
In Proceedings of the IEEE Symposia on Human-Centric Computing Languages and Environments, pp. 2-10.

First Steps in Programming: A Rationale for Attention
Investment Models

Alan F. Blackwell
University of Cambridge Computer Laboratory

Alan.Blackwell@cl.cam.ac.uk

Abstract

Research into the cognitive aspects of programming
originated in the study of professional programmers
(whether experts or students). Even “end-user”
programmers in previous studies have often worked in
organizations where programming is recognized to be
demanding professional work – the term “power-user”
recognizes this technical kudos. But as personal computers
become widespread, and most new domestic appliances
incorporate microprocessors, many people are engaging in
programming-like activities in domestic or non-professional
contexts. Such users often have less motivation and more
obstacles to programming, meaning that they may be
unlikely even to take the first steps. This paper analyses the
generic nature of those first steps, and identifies the
cognitive demands that characterize them. On the basis of
this analysis we propose the Attention Investment model, a
cognitive model of programming that offers a consistent
account of all programming behaviour, from professionals
to end-users.

1. What is Programming?

Goodell’s excellent website devoted to end user
programming [10] offers definitions of “end user” and “end
user programming”, but not of “programming”. This may not
seem a serious omission, as most researchers in computer
science use implicit definitions that seem quite adequate for
their professional work. Nevertheless, this paper considers
the possibility that challenging the implicit professional
definitions of programming may generate important insights
for the study of end user programming.

Programming is in fact seldom defined in modern
research publications. An earlier programming textbook
from 1959 gives a typical formulation for that time: “This
sequence [of basic operations] is called the program and the
process of preparing it is called programming” [32, p. 4].
Programming is the “spadework” of finding a precise
mathematical formulation and method of solution, possibly
notated in a “convenient problem-oriented language” whose
symbols are “more closely related to the mathematical
problem to be solved”.

The major changes since this was written are a) that many
computer users do not now consider themselves
programmers (when Weinberg wrote his early monograph

“The Psychology of Computer Programming” [30], it was
assumed that serious users of computers would be
programmers), and b) that most programming deals with
problems that we would not now consider to be
mathematical.

As programming applications have moved away from the
mathematical domain typical of early computing, the nature
of the basic operations, the symbols in programming
languages, and the formulations or methods of solution have
all evolved. An introductory chapter to the book
“Psychology of Programming” [17] notes that the
programming has changed from “describing calculations” to
“defining functions”, and then to “defining and treating
objects”. Several contributors to that book broadly describe
the cognitive challenges of programming. Examples include
“Programming is a human activity that is a great challenge”
(p. 3), or “Programming is an exceedingly diverse activity”
(p. 21). A section entitled “what is programming?”
concludes that “The crucial dimensions in the activity of
programming are processing and representation” (p. 160).
But this final definition could refer to almost any human
cognitive skill – it no longer provides a basis for
investigating the distinctive problems of programming.

This paper asks instead what is distinctive about the
cognitive tasks involved in programming, and in particular
which distinctive cognitive tasks are shared between all
programmers, whether professional or end-users. This is
particularly challenging in the case of systems that are
described as “programming” by their users (“programming”
HTML, “programming” a VCR or a microwave oven), but
do not appear to meet the criteria that would make them
suitable as a professional programming language.

2. Three definitional questions

2.1. Who is a programmer?

The lines of professional demarcation within the software
development community have always been fluid as a result
of changing programming tools. For example, the distinction
between “analysts” and “programmers” blurred when 4GLs
enabled programming at a level of abstraction that was
comparable to the vocabulary of the analyst. Analysts thus
became analyst/programmers in the 1980s, and were simply
called programmers again by the 90s. The same trends
occurred in other specialist jobs. Unit test engineers were
initially programmers (who wrote test harnesses), then

In Proceedings of the IEEE Symposia on Human-Centric Computing Languages and Environments, pp. 2-10.

simple operators of regression test tools, then programmers
again as the testing tools became programmable.

Recent trends have been to increase the number of people
who might do programming in the course of their work.
Almost all major software applications include scripting or
macro languages of some sort, usable to configure and
customize the behaviour of the application. Most operating
systems include scripting languages. One of the most widely
used classes of software application, the spreadsheet, is itself
a declarative programming language. Many people who are
not professional programmers use spreadsheets to create
large and complex applications, thus inheriting all the
software engineering problems of specification, design,
testing and maintenance.

