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Abstract—This paper presents a design approach to 
intelligent user interfaces that purposely undermines the 
perceived "intelligence" of the automated system, with the 
intention of improving collaborative problem solving. Our goal 
is for domain experts to maintain a high level of agency, having 
confidence in their own judgment wherever appropriate, and 
easily able to question or supplement actions taken by the 
automated system. We support this approach with four design 
case studies that incorporate methods from computer vision, 
natural language processing, data mining, and exploratory 
visual analytics. Each of the resulting systems has been designed 
for a specific context of domain expertise. The design guidance 
derived from these cases relates to the maintenance of 
uncertainty through visual design cues, encouragement of 
judgment decisions by expert users, and emphasising the limited 
evidential status of partial data sets. 

Keywords—intelligent user interfaces, certainty, explanation 

I. INTRODUCTION 
The comedy sketch show Little Britain created the 

catchphrase/meme: ‘computer says no’. Following a long 
tradition of satirical responses to bureaucracy, this particular 
meme economically captures the (literal) mindlessness of the 
supposedly intelligent computer, the frustration of binary 
decisions in otherwise nuanced human interaction, and the 
potential for abdication of human agency in information 
systems. In collaborative problem solving situations, each of 
these factors presents a serious obstacle to effective 
collaboration. In our research, we seek design strategies to 
mitigate those obstacles. We are particularly concerned with 
innovative design for new technical developments in artificial 

intelligence and visual interaction, motivated by theoretical 
perspectives such as mixed initiative interaction [1] and 
attention investment [2]. 

We suggest that a more appropriate design stance for such 
technologies is computer says don't know, to be applied in any 
situation where information is incomplete or alternative 
courses of action are available - which is to say, every situation 
involving collaborative problem solving. We offer four design 
case studies that explicitly address specific everyday issues in 
intelligent system design: incomplete (training) data, 
ambiguity or uncertainty in inferred models, and availability 
of human expertise. Each of the four case studies relates to a 
technical trend in current AI: i) natural language processing, 
ii) computer vision, iii) ‘big data’ mining, and iv) exploratory
visual analytics. Each has resulted in development of an 
interactive prototype, intended for use by experts in a 
particular domain: i) international development aid, ii) 
forensic policing, iii) business decision making, and iv) 
clinical medicine. 

We briefly describe each of these problem domains, and 
the design strategies taken to support expert problem solving, 
in the following sections. There are substantial differences 
between the four design case studies, with regard to the 
precision of the statistical models, the completeness of the 
available data, and the complexity of the interactive visual 
designs. Nevertheless, in this workshop discussion we draw 
lessons across the four cases to demonstrate consistent design 
strategies that rectify the unhelpful ‘computer says no’ 
attitude. The contributions of this work are as follows: 

1. Rather than ‘binary’ category judgements (whether
yes/no, or larger numbers of logistic classes), we create 
visualisations that explicitly maintain ambiguity or 
uncertainty through graphic design cues. 

2. Rather than encourage abdication of human agency, we
explicitly require the users to make their own judgement 
decisions through navigating, labelling or constructing 
interpretive models. 

Mariana is a Vice-Chancellor’s Scholar and is supported by an EPSRC 
industrial CASE studentship co-sponsored by BT. She is also supported by 
a Qualcomm European Research Studentship in Technology. 

The ICUMAP project is part of the Health Foundation’s Insight 
programme. The Health Foundation is an independent charity committed to 
bringing about better health and health care for people in the UK. 
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3. Rather than presenting statistical models as being
correct because the data is objective, we draw attention to the 
ways that the model itself has been created through 
expectations of usage that frame what can be discussed. 

The remainder of the paper discusses each case study in 
turn, then concludes with a summary of the contribution as 
demonstrated in those case studies. The studies do represent a 
wide range of different problem-solving contexts, and we 
have tried to provide a rich understanding of that context - 
none of these projects were originally designed to illustrate a 
simple research theme. 

II. CASE STUDY 1: CODA 
The first case study is a labelling tool designed for an 

efficient workflow that continually highlights and allows 
questioning of the categories being constructed, addressing 
contributions #1 and #2. The application domain relates to the 
work of Africa’s Voices Foundation (AVF), a non-
governmental organisation (NGO) whose purpose is to engage 
with hard-to-reach populations in sub-Saharan Africa through 
the use of information and communication technologies. AVF 
works in partnership with local radio stations in remote rural 
areas, with a focus on conflict regions, low income and low 
literacy populations. SMS messages from the local population 
are collected using an SMS gateway and software running on 
a laptop at the radio station. Community information 
programmes are accompanied by audience participation 
surveys, in which listeners are invited to provide a personal 
perspective on current health issues via SMS. Follow-up 
questions are sent to listeners who respond to the surveys, 
requesting demographic information and other survey data. A 
more in depth description of the methodologies and processes 
that AVF uses, as well as lessons learnt in designing scalable 
socio-technical systems for problem solving, is being 
submitted separately [3]. 

