal notation). This results in all the
disadvantages of temporal relations discussed above.

If multiple aerials are used to detect location of the tag, spatial relations can be used to support a far
more sophisticated notation. As the spatial coordinates would not be continuous, the user would have
to be guided by marked locations at which tangible elements can be placed. Those marks could give
additional cues with regard to required syntax – in fact they could employ physical cues to assist the
user in creating valid expressions.

5.6 Detection of Structural Configuration

The general analysis of tangible interfaces given earlier noted several advantages that would arise
from the use of elements that are mechanically articulated to allow different structural configurations.
In linguistic terms, this can be considered either as a lexical morphology (analogous to verb
conjugation), or as a closely coupled syntactic construct supporting special relationships between the
component parts. As we have noted, the local detection of such configuration variables is mainly
dependent on suitable transducers and encoders. However this assumes that a connected processor is
available to interrogate the state of those transducers. In the case of RFID tags, the tag itself has very
limited processing power. Most tags simply report an identification code, while more sophisticated
tags can be made to store a code transmitted to them, and report it back later. RFID tags are not
normally able to request state information from local peripheral sensors. It would be possible to
construct an intelligent device that used the RFID transmission protocols to report locally sensed state
information, but the design of such a device would be challenging, especially if it had no local power
supply. For these reasons, the detection of structural configuration in the TUI appears to be beyond
the scope of the WEBKIT project.

6. Conclusion
In this paper, we have investigated the potential of tangible interfaces as a basis for programmable
and abstract functionality. The specific target of our work is the development of a query language that
can be used in school classrooms, based on physical elements that contain radio frequency ID (RFID)
tags. This research project is still in progress, but an important early stage has been a theoretical
analysis, based on the Cognitive Dimensions of Notations framework, that has provided guidance
regarding what kinds of programming might be feasible using such an interface.

PPIG 2003 Blackwell: Tangible Programming 403

This is a new way of using the Cognitive Dimensions framework. It is unusual for a design exercise to
be quite so loosely constrained as this, because most user interfaces are constructed to suit established
hardware standards (at first “1D” text-stream teletypes, now “2D” bitmapped displays with pointing
devices). The move to “3D” TUIs is at present relatively open to innovation, but as there are not many
more dimensions to come after the third, it is possible that this style of Cognitive Dimensions analysis
will not often be required in the future.

However the analysis conducted here does illustrate an interesting alternative to some of the more
established methods of applying CDs, such as the questionnaire approach (Kadoda 2000) and the
activity profile approach (Britton and Kutar 2001). The characteristic of the approach we have taken
here is that of abstract analysis, based on the physical properties of some notational medium.
Furthermore, we give an example of analysing an actual electronic technology to determine how its
features map onto the notational factors we have identified. It is the interaction between the technical
constraints and the notational concerns that will finally determine the envelope of possible designs for
our language.

Although this analysis process has been highly abstract, with no actual language envisaged at this
stage of the research, we believe that the results will be of great value in guiding the kind of language
we eventually develop, just as knowing the properties of engineering materials would be an important
creative element in the design of novel engineering structures. The discussion in this paper has been
unusually abstract, even for publications in the CDs field, but hopefully the reader will excuse the
lack of concrete examples – to the degree that this promises an analytic alternative to current TUI
design approaches that rely heavily on prototyping and evaluation to obtain similar results.

Acknowledgements
This research is supported by the Engineering and Physical Sciences Research Council grant
GR/R87482 “Cognitive Ergonomics for Ubiquitous Computing” and by the European Union project
IST-2001-34171 (WEBKIT) “Intuitive Physical Interface to the Web”.

PPIG 2003 Blackwell: Tangible Programming 404

References
Aish R. (1979). 3D Input for CAAD Systems. Computer-Aided Design, 11(2), 66-70.

Bertin, J. (1981). Graphics and Graphic Information Processing. (Tr. W.J. Berg & P. Scott) Berlin:
Walter de Gruyter.

Blackwell, A.F. and Hague, R. (2001). AutoHAN: An Architecture for Programming the Home. In
Proceedings of the IEEE Symposia on Human-Centric Computing Languages and Environments, pp.
150-157.

Blackwell, A.F. (1996). Metacognitive Theories of Visual Programming: What do we think we are
doing? In Proceedings IEEE Symposium on Visual Languages, pp. 240-246.