End-user development, end-user customization and end-
user software engineering have all been proposed as terms
expressing the challenges faced by users encountering these
new tools. Some of those terms apparently deemphasise the
sophistication of the programming required
(“customization”), while others emphasise the fact that large
and complex design projects are difficult whatever the tools
used (“engineering”).

Some of these differing emphases in terminology can
seem more suited to software product marketing, rather than
seriously contending that “customization” means no
programming is involved. If a conventional programming
language were used to carry out the same tasks, there would
certainly be no doubt that these applications were
conventional pieces of programming work. But the one
aspect in which end-user programming tasks always differ
from conventional programming tasks is precisely that the
software tools used for development or customization have
the potential to be so unlike conventional programming
languages.

Which of the following can unambiguously be
categorised with respect to the boundary between
programming languages and other forms of software:
Scripting languages? Spreadsheets? Macro languages?
Keyboard macros? Configuration files? Java programs?
Javascript programs? Server Side Include macros?
Cascading Style Sheets? HTML pages? Microsoft Word
documents? From the perspective of a non-programmer or
end-user, the distinctions between these technologies are not
at all clear-cut. All of them are able to produce dynamically
modified text documents, and several can potentially be used
to create apparently identical results. Yet some of them are
classified in professional contexts as being programming
languages, and some are not, with the result that when
carried out by an end user, some of them may be classified
as end-user programming and some not, even though the
user may feel that he or she is doing a single task in different
ways.

This ambiguity becomes acute when the programming is
taking place in a context that is completely separate from the
workplace. An end-user programmer at work is quite likely
to realise that the things he or she are doing could have been
achieved by a professional programmer working within the
organization. Previous academic studies have emphasized

the roles these end users play on the boundaries of
professional programming activity within an organization
[21]. The term “power-user” acknowledges the fact that
these people have valuable technical skills.

In contrast, a domestic programmer is not usually
described as a “power-user”. There may still be good reasons
why somebody would create a Word macro to save time on a
lengthy task at home. We have proposed elsewhere a system
suitable for enhancing domestic remote controls with
programming abilities [4]. And a person learning to program
a VCR certainly does not qualify for the description “power-
user”, even if he or she does meet the criterion for an “end-
user”.

In order to avoid these inconsistencies, the first proposal
of this paper is that all computer users ought to be regarded
as potential programmers, whose tools differ only in their
usability for that purpose. The social approval accorded to
such skills may increase with time, but this is not a
fundamental indicator of inherent cognitive challenge in the
task. If it is possible to find interesting programming-like
attributes in other kinds of computer use, programming
research could be universal and inclusive in its scope, rather
than restricted to the experience of “professional”
programmers. The next section therefore considers a
classification of programming languages that takes account
of these user perspectives, rather than conventional
definitions.

2.2. What is a programming language?
What aspect of programming languages makes them

different to other kinds of computer usage? Consider some
of the examples presented above. A web page generated by a
Javascript script or Server Side Include macro, when seen in
a browser, may appear indistinguishable from a web page
written directly in HTML. The difference resulting from the
script or macro is that a different viewer, or the same viewer
at another place or time, will see a different web page. The
author writing the page specifies these differences by adding
control information (in the scripting or macro language) to
be interpreted by the computer rather than by the viewer.

These simple variations might be seen as conflicting with
some ideals of modern design for usability. What the user
sees when authoring the page is not necessarily what he or
she gets when viewing it – a conflict with the ideal of
WYSIWYG. What he or she is manipulating is not a
concrete instance of the desired result, but an abstract
notation defining required behavior in different
circumstances – a conflict with the ideal of direct
manipulation. Of course these departures from the “ideal”
are not a bad thing – they are necessary in order to achieve
the task. But the additional challenges to the user are typical
of the challenges that distinguish programming activities
from those activities that do allow direct manipulation and
WYSIWYG.

When we consider other examples given above, similar
properties are apparent. The distinction between writing an
HTML document and a Word document is that the HTML
document may look different to different viewers (depending

In Proceedings of the IEEE Symposia on Human-Centric Computing Languages and Environments, pp. 2-10.

on the size and shape of the browser window, the browser
version, platform, available fonts etc). A single decision by
the author can thus have multiple consequences – different
results each time the document is viewed in a different
situation. Once again, this range of effects is produced in
HTML by the use of an abstract notation to define required
behavior in different circumstances (here, the markup
language). As with the use of JavaScript, even the
abstractions of HTML provide the opportunity for syntax
errors, runtime errors, or bugs in the form of unintended or
exceptional behaviors.