Analysis of these natural language data-sets is central to 
the Africa’s Voices business model. The ”customers” for the 
analysis are typically humanitarian aid organisations and other 
NGOs such as United Nations agencies. The business process 
for Africa’s Voices focuses on efficient and reliable coding 
and analysis of the SMS messages (a difficult process, since 
the respondents often come from speakers of mixed, low-
resource languages), and traceable evidence for 
communication to the NGO customers. This is the context to 
our development of an AI-assisted coding tool for use by 
translators and researchers on the Africa’s Voices staff. 

The immediate application is a research collaboration 
between Africa’s Voices and UNICEF Somalia, contributing 
to a programme of drought and famine relief in politically 
unstable regions of Somalia. In this project, the SMS texts 
being collected are written in Somali. This introduces further 
challenges for analysis, as there is no standardised 
orthography for local Somali speakers, and there are many 
variant spellings of place-names, as well as diverse cultural 
attitudes that influence responses to apparently 
straightforward demographic questions. 

Coda is a qualitative coding tool implemented as a Chrome 
extension (for maximum portability and deployability in 
diverse environments). The UI supports fast (one-key) 
decisions that colour-code the data set. As the user works, 
back-end inference algorithms (currently trivial, but being 
extended) refine a classifier for semi-automated classification 
of unseen items. The user can select words in the message to 
hint to the classifier how they made their decisions. 

A colour-coded scrollbar summarises proportion of 
manually and automated decisions, allowing users to shift 
between review, correction and refinement to audit and 
control semi-supervised learning. This colour-coding also 
serves to explicitly highlight where the computer “doesn’t 
know” how to code a message. 

III. CASE STUDY 2: FORENSICMESH 
The second case study proposes an alternative to 

Computer Vision techniques such as structure-from-motion, 
by avoiding photorealistic scene rendering in favour of 
explicitly incomplete models, and highlighting contributions 
#1 and #3. As more video material becomes available from the 
extensive usage of Body Worn Cameras (BWCs) in policing, 
corporate actors have entered the market of building Evidence 
Management Software (EMS). We anticipate that future EMS 
systems will use this video to recreate crime scenes and other 
sites of investigation, as is already done using 3D modelling 
software and evidential photographs. While there is a plethora 
of literature and research tackling the adoption of BWCs in 
policing, work on photogrammetric techniques whereby sites 
of interest can be reconstructed and verified, and discussions 
on the implications of Big Data and AI-mediated indicators 
(see Cheney-Lippold’s ‘We are data’ [4] and Eubanks’ 
‘Automating Inequality’ [5]), there appears to be a dearth in 
research at the intersections of these areas. This has 
consequences for a range of practices including the emergent 
practice of predictive policing, counter-terrorism and 
investigative policing. The ForensicMesh project sought to 
add value in the process of identifying narratives and 
storylines as these relate to aggregated video footage from 
BWCs in policing. With an aim to facilitate a greater space for 
human judgment in computer-vision aided investigations, as 
well as for understanding and identifying the distinct and 
subjective human perspectives of each wearer of BWCs, the 
project rendered the wearer as a scene element against the 
backdrop of a static parsimonious scene model, to give 
analysts access to the human context of data collection.  

In high-risk site investigations, BWCs are increasingly 
used for two possible functions: ongoing monitoring of what 
are determined to be high-risk sites of potential incidents of 
terrorism, and captured footage during the investigation of a 
newly discovered threat or in the aftermath of such a threat. 
Literature in criminology and sociology has attempted to 
determine the extent to which the usage of BWCs reduce or 
increase violence against — and use of force by — the police 
(see for instance the 2017 report by Barak Ariel [6]). 
Investigative bodies, such as the NYC Civilian Complaint 
Review Board, have endorsed the extended usage of BWCs as 
a step towards greater accountability [7], and there is a general 
sense that the technology provides objective evidence [8]. 
According to Wasserman [9], broadly speaking, the position 
of BWC proponents is commonly summarised into three 
advantages: 1) 'Video offers unambiguous and objective 
evidence for all future police-citizen encounters'; 2) 'Video 
evidence will reduce citizen complains [and] better prove 
accurate claims and disprove false claims'; 3) 'police and 
public will behave better knowing that they are being 
recorded’ [9]. While there is plenty to be said for all of these 
proposed benefits, this project took a point of departure in the 
first claim.  

