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Abstract 
 

Research into the cognitive aspects of programming 
originated in the study of professional programmers 
(whether experts or students). Even “end-user” 
programmers in previous studies have often worked in 
organizations where programming is recognized to be 
demanding professional work – the term “power-user” 
recognizes this technical kudos. But as personal computers 
become widespread, and most new domestic appliances 
incorporate microprocessors, many people are engaging in 
programming-like activities in domestic or non-professional 
contexts. Such users often have less motivation and more 
obstacles to programming, meaning that they may be 
unlikely even to take the first steps. This paper analyses the 
generic nature of those first steps, and identifies the 
cognitive demands that characterize them. On the basis of 
this analysis we propose the Attention Investment model, a 
cognitive model of programming that offers a consistent 
account of all programming behaviour, from professionals 
to end-users.  

 

1. What is Programming? 

Goodell’s excellent website devoted to end user 
programming [10] offers definitions of “end user” and “end 
user programming”, but not of “programming”. This may not 
seem a serious omission, as most researchers in computer 
science use implicit definitions that seem quite adequate for 
their professional work. Nevertheless, this paper considers 
the possibility that challenging the implicit professional 
definitions of programming may generate important insights 
for the study of end user programming. 

Programming is in fact seldom defined in modern 
research publications. An earlier programming textbook 
from 1959 gives a typical formulation for that time: “This 
sequence [of basic operations] is called the program and the 
process of preparing it is called programming” [32, p. 4]. 
Programming is the “spadework” of finding a precise 
mathematical formulation and method of solution, possibly 
notated in a “convenient problem-oriented language” whose 
symbols are “more closely related to the mathematical 
problem to be solved”. 

The major changes since this was written are a) that many 
computer users do not now consider themselves 
programmers (when Weinberg wrote his early monograph 

“The Psychology of Computer Programming” [30], it was 
assumed that serious users of computers would be 
programmers), and b) that most programming deals with 
problems that we would not now consider to be 
mathematical.  

As programming applications have moved away from the 
mathematical domain typical of early computing, the nature 
of the basic operations, the symbols in programming 
languages, and the formulations or methods of solution have 
all evolved. An introductory chapter to the book 
“Psychology of Programming” [17] notes that the 
programming has changed from “describing calculations” to 
“defining functions”, and then to “defining and treating 
objects”. Several contributors to that book broadly describe 
the cognitive challenges of programming. Examples include 
“Programming is a human activity that is a great challenge” 
(p. 3), or “Programming is an exceedingly diverse activity” 
(p. 21). A section entitled “what is programming?” 
concludes that “The crucial dimensions in the activity of 
programming are processing and representation” (p. 160). 
But this final definition could refer to almost any human 
cognitive skill – it no longer provides a basis for 
investigating the distinctive problems of programming. 

This paper asks instead what is distinctive about the 
cognitive tasks involved in programming, and in particular 
which distinctive cognitive tasks are shared between all 
programmers, whether professional or end-users. This is 
particularly challenging in the case of systems that are 
described as “programming” by their users (“programming” 
HTML, “programming” a VCR or a microwave oven), but 
do not appear to meet the criteria that would make them 
suitable as a professional programming language. 

2. Three definitional questions 

2.1. Who is a programmer? 

The lines of professional demarcation within the software 
development community have always been fluid as a result 
of changing programming tools. For example, the distinction 
between “analysts” and “programmers” blurred when 4GLs 
enabled programming at a level of abstraction that was 
comparable to the vocabulary of the analyst. Analysts thus 
became analyst/programmers in the 1980s, and were simply 
called programmers again by the 90s. The same trends 
occurred in other specialist jobs. Unit test engineers were 
initially programmers (who wrote test harnesses), then 
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simple operators of regression test tools, then programmers 
again as the testing tools became programmable. 

Recent trends have been to increase the number of people 
who might do programming in the course of their work. 
Almost all major software applications include scripting or 
macro languages of some sort, usable to configure and 
customize the behaviour of the application. Most operating 
systems include scripting languages. One of the most widely 
used classes of software application, the spreadsheet, is itself 
a declarative programming language. Many people who are 
not professional programmers use spreadsheets to create 
large and complex applications, thus inheriting all the 
software engineering problems of specification, design, 
testing and maintenance.  