The same is true even of a keyboard macro. Pressing a
key when composing a regular document is a fairly direct
manipulation – the character that was written on the key
appears on the screen, and can be viewed and retained or
deleted in a direct feedback process. But pressing a key
when composing a keyboard macro has other effects beyond
those that are directly visible. When the macro is executed
again in a new context, the results will be different. The user
must anticipate this, and use abstract commands rather than
direct manipulation commands (e.g. using the “end of line”
key rather than pressing the right arrow key until the cursor
reaches the end of the line, which would fail with a bug the
first time it was executed in a line with a different number of
characters).

All of these examples, although rather trivial by
comparison to the challenges of large software projects, do
share important characteristics of conventional
programming. The user must:
• Decide the intended result of executing the program

(requirements);
• Identify when it will be executed, and allow for

variation in different circumstances (specification);
• Choose from a set of technical features that may support

this behaviour (design);
• Enter abstract control commands as well as data

(coding) and anticipate; and
• Account for departures from the intended behavior

(debugging).
All of these things are intellectually challenging, and they

increasingly arise in all aspects of computer use. Consider,
for example, the definition of a document template, or even a
paragraph style in a word processor. Even quite mundane
user tasks can involve requirements gathering, specification,
design, coding and debugging.

In order to account for these experiences, the second
proposal of this paper is that almost all major software
applications could now be recognized as including
programming languages. If this were the case, research into
programming could focus on programming experiences
independent of language, especially those which result when
abstract notation replaces direct manipulation.

2.3. What is programming activity?
The word programming is often used in common speech

to describe activities that might seem trivial by comparison
to large-scale software application development. People do

not in general say they are “programming” their Word
document when defining a paragraph style. But many people
do say (even on their resumes, I have found), that they have
been “programming” in HTML. Furthermore, people say
they are “programming” their VCR, their microwave oven,
their car radio or their boiler controls.

Is there any value in extending our attention to these
common uses of the term when we do research into the
cognitive demands of programming? If we consider the user
experience of marginal programming technologies, as
addressed in the previous section, we see that even these
mundane activities share many of the same properties. They
all have the basic character that the user is not directly
manipulating observable things, but specifying behaviour to
occur at some future time.

In order to address these experiences, the third proposal
of this paper is that when people say they are programming,
we should not question whether this activity is genuine
programming, but instead analyse their experience in order
to understand the general nature of programming activity.

3. Cognitive features of programming

What are the cognitive implications of this broader
domain of programming tasks? The common features of the
various programming tools described so far are a) loss of the
benefits of direct manipulation and b) introduction of
notational elements to represent abstraction. It is possible to
relate both of these to relevant topics in cognitive science.

3.1. Loss of direct manipulation
The cognitive benefits of direct manipulation arise partly

from the fact that image-based representations mitigate the
“frame problem” in cognitive science [18]. If a planning
agent maintains a mental representation of the situation in
which it acts, the process of planning relies on the agent
being able to simulate updates to the situation model, and
thereby anticipate the effects of potential courses of action.

Such planning is only possible if the scope of effects of a
given action can be constrained. In other words there must
be a defined boundary beyond which the action will not have
further effects. If there is no basis for setting such a
boundary, any action may potentially have infinite
consequences, and it will not be possible to place bounds on
the planning algorithm. This is known as the frame problem.

In direct manipulation systems, many constraints on
causality are made directly available via the user’s
perception of the apparently physical situation. This is less
true of linguistic representations, where there is no limit on
the abstract expressive power of the representation system
[29], and hence no boundary that can be exploited to
constrain reasoning during planning.

These considerations lead to the well-known cognitive
benefits of direct manipulation [27]. In a direct manipulation
system, the current status of the system should be
continuously represented to the user, a single action should
have a single visible effect in the representation, and

In Proceedings of the IEEE Symposia on Human-Centric Computing Languages and Environments, pp. 2-10.

restoring the state of the representation to that before the
action should restore the situation.