- 7 -



Existing research, including by Jones et al. [10], debunk 
the misconception that BWC footage is "objective", and stress 
how subjective experiences of incidents shape distinct 
perspectives of what said footage depicts. Investigative 
journalists and fact-finders have developed special expertise 
in creating standards, tools, and methods for using video and 
image material from official channels as well as publicly 
available citizen media and other open-source intelligence 
data. These initiatives (e.g. bellingcat, Forensic Architecture, 
Amnesty’s Digital Verification Corps, Syria Archive etc.) are 
often attempting to disprove incomplete narratives that may at 
times be used for political gain (popularly known as 
misinformation or disinformation). Crucially, they 
accomplish this by highlighting gaps in the evidence under 
question, and searching for the “missing link” across a number 
of different sources. The ForensicMesh project specifically 
looked at the practices of Forensic Architecture in 
contemplating environments that would be most revealing of 
human context and most facilitating of human judgment (and, 
by extension, doubt).  

Forensic Architecture (FA), a visual architecture project 
group based at Goldsmiths University of London, are widely 
respected for their contributions to human rights 
investigations in particular. Their signature immersive 3D 
reconstructions of sites of violence and crime are particularly 
worthy of study, as these demonstrate the cutting edge of best 
practices in establishing visual narratives of events, and filling 
gaps in data where these exist. Ranging from conflict areas 
where hospitals or houses may be subject to significant 
destruction, to murder investigations in Germany, FA use a 
combination of data-sources including but not limited to: 
security footage (CCTV), user-generated content (usually in 
the form of civilian witness footage), images and satellite 
imagery. Using photogrammetric processing and 3D 
modelling, FA reconstruct the scene of the particular event in 
3D. Videos are hence layered on top of the construction and 
played in accordance with their sequential timing. 
Subsequently, linkages between multiple videos and events 
can be made, and cause and correlation could be established. 

Virtual sensors such as eye-tracking for subjects in videos can 
be used to track what event participants are able to see. This 
approach demonstrates a novel but time-consuming strategy 
to the reconstructive process. Advancements in computer 
vision and machine learning, however, mean that the process 
can be simplified, and — with a critical design and data justice 
approach — also avoid outsourcing judgment to a machine.  

The first aim of this project was to render a 3D 
reconstruction of the BWC wearer’s field of vision, using 
photogrammetry. This involved the modelling of two primary 
forms of objects: persistent versus transient objects. Persistent 
objects include buildings, roads, lights, and signs. Moving, 
transient objects, on the other hand, include cars, human 
beings, and animals; these however present a challenge. As 
transient objects move, their position once outside the field of 
vision of the BWC wearer can no longer be known and 
presented with certainty. The predicament presented in such a 
scenario is evident in the decision between modelling the 
transient objects in: 

1. a predicted position; 
2. a fixed position, or; 
3. excluding them from the 3D model (once they have left 

the field of vision). This presents an obstacle regarding 
the decision to render the scene in 3D or 2D (or both). 

In ForensicMesh, we follow FA’s approach in the usage 
of 2D ‘video players’ embedded within a 3D scene model. A 
parsimonious 3D scene model of persistent objects (buildings, 
roads, etc.) can be constructed based on partial information 
(including images and videos). In our case, we use 
OpenStreetMap and aerial LIDAR data to generate the 
parsimonious model. Original footage can then be embedded 
within a 2D video player to reflect the spatial position and 
context of the footage, and the wearer of the BWC is 
represented as a 3D avatar that moves across the scene (Fig 2). 
The scene can represent multiple wearers with different 
perspectives of the event. The moving trajectory of each BWC 
wearer is estimated using a SLAM method [11].  

Fig. 2. ForensicMesh: the image shows a parsimoniously rendered citiscape, with only coloured outlines of surrounding 
buildings. Within the scene, a video plays on a suspended frame, with a human figure in front of it representing the 
viewpoint of the police officer whose body-worn camera originally captured this video. 
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This has several advantages for investigations: First, 2D 
video players only display what the camera actually captured, 
leaving no room to display movements and events that were 
not captured. Second, as the movement of the wearer of the 
BWC is mapped, a clear timeline of the data-collection event 
— as well as of the incident itself — emerge, which 
significantly improves the verification process altogether. 
Lastly, it emphasizes the temporal and spatial relatedness 
between multiple BWCs. Where significant gaps are visibly 
apparent, the analyst is prompted to search for additional 
sources of evidentiary information beyond the interface.  