End-user development, end-user customization and end-
user software engineering have all been proposed as terms 
expressing the challenges faced by users encountering these 
new tools. Some of those terms apparently deemphasise the 
sophistication of the programming required 
(“customization”), while others emphasise the fact that large 
and complex design projects are difficult whatever the tools 
used (“engineering”).  

Some of these differing emphases in terminology can 
seem more suited to software product marketing, rather than 
seriously contending that “customization” means no 
programming is involved. If a conventional programming 
language were used to carry out the same tasks, there would 
certainly be no doubt that these applications were 
conventional pieces of programming work. But the one 
aspect in which end-user programming tasks always differ 
from conventional programming tasks is precisely that the 
software tools used for development or customization have 
the potential to be so unlike conventional programming 
languages.  

Which of the following can unambiguously be 
categorised with respect to the boundary between 
programming languages and other forms of software: 
Scripting languages? Spreadsheets? Macro languages? 
Keyboard macros? Configuration files? Java programs? 
Javascript programs? Server Side Include macros? 
Cascading Style Sheets? HTML pages? Microsoft Word 
documents? From the perspective of a non-programmer or 
end-user, the distinctions between these technologies are not 
at all clear-cut. All of them are able to produce dynamically 
modified text documents, and several can potentially be used 
to create apparently identical results. Yet some of them are 
classified in professional contexts as being programming 
languages, and some are not, with the result that when 
carried out by an end user, some of them may be classified 
as end-user programming and some not, even though the 
user may feel that he or she is doing a single task in different 
ways.  

This ambiguity becomes acute when the programming is 
taking place in a context that is completely separate from the 
workplace. An end-user programmer at work is quite likely 
to realise that the things he or she are doing could have been 
achieved by a professional programmer working within the 
organization. Previous academic studies have emphasized 

the roles these end users play on the boundaries of 
professional programming activity within an organization 
[21]. The term “power-user” acknowledges the fact that 
these people have valuable technical skills.  

In contrast, a domestic programmer is not usually 
described as a “power-user”. There may still be good reasons 
why somebody would create a Word macro to save time on a 
lengthy task at home. We have proposed elsewhere a system 
suitable for enhancing domestic remote controls with 
programming abilities [4]. And a person learning to program 
a VCR certainly does not qualify for the description “power-
user”, even if he or she does meet the criterion for an “end-
user”. 

In order to avoid these inconsistencies, the first proposal 
of this paper is that all computer users ought to be regarded 
as potential programmers, whose tools differ only in their 
usability for that purpose. The social approval accorded to 
such skills may increase with time, but this is not a 
fundamental indicator of inherent cognitive challenge in the 
task. If it is possible to find interesting programming-like 
attributes in other kinds of computer use, programming 
research could be universal and inclusive in its scope, rather 
than restricted to the experience of “professional” 
programmers. The next section therefore considers a 
classification of programming languages that takes account 
of these user perspectives, rather than conventional 
definitions. 

2.2. What is a programming language? 
What aspect of programming languages makes them 

different to other kinds of computer usage? Consider some 
of the examples presented above. A web page generated by a 
Javascript script or Server Side Include macro, when seen in 
a browser, may appear indistinguishable from a web page 
written directly in HTML. The difference resulting from the 
script or macro is that a different viewer, or the same viewer 
at another place or time, will see a different web page. The 
author writing the page specifies these differences by adding 
control information (in the scripting or macro language) to 
be interpreted by the computer rather than by the viewer.  

These simple variations might be seen as conflicting with 
some ideals of modern design for usability. What the user 
sees when authoring the page is not necessarily what he or 
she gets when viewing it – a conflict with the ideal of 
WYSIWYG. What he or she is manipulating is not a 
concrete instance of the desired result, but an abstract 
notation defining required behavior in different 
circumstances – a conflict with the ideal of direct 
manipulation. Of course these departures from the “ideal” 
are not a bad thing – they are necessary in order to achieve 
the task. But the additional challenges to the user are typical 
of the challenges that distinguish programming activities 
from those activities that do allow direct manipulation and 
WYSIWYG. 

When we consider other examples given above, similar 
properties are apparent. The distinction between writing an 
HTML document and a Word document is that the HTML 
document may look different to different viewers (depending 
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on the size and shape of the browser window, the browser 
version, platform, available fonts etc). A single decision by 
the author can thus have multiple consequences – different 
results each time the document is viewed in a different 
situation. Once again, this range of effects is produced in 
HTML by the use of an abstract notation to define required 
behavior in different circumstances (here, the markup 
language). As with the use of JavaScript, even the 
abstractions of HTML provide the opportunity for syntax 
errors, runtime errors, or bugs in the form of unintended or 
exceptional behaviors. 