In programming systems, none of these things is
necessarily true. The situation in which the program is to be
executed may not be available for inspection, because it may
be in the future, or because the program may be applied to a
greater range of data situations than are currently visible to
the programmer. Where acting on a single situation is
concrete (actions have visible effects in the current
situation), programming is abstract (effects may occur in
many different situations, not currently visible). Multiple
effects of an action will be distributed either in space, in time
or in both (if two events occur in the same place at the same
time, they are the same event). In previous publications, we
have described these fundamental non-direct manipulations
of programming as “abstraction over time” and “abstraction
over a class of situations” [2,3].

3.2. Use of notation
The second universal characteristic of programming

situations is that the program is represented using some
notation. This is also a universal characteristic of abstract
thought. According to one perspective in the philosophy of
mind, concrete action is that in which there is a causal
relation between the action and a perceivable state of the
world [20]. Abstraction results from forming some
representation of the state of the world – either a mental
representation, a linguistic representation or some other
representational system. The correspondence between a
representation and the state of the world is one of
convention, not of causality. (This is true even in the case of
pictorial representations, which differ in their information
content rather than in any fundamental kind of resemblance
[11]).

Is there any kind of programming that does not use
notation? It would be possible to do programming using
representations not usually regarded as notational (e.g. by
speaking to a computer, or drawing a picture of the required
situation in the world), but these alternatives can be regarded
for our purpose as impoverished notational systems. The
cognitive benefits of various notational options have been
analysed at length by Green with various collaborators in the
Cognitive Dimensions of Notations framework [14,15]. It is
not necessary to review those analyses in any depth here,
other than to note the main conclusions – that notational
systems are designed rather than being prescribed by any
necessary constraints, and that the design choices made are
subject to tradeoffs between factors that will facilitate some
kinds of cognitive task while inhibiting others. There is thus
no ideal notation for any programming situation, only
designs that are more or less well suited to the activities of
the people doing the programming.

3.3. Abstraction as a tool for complexity
Tools for processing abstractions provide a further benefit

beyond those of defining actions in the future, or in multiple
situations where the actor need not be present. Conceptual

abstractions can also be defined and combined in order to
manage complexity. This results from a further confluence
of the two primary characteristics of abstract action, indirect
effects and notation use.

In a simple programming activity such as programming a
VCR, the user is defining some abstract behaviour which is
not directly observable because it will take place in the
future. This is done with the assistance of a simple notation –
perhaps a display of start time and channel identification.
But the user manipulates this notation directly – there is no
higher order mechanism by which the user can specify
changes to the programme other than those defined directly
with the VCR controls.

In contrast to this very simple programming situation,
more complex situations can be approached by defining
changes to the notation itself, so that the user can extend the
vocabulary with which he or she will then express required
behaviour. An example of this in a domestic context is a
sophisticated boiler control (such as those common in
Central Europe) in which the user can define one or more
modes of operation, then specify that a particular mode
should operate at a particular time of day. This makes
programming itself more efficient by allowing the user to
refer to a new abstraction (the mode) rather than repeating all
the notational elements defining time and temperature for
every occasion on which that mode of operation is required.

Abstraction use in which the user conceptualizes common
features of complex behaviour, then formulates notational
abstractions in which to express them, completes the range
of generic programming behaviours for which we propose a
common description of cognitive challenges. In the domain
of professional programming, this type of abstraction use is
still a very active topic of research.

One way of answering the question “what is
programming” from a computer science context (proposed
by Tony Hoare [16]), is that programming is the process of
describing a situation, then refactoring that description in
accordance with a set of computational formalisms. The
process of refactoring is itself critical to the professional
design of software systems and to the refinement of designs
in recent system development methodologies such as aspect-
oriented programming [8].

4. A cognitive model for abstraction use

We have been working on a theoretical model called
“Attention Investment” that accounts for the cognitive
challenges arising from these essential features of
programming activity: loss of direct manipulation, notation
use, and development of abstractions. We intend this model
to be sufficiently well-defined that it can be implemented in
a cognitive simulation (thus providing a degree of scientific
rigor), while also being sufficiently close to subjective user
experience that it can be used as a design guide by people
developing new programming tools.

This is not an easy combination to achieve. There are
other cognitive models that can be used to provide fine-
grained descriptions of relatively well defined HCI tasks

In Proceedings of the IEEE Symposia on Human-Centric Computing Languages and Environments, pp. 2-10.

(GOMS [6] is an example). It is straightforward to use such
models for small tasks, but very difficult to model tasks that
involve complex, unconstrained user interfaces and many
possible solution styles (as is the case in programming).