It is vital to understand the use of tools such as 
ForensicMesh as a practice that aids — rather than automates 
— fact-finding processes. 2D video players are deployed 
where only partial information is captured by BWCs to 
emphasise new emerging lines of inquiry. In this way, the 
process of fact-finding becomes a practice of problem solving 
led by human agents, as gaps prompt the exploration of new 
leads. These static “gaps” are furthermore an opportunity for 
the inclusion of open-source intelligence data, including social 
media, which could shed light on what is not known about the 
gaps. Explicitly representing these gaps can add value in 
prompting the investigator to use other resources available to 
them when the “computer says don’t know”. 

The project set out to develop a photogrammetric tool for 
video analytics by drawing on best practices in the fields of 
criminology, forensics, and investigative digital forensics. 
During the design process, it became apparent that in the 
development of new and innovative systems for evidence 
management, it is necessary to build in “uncertainty” by 
design. Through emphasis on existing or missing connections 
between BWC footage, ForensicMesh was designed to 
recenter algorithmically-mediated investigative environments 
as processes fundamentally of human judgment. This 
approach not only reiterates the subjective nature of BWC 
footage, but also demonstrates that ML and computer vision-
based technologies can be used outside of regimes that 
reinforce noxious social biases which are at risk of being 
algorithmically reproduced. 

IV. CASE STUDY 3: SELFRAISINGDATA 
The third case study is a data visualisation tool for use in 

the absence of data, highlighting contribution #3. There is an 
increasing need for business decision making processes to 
depend on analysing large quantities of data. However, not all 
the data is easily available or even collected when questions 
and hypotheses arise, nor is there much time in the fast paced 
context in which business managers operate to sit down with 
an analyst and explain and detail the high level question into 
deliverables. Data analysts have only a short time after they 
receive an analysis request to clarify the business manager’s 
question. They rely on their expert knowledge of the business 
domain and of the organisational context to anticipate the 
(implicit) needs of the business. 

The focus of this project was building a data visualisation 
tool that would support remote collaboration between data 
analysts and business managers requesting data analyses and 
reports. Through several interviews with data analysts 
working for BT, we identified a number of challenges in their 
existing workflows, from difficulties of data extraction to the 
importance of careful communication of results to non-
experts. A more in depth description of the research 
methodology and of the tool created can be found in Mărășoiu 
et al. [12]; here we describe the part of the analytical process 

that we chose to design a solution for, and briefly describe the 
technical artefact created, emphasizing the three design 
strategies discussed in Section 1. 

In this project, we chose to focus on the hypothesis 
clarification and refinement part of the analytical process - the 
conversation between the analyst and the requester, where the 
former aims to better understand the question being asked by 
the latter. 

Some of the analysts we interviewed work on many small 
data analysis projects, often at the same time. High level 
business questions such as “why is [this region] not as good 
as everybody else, what is happening there” are the typical 
starting point for such a project. But before the analysts can 
get started on finding and extracting the needed data from the 
company’s databases and data silos, they need to both have a 
better understanding of what the requester needs, and to turn 
the high level question into actionable steps and outcomes. 
They need to add parameters to the original hypothesis, and 
“fill in all the details”, by asking more questions about e.g. 
which aspects of the region they should look into, what 
“everybody else” means, what “not as good” means. The data 
analysts we interviewed had these kinds of conversations 
primarily through phone calls and sometimes via emails. 

Our system, SelfRaisingData, allows sketching and 
modifying data visualisations in order to support these remote 
conversations structured by analytic hypotheses.  

Since the analysts we interviewed had such conversations 
primarily through phone calls, the typical scenario would be 
that both the analyst and the manager would be working on 
the same visualisation document on their own computers, 
whilst on the phone with each other. The visualisation has the 
role of being an external representation of the analyst’s 
understanding of the manager’s question, with the manager 
being able to comment and point out where their 
understanding of the question diverges. As such, the analyst 
can create and edit the visualisation to reflect their 
understanding, whereas the manger can only annotate it. 

Fig. 3 illustrates the system. The choice of visualisation 
comes from the domain in which the analysts we interviewed 
worked in, as a large part of the type of data they work with is 
timeseries data. The central area of the system represents a 
timeseries visualisation of synthetic data. The data is 
generated from additively composing a set of parameterisable 
functions added from a tool panel to obtain a trend line. Each 
component function can be parameterised independently in a 
function editor by dragging the value handles of its properties 
on axes corresponding directly to the axes of the final 
visualisation. The user can add, remove, and modify each 
component function. 