The same is true even of a keyboard macro. Pressing a 
key when composing a regular document is a fairly direct 
manipulation – the character that was written on the key 
appears on the screen, and can be viewed and retained or 
deleted in a direct feedback process. But pressing a key 
when composing a keyboard macro has other effects beyond 
those that are directly visible. When the macro is executed 
again in a new context, the results will be different. The user 
must anticipate this, and use abstract commands rather than 
direct manipulation commands (e.g. using the “end of line” 
key rather than pressing the right arrow key until the cursor 
reaches the end of the line, which would fail with a bug the 
first time it was executed in a line with a different number of 
characters). 

All of these examples, although rather trivial by 
comparison to the challenges of large software projects, do 
share important characteristics of conventional 
programming. The user must: 
• Decide the intended result of executing the program 

(requirements); 
• Identify when it will be executed, and allow for 

variation in different circumstances (specification); 
• Choose from a set of technical features that may support 

this behaviour (design); 
• Enter abstract control commands as well as data 

(coding) and anticipate; and 
• Account for departures from the intended behavior 

(debugging).  
All of these things are intellectually challenging, and they 

increasingly arise in all aspects of computer use. Consider, 
for example, the definition of a document template, or even a 
paragraph style in a word processor. Even quite mundane 
user tasks can involve requirements gathering, specification, 
design, coding and debugging.  

In order to account for these experiences, the second 
proposal of this paper is that almost all major software 
applications could now be recognized as including 
programming languages. If this were the case, research into 
programming could focus on programming experiences 
independent of language, especially those which result when 
abstract notation replaces direct manipulation. 

2.3. What is programming activity? 
The word programming is often used in common speech 

to describe activities that might seem trivial by comparison 
to large-scale software application development. People do 

not in general say they are “programming” their Word 
document when defining a paragraph style. But many people 
do say (even on their resumes, I have found), that they have 
been “programming” in HTML. Furthermore, people say 
they are “programming” their VCR, their microwave oven, 
their car radio or their boiler controls.  

Is there any value in extending our attention to these 
common uses of the term when we do research into the 
cognitive demands of programming? If we consider the user 
experience of marginal programming technologies, as 
addressed in the previous section, we see that even these 
mundane activities share many of the same properties. They 
all have the basic character that the user is not directly 
manipulating observable things, but specifying behaviour to 
occur at some future time. 

In order to address these experiences, the third proposal 
of this paper is that when people say they are programming, 
we should not question whether this activity is genuine 
programming, but instead analyse their experience in order 
to understand the general nature of programming activity. 

3. Cognitive features of programming 

What are the cognitive implications of this broader 
domain of programming tasks? The common features of the 
various programming tools described so far are a) loss of the 
benefits of direct manipulation and b) introduction of 
notational elements to represent abstraction. It is possible to 
relate both of these to relevant topics in cognitive science. 

3.1. Loss of direct manipulation 
The cognitive benefits of direct manipulation arise partly 

from the fact that image-based representations mitigate the 
“frame problem” in cognitive science [18]. If a planning 
agent maintains a mental representation of the situation in 
which it acts, the process of planning relies on the agent 
being able to simulate updates to the situation model, and 
thereby anticipate the effects of potential courses of action.  

Such planning is only possible if the scope of effects of a 
given action can be constrained. In other words there must 
be a defined boundary beyond which the action will not have 
further effects. If there is no basis for setting such a 
boundary, any action may potentially have infinite 
consequences, and it will not be possible to place bounds on 
the planning algorithm. This is known as the frame problem.  

In direct manipulation systems, many constraints on 
causality are made directly available via the user’s 
perception of the apparently physical situation. This is less 
true of linguistic representations, where there is no limit on 
the abstract expressive power of the representation system 
[29], and hence no boundary that can be exploited to 
constrain reasoning during planning. 

These considerations lead to the well-known cognitive 
benefits of direct manipulation [27]. In a direct manipulation 
system, the current status of the system should be 
continuously represented to the user, a single action should 
have a single visible effect in the representation, and 
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restoring the state of the representation to that before the 
action should restore the situation.  