There are also models for usability evaluation that
provide design advice at a heuristic level, without attempting
to derive this advice from a model of low-level cognitive
phenomena. Heuristic Evaluation [22] and Cognitive
Dimensions of Notations [13,15] are two such methods. The
Cognitive Dimensions framework is designed specifically
with this intention, described as avoiding “death by detail”,
and offering designers a “broad-brush” description of
relevant usability characteristics.

Attention Investment is not a perfect cognitive model, nor
a design method that can be used in isolation without support
from other methods. However it does offer broad-brush
advice relevant to designers of end user programming
systems, and is also sufficiently rigorous that it can be
verified (for small tasks) by implementation of a cognitive
simulation.

A case study in which Attention Investment has been
used by a group of designers when building a new end user
programming system is described in another paper at this
conference [2]. That topic is not addressed any further here.
The rest of this paper describes the cognitive model itself,
gives an example of a small task that has been simulated
using the model, and describes the relationship of the model
to the kinds of programming activities characterized above.

4.1. Relationship to previous work
The ideal that usability theories should both be verifiable

through cognitive simulation and provide qualitative
guidance suited to use by designers has long been an ideal
for HCI research. The recent research program most well
known as exemplifying this approach is Pirolli and Card’s
decision theoretic Information Foraging theory [24]. Pirolli
and Card have been highly successful in demonstrating that a
relatively simple model can account for quantitative
observations of human behavior, and can also be used in a
predictive capacity for design. Of course Pirolli and Card’s
theory, although similar in approach to Attention Investment,
deals with information search, rather than abstractions or
programming.

The Attention Investment model is a decision-theoretic
account of programming behavior. It offers a cost/benefit
analysis of abstraction use that allows us to predict the
circumstances in which users will choose to engage in
programming activities, as well as helping tool designers to
facilitate users’ investment decisions and reduce the risks
associated with those decisions. As with any decision
theoretic account, this depends on the availability of some
currency - a measure according to which cost, risk, pay-off
etc can be calculated and compared.

Earlier papers on attention investment (Green &
Blackwell [5,14] were influenced by discussion of the
“attention economy” which argued that the scarcest
economic resource on the Internet is human attention [9,25].
Since then the theory has been more influenced by models of

attentional mechanisms in the cognitive science literature,
especially those applied to HCI questions [23,12].

4.2. Cost in attentional units
For the purposes of our model, it is necessary to refine the

concept of attention as it applies to programming behavior,
in distinction to browsing or other computer activities. The
effort invested in programming can be described as a
nominal amount of “concentration”, involving an integral of
attentional effort over time. Creating a program requires
some amount of concentration - an investment that has a cost
in attention units. The payoff if the program works correctly
is that it will automate some task in the future, thereby
saving attentional cost (the user does not need to concentrate
on a task that has been successfully automated). There is,
however, a risk that the investment will not pay off (perhaps
because there are bugs in the program). The decision to write
a program can therefore be framed as an investment
equation, in which the expected payoff is compared to the
investment and risk.

Attention units provide the basis for modeling both micro
(unconscious) and macro (conscious) decisions a user might
make in attempting to minimize attention costs over longer
timeframes. To summarize these descriptive factors at a
qualitative level: Many programming activities promise,
through automation, to save attentional effort in the future
[3]. The irony of this abstract approach is that the activity of
programming may involve more effort than the manual
operation being automated [14]. Most decisions to start
programming activities are based on an implicit cost-benefit
analysis [1]. The variables involved in this cost-benefit
analysis are:

Cost: attention units to get the work done. (Presumably
the activity also has monetary costs, such as purchase of
software, but this is external to the model.)

Investment: attention units expended toward a potential
reward, where the reward can either be external to the model
(such as payment for services) or an attention investment
pay-off.

Pay-off: reduced future cost, also measured in attention
units, that will result from the way the user has chosen to
spend attention.

Risk: Probability that no pay-off will result, or even that
additional future costs will be incurred from the way the user
has chosen to spend attention.

In sophisticated decision-theoretic models, it is also
necessary to account for the cost involved in making the
decision. This is particularly relevant where there is some
“prospecting” cost – costs involved in investigating the
relative value of alternative courses of action. These costs
might involve action in their own right (as in classical
prospecting – digging a hole in the ground to find out
whether it is worth siting a gold mine there), or might
involve only mental activity while considering and
evaluating available data. In the latter case, the mental
decision process itself must be counted as a kind of action,
and it is necessary to anticipate the costs of this activity (in
cognitive science terms, “metareasoning” or “thinking as

In Proceedings of the IEEE Symposia on Human-Centric Computing Languages and Environments, pp. 2-10.

doing” [26]). In the Attention Investment model, meta-
reasoning is also accounted for as an attentional cost.