Blackwell, A.F. (2001). Pictorial representation and metaphor in visual language design. Journal of
Visual Languages and Computing, 12(3), 223-252.

Blackwell, A.F. & Green, T.R.G. (2003). Notational Systems - the Cognitive Dimensions of
Notations framework. To appear in John M. Carroll (Ed.) HCI Models, Theories, and Frameworks:
Toward a Multidisciplinary Science. Morgan Kaufman.

Blackwell, A.F., Britton, C., Cox, A. Green, T.R.G., Gurr, C.A., Kadoda, G.F., Kutar, M., Loomes,
M., Nehaniv, C.L., Petre, M., Roast, C., Roes, C., Wong, A. and Young, R.M. (2001). Cognitive
Dimensions of Notations: Design tools for cognitive technology. In M. Beynon, C.L. Nehaniv, and K.
Dautenhahn (Eds.) Cognitive Technology 2001 (LNAI 2117). Springer-Verlag, pp. 325-341.

Britton, C., and Kutar, M. (2001). Cognitive Dimensions Profiles: A Cautionary Tale. In G. Kadoda
(Ed.) Proceedings of the Thirteenth Annual Meeting of the Psychology of Programming Interest
Group.

Cockburn, A. & McKenzie, B. (2002). Evaluating the effectiveness of spatial memory in 2D and 3D
physical and virtual environments. Proc. CHI 2002, 203-210

Engelhardt, Y. (2002) The language of graphics. PhD thesis, University of Amsterdam.

Green, T. R. G. (1989). Cognitive dimensions of notations. In People and Computers V, A Sutcliffe
and L Macaulay (Ed.) Cambridge University Press: Cambridge., pp. 443-460.

Green, T.R.G. & Petre, M. (1996). Usability analysis of visual programming environments: a
'cognitive dimensions' approach. Journal of Visual Languages and Computing, 7,131-174.

Green, T.R.G., Petre, M. & Bellamy, R.K.E. (1991). Comprehensibility of visual and textual
programs: A test of superlativism against the ‘match-mismatch’ conjecture. In J. Koenemann-
Belliveau, T.G. Moher & S.P. Robertson (Eds.): Empirical Studies of Programmers: Fourth
Workshop Norwood, NJ: Ablex, pp. 121-146.

Ittelson, W.H. (1996). Visual perception of markings. Psychonomic Bulletin & Review, 3(2), 171-
187.

Kadoda, G. (2000) A Cognitive Dimensions view of the differences between designers and users of
theorem proving assistants. . In A.F. Blackwell & E. Bilotta (Eds.) Proceedings of the Twelth Annual
Meeting of the Psychology of Programming Interest Group

Koike, H., Sato, Y., Kobayashi, Y., Tobita, H. & Kobayashi, M. (2000). Interactive textbook and
itneractive venn diagram: Natural and intuitive interfaces on augmented desk system. Proc. CHI 2000,
121-128.

Lee, J., Su, V., Ren, S & Ishii, H. (2000). HandSCAPE: A vectorizing tape measure for on-site
measuring applications. Proc. CHI 2000, 137-144.

Lertsithichai, S. & Seegmiller, M. (2001). CUBIK: A bi-directional tangible modeling interface. Proc.
CHI 2001, 756-757.

PPIG 2003 Blackwell: Tangible Programming 405

Levinson, S. (1983). Pragmatics, Cambridge University Press.

MacEachren, A.M. (1995). How maps work: Representation, visualization and design: The Guildford
Press.

Oberlander, J. (1996). Grice for graphics: pragmatic implicature in network diagrams. Information
Design Journal , 8(6), 163-179.

Patten, J., Griffith, L. & Ishii, H. (2000). A tangible interface for controlling robotic toys. CHI 2000
Extended Abstracts, pp. 277-278.

Resnick, M., Martin, F., Sargent, R. & Silverman, B. (1996). Programmable bricks: Toys to think
with. IBM Systems Journal, 35(3&4), 443-452.

Reuleaux, F. (1876) The Kinematics of Machinery: Outline of a Theory of Machines. Reprinted by
Dover Publications in 1963

Suzuki, H. & Kato, H. (1995). Interaction-level support for collaborative learning: Algoblock – an
open programming language. In Proceedings of Computer Supported Collaborative Learning ‘95.
Lawrence Erlbaum.

Swift, J. (1726). Gulliver's Travels.