In programming systems, none of these things is 
necessarily true. The situation in which the program is to be 
executed may not be available for inspection, because it may 
be in the future, or because the program may be applied to a 
greater range of data situations than are currently visible to 
the programmer. Where acting on a single situation is 
concrete (actions have visible effects in the current 
situation), programming is abstract (effects may occur in 
many different situations, not currently visible). Multiple 
effects of an action will be distributed either in space, in time 
or in both (if two events occur in the same place at the same 
time, they are the same event). In previous publications, we 
have described these fundamental non-direct manipulations 
of programming as “abstraction over time” and “abstraction 
over a class of situations” [2,3]. 

3.2. Use of notation 
The second universal characteristic of programming 

situations is that the program is represented using some 
notation. This is also a universal characteristic of abstract 
thought. According to one perspective in the philosophy of 
mind, concrete action is that in which there is a causal 
relation between the action and a perceivable state of the 
world [20]. Abstraction results from forming some 
representation of the state of the world – either a mental 
representation, a linguistic representation or some other 
representational system. The correspondence between a 
representation and the state of the world is one of 
convention, not of causality. (This is true even in the case of 
pictorial representations, which differ in their information 
content rather than in any fundamental kind of resemblance 
[11]). 

Is there any kind of programming that does not use 
notation? It would be possible to do programming using 
representations not usually regarded as notational (e.g. by 
speaking to a computer, or drawing a picture of the required 
situation in the world), but these alternatives can be regarded 
for our purpose as impoverished notational systems. The 
cognitive benefits of various notational options have been 
analysed at length by Green with various collaborators in the 
Cognitive Dimensions of Notations framework [14,15]. It is 
not necessary to review those analyses in any depth here, 
other than to note the main conclusions – that notational 
systems are designed rather than being prescribed by any 
necessary constraints, and that the design choices made are 
subject to tradeoffs between factors that will facilitate some 
kinds of cognitive task while inhibiting others. There is thus 
no ideal notation for any programming situation, only 
designs that are more or less well suited to the activities of 
the people doing the programming. 

3.3. Abstraction as a tool for complexity 
Tools for processing abstractions provide a further benefit 

beyond those of defining actions in the future, or in multiple 
situations where the actor need not be present. Conceptual 

abstractions can also be defined and combined in order to 
manage complexity. This results from a further confluence 
of the two primary characteristics of abstract action, indirect 
effects and notation use.  

In a simple programming activity such as programming a 
VCR, the user is defining some abstract behaviour which is 
not directly observable because it will take place in the 
future. This is done with the assistance of a simple notation – 
perhaps a display of start time and channel identification. 
But the user manipulates this notation directly – there is no 
higher order mechanism by which the user can specify 
changes to the programme other than those defined directly 
with the VCR controls.  

In contrast to this very simple programming situation, 
more complex situations can be approached by defining 
changes to the notation itself, so that the user can extend the 
vocabulary with which he or she will then express required 
behaviour. An example of this in a domestic context is a 
sophisticated boiler control (such as those common in 
Central Europe) in which the user can define one or more 
modes of operation, then specify that a particular mode 
should operate at a particular time of day. This makes 
programming itself more efficient by allowing the user to 
refer to a new abstraction (the mode) rather than repeating all 
the notational elements defining time and temperature for 
every occasion on which that mode of operation is required. 

Abstraction use in which the user conceptualizes common 
features of complex behaviour, then formulates notational 
abstractions in which to express them, completes the range 
of generic programming behaviours for which we propose a 
common description of cognitive challenges. In the domain 
of professional programming, this type of abstraction use is 
still a very active topic of research.  

One way of answering the question “what is 
programming” from a computer science context (proposed 
by Tony Hoare [16]), is that programming is the process of 
describing a situation, then refactoring that description in 
accordance with a set of computational formalisms. The 
process of refactoring is itself critical to the professional 
design of software systems and to the refinement of designs 
in recent system development methodologies such as aspect-
oriented programming [8]. 

4. A cognitive model for abstraction use 

We have been working on a theoretical model called 
“Attention Investment” that accounts for the cognitive 
challenges arising from these essential features of 
programming activity: loss of direct manipulation, notation 
use, and development of abstractions. We intend this model 
to be sufficiently well-defined that it can be implemented in 
a cognitive simulation (thus providing a degree of scientific 
rigor), while also being sufficiently close to subjective user 
experience that it can be used as a design guide by people 
developing new programming tools.  