4.3. Architecture of the model
The cognitive model we have developed simulates these

phenomena using an agent architecture [28], in which all
possible courses of action are represented by agents
competing to be scheduled on a single processing agenda.
Only one agent can be activated at a time, thereby simulating
a unitary locus of human attention – we can only attend to a
single location (usually by visual fixation) at any time. The
agent that gets activated is selected according to a decision
criterion that estimates the best cost-benefit return, subject to
the quality of the information (observed or from previous
experience) on which that estimate is based.

All “internal” cognitive activities are also represented by
agents – these activities include decomposition of actions
into component tasks, re-evaluation of the agenda, and
deciding between either further prospecting or further goal-
reduction. There is a single attention resource that must be
allocated either to these activities or to external perception
[7].

When the system is initialized, it has no knowledge about
the current situation, so immediately acts to reduce
uncertainty (and thereby risk) by allocating attention
resources to the gathering of information. Once enough
information has been gathered to evaluate alternative
potential courses of action, the system starts to act.

The transition between prospecting and acting is
determined purely by a change in the expected utility of the
agents responsible for each. The decision to proceed either
with direct manipulation or programming actions is made on
the same basis. This balance may change as the result of
information gathered while acting – the model may start with
a direct manipulation strategy, realise that it will be too
costly, and change to a programming strategy. Similarly it
may abandon a programming strategy if it appears too risky.

The model can also allocate attention units to re-
evaluating its own agenda, in order to monitor and possibly
change the current course of action. All actions occur when
the agenda control processing decides that the expected
utility of further consideration has fallen below the expected
utility of acting. This means that the model is able to reason
about situations where there is an infinite number of future
actions or consequences of action: it is still able to act
efficiently based on available information and estimates from
past experience. This makes it well suited to modeling the
programming situation, in which end-users may decide to act
in a way that appears “irrational” to experienced
programmers, yet may be rational based on that user’s past
experience or expected future utility.

4.4. Example Simulated Task
The task on which the model has been tested is a simple

one, when compared to most programming tasks. However it
does incorporate all the decision criteria of the Attention
Investment model as described above. This simple task thus

offers theoretical continuity with those more complex
programming activities that would be too expensive to
simulate, but can still benefit from the qualitative design
perspectives offered by the Attention Investment model.

The sample task simulates a course of action in which the
user has a choice between a “programming” strategy and a
“direct manipulation” strategy. Direct manipulation tends to
involve moderate attentional cost, relatively low payoff and
low risk because results can be monitored as the user acts.
Programming tends to involve higher attentional cost
(particularly in development of a specification, which
involves additional prospecting), potentially high payoffs,
but also high risks.

Figure 1. Snapshot of cognitive simulation based on the

Attention Investment model

The task here is to correct spelling errors in a document
(figure 1). The “direct manipulation” alternative is manually
to step through the document correcting each error. The cost
of doing this is uncertain, because the user does not know
how many times the error occurs. The “programming”
alternative is to specify a search and replace operation,
which may have unexpected results (such as replacing text
that was not intended, or missing some misspellings due to
capitalization, different word endings etc.)

The simulation therefore starts by reading some of the
document in order to gather evidence with regard to the best
investment. It may scan over the text, look at the scrollbar to
see how long the text is, and so on. This scanning phase is
also driven by the agent architecture, so that multiple agents
may propose that the reader directs attention to different
locations on the screen in order to acquire information that
will improve risk or payoff estimates. The proposed attention
point with the best expected payoff rises to the top of the
agenda, and once the payoff is higher than any possible
benefit of further agenda reordering, attention is directed to
that point.

This is illustrated in figure 1, which shows a screenshot of
the simulation running. The clouds indicate points on the
screen which are being proposed by agents as attention
fixation points. The agenda icon indicates the fixation point
proposed by the currently preferred agenda item. At the
moment when the currently preferred item is a programming

In Proceedings of the IEEE Symposia on Human-Centric Computing Languages and Environments, pp. 2-10.

action (raising a search and replace dialog), the equilibrium
of the agenda will change from attention fixations
contributing to the reading task to attention fixations
contributing to raising the search and replace dialog.

This model architecture produces macro-level behaviour
that emerges from micro-level processes based on the same
decision factors. From the user’s perspective, the micro-level
decisions may not be accessible to introspection, but this
model means that system designers are able to anticipate
even unconscious factors leading to the choice of
programming strategies.

This simulation starts with a single goal – to correct the
spelling errors. It does not initially have a fixed strategy for
achieving this. Decomposition of the top-level goal into
subgoals and then specific actions is controlled, as with other
agenda manipulations, by the meta-reasoning strategy. This
means that some alternative actions may never be
decomposed if they initially appear to have very high cost or
very high risk. This aspect of the model simulates users who
would never consider programming solutions to a task on the
basis of their previous experience.

In most cases, the first results of goal decomposition will
lead to activities that collect evidence to help refine risk and
cost estimates. This will continue until the simulated user
can make the decision to take a first step toward
programming. This may not always happen, even where
previous experience favours programming solutions – a short
document can be corrected manually without any need to
invest in more abstract alternatives. This is consistent with
programming situations in the home, where it is generally
possible to carry out an operation manually rather than
programming. An example is staying up late to press the
“record” button on the VCR, because you are not sure that
programming will work (high degree of risk) or because you
cannot be bothered learning how to operate it (high cost).

For this simple task, the Attention Investment model
successfully simulates a range of observed user actions,
accounting for them on the basis of previous experience,
rather than assuming that different classes of user are either
capable or incapable of programming because of their
intellectual abilities. Removing this apparent discontinuity in
the user population provides the opportunity to apply a
single cognitive model of programming processes that can
apply both to end-users and to everyday decisions made by
professional programmers.

5. Conclusions

This paper has proposed that programming might be
redefined to take in a wider range of computer usage
contexts, all sharing certain cognitive features. According to
this proposed definition:
• Programming involves loss of direct manipulation as a

result of abstraction over time, entities or situations.
• Interaction with abstractions is mediated by some

representational notation, and there are common
properties of notations that determine the quality of that
interaction.

• Management of complexity as a cognitive task involves
linguistic and representational strategies that can in
themselves be viewed as notational, and subject either to
direct manipulation of the notation or more abstract
interaction.

Although these issues are highly generic, it is still
possible to formulate useful research models that address
them. The Attention Investment model is quantitative, and
can be implemented in a decision theoretic simulation. It is
generic, in the sense that it offers a partial explanation of
cognitive considerations for many users in many situations.
It offers consistency between micro-level and macro-level
cognitive mechanisms, making them accessible to designers
as a basis for usability evaluation. Finally, it describes many
situations that would not normally considered as varieties of
programming, in a manner that clarifies the deep connections
between programming and other kinds of human interaction
with technology.

This model provides both a potentially rigorous
description of constrained tasks, verifiable through cognitive
simulation, and a qualitative design model that can be used
to anticipate the consequences of certain types of interaction
with design features without the need to do simulation.
These features of the Attention Investment model include
awareness of attention costs, assessment of pay-off that may
result from abstract interaction, risk of failure, and the need
to gather sufficient information to make appropriate
investment decisions based on bounded reasoning
assumptions. The results offer a description of first steps
toward end-user programming in many situations, but in
terms that are consistent with the cognitive demands in
professional programming, providing a uniform basis for
design of end-user programming systems.

6. Acknowledgments

Many people have contributed to the ideas in this paper.
Margaret Burnett, Tony Hoare, Hugh Mellor, and Thomas
Green have all given specific advice that has led to new
perspectives.

7. References
[1] Blackwell, A.F. (2001). See What You Need: Helping end users

to build abstractions. Journal of Visual Languages and
Computing, 12(5), 475-499.

[2] Blackwell, A.F. & Burnett, M. (2002). Applying Attention
Investment to end-user programming. In Proceedings
HCC’02.

[3] Blackwell, A.F. and Green, T.R.G. (1999). Investment of
Attention as an Analytic Approach to Cognitive Dimensions.
In T. Green, R. Abdullah & P. Brna (Eds.) Collected Papers of
the 11th Annual Workshop of the Psychology of Programming
Interest Group (PPIG-11), pp. 24-35.

[4] Blackwell, A.F. and Hague, R. (2001). AutoHAN: An
Architecture for Programming the Home. In Proceedings of
the IEEE Symposia on Human-Centric Computing Languages
and Environments, pp. 150-157.