This is not an easy combination to achieve. There are 
other cognitive models that can be used to provide fine-
grained descriptions of relatively well defined HCI tasks 
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(GOMS [6] is an example). It is straightforward to use such 
models for small tasks, but very difficult to model tasks that 
involve complex, unconstrained user interfaces and many 
possible solution styles (as is the case in programming).  

There are also models for usability evaluation that 
provide design advice at a heuristic level, without attempting 
to derive this advice from a model of low-level cognitive 
phenomena. Heuristic Evaluation [22] and Cognitive 
Dimensions of Notations [13,15] are two such methods. The 
Cognitive Dimensions framework is designed specifically 
with this intention, described as avoiding “death by detail”, 
and offering designers a “broad-brush” description of 
relevant usability characteristics. 

Attention Investment is not a perfect cognitive model, nor 
a design method that can be used in isolation without support 
from other methods. However it does offer broad-brush 
advice relevant to designers of end user programming 
systems, and is also sufficiently rigorous that it can be 
verified (for small tasks) by implementation of a cognitive 
simulation. 

A case study in which Attention Investment has been 
used by a group of designers when building a new end user 
programming system is described in another paper at this 
conference [2]. That topic is not addressed any further here. 
The rest of this paper describes the cognitive model itself, 
gives an example of a small task that has been simulated 
using the model, and describes the relationship of the model 
to the kinds of programming activities characterized above. 

4.1. Relationship to previous work 
The ideal that usability theories should both be verifiable 

through cognitive simulation and provide qualitative 
guidance suited to use by designers has long been an ideal 
for HCI research. The recent research program most well 
known as exemplifying this approach is Pirolli and Card’s 
decision theoretic Information Foraging theory [24]. Pirolli 
and Card have been highly successful in demonstrating that a 
relatively simple model can account for quantitative 
observations of human behavior, and can also be used in a 
predictive capacity for design. Of course Pirolli and Card’s 
theory, although similar in approach to Attention Investment, 
deals with information search, rather than abstractions or 
programming. 

The Attention Investment model is a decision-theoretic 
account of programming behavior. It offers a cost/benefit 
analysis of abstraction use that allows us to predict the 
circumstances in which users will choose to engage in 
programming activities, as well as helping tool designers to 
facilitate users’ investment decisions and reduce the risks 
associated with those decisions. As with any decision 
theoretic account, this depends on the availability of some 
currency - a measure according to which cost, risk, pay-off 
etc can be calculated and compared.  

Earlier papers on attention investment (Green & 
Blackwell [5,14] were influenced by discussion of the 
“attention economy” which argued that the scarcest 
economic resource on the Internet is human attention [9,25]. 
Since then the theory has been more influenced by models of 

attentional mechanisms in the cognitive science literature, 
especially those applied to HCI questions [23,12]. 

4.2. Cost in attentional units 
For the purposes of our model, it is necessary to refine the 

concept of attention as it applies to programming behavior, 
in distinction to browsing or other computer activities. The 
effort invested in programming can be described as a 
nominal amount of “concentration”, involving an integral of 
attentional effort over time. Creating a program requires 
some amount of concentration - an investment that has a cost 
in attention units. The payoff if the program works correctly 
is that it will automate some task in the future, thereby 
saving attentional cost (the user does not need to concentrate 
on a task that has been successfully automated). There is, 
however, a risk that the investment will not pay off (perhaps 
because there are bugs in the program). The decision to write 
a program can therefore be framed as an investment 
equation, in which the expected payoff is compared to the 
investment and risk. 

Attention units provide the basis for modeling both micro 
(unconscious) and macro (conscious) decisions a user might 
make in attempting to minimize attention costs over longer 
timeframes. To summarize these descriptive factors at a 
qualitative level: Many programming activities promise, 
through automation, to save attentional effort in the future 
[3]. The irony of this abstract approach is that the activity of 
programming may involve more effort than the manual 
operation being automated [14]. Most decisions to start 
programming activities are based on an implicit cost-benefit 
analysis [1]. The variables involved in this cost-benefit 
analysis are: 

Cost: attention units to get the work done. (Presumably 
the activity also has monetary costs, such as purchase of 
software, but this is external to the model.) 

Investment: attention units expended toward a potential 
reward, where the reward can either be external to the model 
(such as payment for services) or an attention investment 
pay-off.  