In Proceedings of the IEEE Symposia on Human-Centric Computing Languages and Environments, pp. 2-10.

[5] Blackwell, A.F., Robinson, P., Roast, C, and Green, T.R.G.
(2002). Cognitive models of programming-like activity.
Proceedings of CHI'02, 910-911.

[6] Card, S.K., Moran, T.P. & Newell, A. (1983). The Psychology
of Human-Computer Interaction. Hillsdale, NJ: Lawrence
Erlbaum.

[7] Carlson, R.A., Wenger, J.L. & Sullivan, M.A. (1993).
Coordinating information from perception and working
memory. Journal of Experimental Psychology: Human
Perception and Performance, 19(3), 531-548.

[8] Diaz Pace, J.A. & Campo, M.R. (2001). Analyzing the role of
aspects in software design. Communications of the ACM,
44(10), 67-73.

[9] Goldhaber, M.H. (1992). The attention society. In E. Dyson
(ed.) Release 1.0 number 3, New York, EDventure Holdings,
pp. 1-20.

[10] Goodell, H. (1999). End-User Programming website. On-line
proceedings and material from workshop at CHI 99
(Pittsburgh, PA May 17 1999)
http://www.cs.uml.edu/~hgoodell/EndUser/

[11] Goodman, N. (1969). Languages of art: An approach to a
theory of symbols. London: Oxford University Press.

[12] Gray, W.D. & Fu, W.-T. (2001). Ignoring perfect knowledge-
in-the-world for imperfect knowledge-in-the-head:
Implications of rational analysis for interface design. CHI
Letters 3, 112-119.

[13] Green, T.R.G. and Blackwell, A.F. (1998). Design for usability
using Cognitive Dimensions. Tutorial session at British
Computer Society conference on Human Computer Interaction
HCI'98.

[14] Green, T.R.G. and Blackwell, A.F. (1996). Ironies of
Abstraction. In Proceedings 3rd International Conference on
Thinking. British Psychological Society.

[15] Green, T.R.G. and Petre, M. (1996). Usability analysis of
visual programming environments: a 'cognitive dimensions'
approach. Journal of Visual Languages and Computing, 7,131-
174.

[16] Hoare, A.J.P. Personal communication, 30 October 2001.

[17] Hoc, J.-M., Green, T.R.G., Samurcay, R. and Gilmore, D.J.
(Eds) (1990). Psychology of programming. Academic Press..

[18] Lindsay, R.K. (1988). Images and inference. Cognition, 29(3),
229-250.

[19] McCracken, D.D. (1957). Digital computer programming.
Wiley.

[20] Mellor, D.H. (1988). 'How much of the mind is a computer? In
P Slezak and W. R. Albury (Eds). Computers, Brains and
Minds. Dordrecht: Kluwer, 47-69.

[21] Nardi, B.A. (1993). A small matter of programming:
Perspectives on end user computing. MIT Press.

[22] Nielsen, J. & Molich, R. (1990). Heuristic evaluation of user
interfaces, Proceedings of ACM CHI’90 Conf. (Seattle, WA,
1-5 April), 249-256.

[23] O’Hara, K.P. & Payne, S.J. (1998). The effects of operator
implementation cost on planfulness of problem solving and
learning. Cognitive Psychology, 35, 34-70.

[24] Pirolli, P. & Card, S.K. (1999). Information foraging.
Psychological Review, 106, 643-675.

[25] Portante, T. & Tarro, R. (1997). Paying attention. Wired 5.09,
114-116.

[26] Russell, S. & Wefald, E. (1991) Do the right thing: Studies in
limited rationality. MIT Press.

[27] Shneiderman, B. (1983). Direct manipulation: A step beyond
programming languages. IEEE Computer, August, pp. 57-69.

[28] Staton, S. (2002). An agent architecture. Paper presented at
CHI 2002 workshop on Cognitive Models of Programming-
Like Processes.

[29] Stenning, K. & Oberlander, J. (1995). A cognitive theory of
graphical and linguistic reasoning: Logic and implementation.
Cognitive Science, 19(1), 97-140.

[30] Weinberg, G. The psychology of computer programming. New
York: Van Nostrand Reinhold.

[31] Wrubel, M.H. (1959). A primer of programming for digital
computers. McGraw Hill.