Pay-off: reduced future cost, also measured in attention 
units, that will result from the way the user has chosen to 
spend attention. 

Risk: Probability that no pay-off will result, or even that 
additional future costs will be incurred from the way the user 
has chosen to spend attention. 

In sophisticated decision-theoretic models, it is also 
necessary to account for the cost involved in making the 
decision. This is particularly relevant where there is some 
“prospecting” cost – costs involved in investigating the 
relative value of alternative courses of action. These costs 
might involve action in their own right (as in classical 
prospecting – digging a hole in the ground to find out 
whether it is worth siting a gold mine there), or might 
involve only mental activity while considering and 
evaluating available data. In the latter case, the mental 
decision process itself must be counted as a kind of action, 
and it is necessary to anticipate the costs of this activity (in 
cognitive science terms, “metareasoning” or “thinking as 
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doing” [26]). In the Attention Investment model, meta-
reasoning is also accounted for as an attentional cost. 

4.3. Architecture of the model 
The cognitive model we have developed simulates these 

phenomena using an agent architecture [28], in which all 
possible courses of action are represented by agents 
competing to be scheduled on a single processing agenda. 
Only one agent can be activated at a time, thereby simulating 
a unitary locus of human attention – we can only attend to a 
single location (usually by visual fixation) at any time. The 
agent that gets activated is selected according to a decision 
criterion that estimates the best cost-benefit return, subject to 
the quality of the information (observed or from previous 
experience) on which that estimate is based.  

All “internal” cognitive activities are also represented by 
agents – these activities include decomposition of actions 
into component tasks, re-evaluation of the agenda, and 
deciding between either further prospecting or further goal-
reduction. There is a single attention resource that must be 
allocated either to these activities or to external perception 
[7]. 

When the system is initialized, it has no knowledge about 
the current situation, so immediately acts to reduce 
uncertainty (and thereby risk) by allocating attention 
resources to the gathering of information. Once enough 
information has been gathered to evaluate alternative 
potential courses of action, the system starts to act.  

The transition between prospecting and acting is 
determined purely by a change in the expected utility of the 
agents responsible for each. The decision to proceed either 
with direct manipulation or programming actions is made on 
the same basis. This balance may change as the result of 
information gathered while acting – the model may start with 
a direct manipulation strategy, realise that it will be too 
costly, and change to a programming strategy. Similarly it 
may abandon a programming strategy if it appears too risky. 

The model can also allocate attention units to re-
evaluating its own agenda, in order to monitor and possibly 
change the current course of action. All actions occur when 
the agenda control processing decides that the expected 
utility of further consideration has fallen below the expected 
utility of acting. This means that the model is able to reason 
about situations where there is an infinite number of future 
actions or consequences of action: it is still able to act 
efficiently based on available information and estimates from 
past experience. This makes it well suited to modeling the 
programming situation, in which end-users may decide to act 
in a way that appears “irrational” to experienced 
programmers, yet may be rational based on that user’s past 
experience or expected future utility. 

4.4. Example Simulated Task 
The task on which the model has been tested is a simple 

one, when compared to most programming tasks. However it 
does incorporate all the decision criteria of the Attention 
Investment model as described above. This simple task thus 

offers theoretical continuity with those more complex 
programming activities that would be too expensive to 
simulate, but can still benefit from the qualitative design 
perspectives offered by the Attention Investment model. 

The sample task simulates a course of action in which the 
user has a choice between a “programming” strategy and a 
“direct manipulation” strategy. Direct manipulation tends to 
involve moderate attentional cost, relatively low payoff and 
low risk because results can be monitored as the user acts. 
Programming tends to involve higher attentional cost 
(particularly in development of a specification, which 
involves additional prospecting), potentially high payoffs, 
but also high risks.  

 

 
Figure 1. Snapshot of cognitive simulation based on the 

Attention Investment model 
 

The task here is to correct spelling errors in a document 
(figure 1). The “direct manipulation” alternative is manually 
to step through the document correcting each error. The cost 
of doing this is uncertain, because the user does not know 
how many times the error occurs. The “programming” 
alternative is to specify a search and replace operation, 
which may have unexpected results (such as replacing text 
that was not intended, or missing some misspellings due to 
capitalization, different word endings etc.) 

The simulation therefore starts by reading some of the 
document in order to gather evidence with regard to the best 
investment. It may scan over the text, look at the scrollbar to 
see how long the text is, and so on. This scanning phase is 
also driven by the agent architecture, so that multiple agents 
may propose that the reader directs attention to different 
locations on the screen in order to acquire information that 
will improve risk or payoff estimates. The proposed attention 
point with the best expected payoff rises to the top of the 
agenda, and once the payoff is higher than any possible 
benefit of further agenda reordering, attention is directed to 
that point. 

This is illustrated in figure 1, which shows a screenshot of 
the simulation running. The clouds indicate points on the 
screen which are being proposed by agents as attention 
fixation points. The agenda icon indicates the fixation point 
proposed by the currently preferred agenda item. At the 
moment when the currently preferred item is a programming 
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action (raising a search and replace dialog), the equilibrium 
of the agenda will change from attention fixations 
contributing to the reading task to attention fixations 
contributing to raising the search and replace dialog.  

This model architecture produces macro-level behaviour 
that emerges from micro-level processes based on the same 
decision factors. From the user’s perspective, the micro-level 
decisions may not be accessible to introspection, but this 
model means that system designers are able to anticipate 
even unconscious factors leading to the choice of 
programming strategies. 

This simulation starts with a single goal – to correct the 
spelling errors. It does not initially have a fixed strategy for 
achieving this. Decomposition of the top-level goal into 
subgoals and then specific actions is controlled, as with other 
agenda manipulations, by the meta-reasoning strategy. This 
means that some alternative actions may never be 
decomposed if they initially appear to have very high cost or 
very high risk. This aspect of the model simulates users who 
would never consider programming solutions to a task on the 
basis of their previous experience. 

In most cases, the first results of goal decomposition will 
lead to activities that collect evidence to help refine risk and 
cost estimates. This will continue until the simulated user 
can make the decision to take a first step toward 
programming. This may not always happen, even where 
previous experience favours programming solutions – a short 
document can be corrected manually without any need to 
invest in more abstract alternatives. This is consistent with 
programming situations in the home, where it is generally 
possible to carry out an operation manually rather than 
programming. An example is staying up late to press the 
“record” button on the VCR, because you are not sure that 
programming will work (high degree of risk) or because you 
cannot be bothered learning how to operate it (high cost). 

For this simple task, the Attention Investment model 
successfully simulates a range of observed user actions, 
accounting for them on the basis of previous experience, 
rather than assuming that different classes of user are either 
capable or incapable of programming because of their 
intellectual abilities. Removing this apparent discontinuity in 
the user population provides the opportunity to apply a 
single cognitive model of programming processes that can 
apply both to end-users and to everyday decisions made by 
professional programmers. 

5. Conclusions 

This paper has proposed that programming might be 
redefined to take in a wider range of computer usage 
contexts, all sharing certain cognitive features. According to 
this proposed definition: 
• Programming involves loss of direct manipulation as a 

result of abstraction over time, entities or situations.  
• Interaction with abstractions is mediated by some 

representational notation, and there are common 
properties of notations that determine the quality of that 
interaction.  

• Management of complexity as a cognitive task involves 
linguistic and representational strategies that can in 
themselves be viewed as notational, and subject either to 
direct manipulation of the notation or more abstract 
interaction. 

Although these issues are highly generic, it is still 
possible to formulate useful research models that address 
them. The Attention Investment model is quantitative, and 
can be implemented in a decision theoretic simulation. It is 
generic, in the sense that it offers a partial explanation of 
cognitive considerations for many users in many situations. 
It offers consistency between micro-level and macro-level 
cognitive mechanisms, making them accessible to designers 
as a basis for usability evaluation. Finally, it describes many 
situations that would not normally considered as varieties of 
programming, in a manner that clarifies the deep connections 
between programming and other kinds of human interaction 
with technology. 

This model provides both a potentially rigorous 
description of constrained tasks, verifiable through cognitive 
simulation, and a qualitative design model that can be used 
to anticipate the consequences of certain types of interaction 
with design features without the need to do simulation. 
These features of the Attention Investment model include 
awareness of attention costs, assessment of pay-off that may 
result from abstract interaction, risk of failure, and the need 
to gather sufficient information to make appropriate 
investment decisions based on bounded reasoning 
assumptions. The results offer a description of first steps 
toward end-user programming in many situations, but in 
terms that are consistent with the cognitive demands in 
professional programming, providing a uniform basis for 
design of end-user programming systems. 
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