Whilst the resulting composed function could be displayed 
as a line chart, this visualisation style can result in users 
fixating on manipulating the parameters of the composing 
functions in order to achieve a smooth line. Instead, we add 
noise to the trend line by 1) transforming the continuous 
function into a discrete set of points by sampling N equally-
spaced time coordinates (the X axis) and 2) sampling the value 
coordinates (the Y axis) from standard distributions having the 
value of the trend line function as their mean and a constant 
fixed variance. To further suggest sketchiness and 
imprecision, we represent each individual point as a hand 
drawn cross. 
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A panel at the bottom of the screen records the history of 
the visualisation in conceptual sequences of steps (e.g. adding, 
removing, and editing a different component function, adding 
a new timeseries). The users can change their mind at any 
point, having the ability to load any of the past versions of the 
visualisation and create a new development branch by editing 
the older version. 

Our design goal in this project was to support a 
conversation about data in the absence of real data through 
sketching. In this case study, the computer “doesn’t know” 
anything, but provides support for collaboration and statistical 
problem specification. The visualisation system is a 
conversational aid that frames the conversation between two 
people. For example, treating the visualisation as a 
composition of independent elements (e.g. trends, periodicity, 
plateaus, dips and peaks) is a deliberate design choice. It adds 
hypothesis semantics to the visualisation as each component 
function acquires an individual meaning (e.g. the March-June 
performance plateau, the 8th of October sales drop). Further, 
independently manipulated component functions are still 
available for discussion even after being composed with other 
functions. The always-visible list of component functions also 
draws attention to the way that the sketch has been 
constructed. 

Since the data visualised is synthetic and created by the 
user, emphasizing ambiguity is also relevant. We achieve this 
through the noisiness of the scatter plot, which also allows for 
imprecision when adjusting the parameters of the component 
functions. This means that sketching can be done quicker, as 
(spending time to achieve) precision is actively discouraged. 
Vagueness is further encouraged by representing each point as 
a hand drawn cross and removing any numbering from the 
function editor panel. The visualisation is a rough sketch of 
how the real data might look like. 

V. CASE STUDY 4: ICUMAP 
Our final case study is an interactive visualisation that was 

created to support clinical judgments in an intensive care unit 
(ICU) through reuse of electronic health record (EHR) data, 
highlighting contributions #2 and #3. During treatment in an 
ICU, large amounts of data are collected for each patient, 
including both nursing observations and automated data 
acquisition from monitoring instruments (e.g. blood pressure 
and pulse) at the bedside. Subsets of this data are collated from 
hospitals around the UK by the national intensive care registry 
(ICNARC), which uses it to calculate statistical measures of 
patient condition for comparison to treatment outcome. 
However, our research with clinicians across multiple 
hospitals suggested that these measures have low predictive 
power and are never used directly to guide treatment, perform 
triage, alert potential emergencies, or otherwise guide clinical 
judgment. 

We had access to 10 years of data, covering the treatment 
of 20,000 patients, from an ICU specialising in cardiothoracic 
surgery (e.g. arterial bypass grafts, heart valve replacements 
and heart transplants). While standardised statistics such as 
ICNARC are compiled based on a small number of 
physiological measures at admission time, we were able to pay 
attention to how the patient’s condition changes during the 
time they are in the unit. In particular, our clinical 
collaborators wanted to know when a patient’s condition 
changes in a way that is likely to have adverse outcomes - 
expressed to the design team as a ‘traffic light’ indication.  

The system we designed, ICUMAP, is a dimension-
reduced visualization (Fig. 4), in which a variant of t-SNE [14] 
is used to construct a reference ‘map’ of regions in which 
intensive care patients are ‘similar’ within a multi-
dimensional space of variables monitored during their 
treatment. The condition of each patient is mapped to a new 
location at 6-hour intervals, and these points are joined to form 
a trajectory. Early experiments confirmed that some regions 
in the t-SNE cluster map were associated with high mortality, 
meaning that the ‘traffic light’ goal could apparently be 
expressed as places where a patient appeared to be ‘moving 
toward’ a high mortality region in t-SNE space. However, this 
is not a mathematically well-formed question. t-SNE can be 
interpreted as a projection of a multi-dimensional space, but 
the projection is not necessarily monotonic in any dimension. 
Our experiments confirmed warnings of Wattenberg et al [15], 
that possible “tendencies” were simply a tangle of overlaid 
random lines. 

We therefore modified the t-SNE algorithm, adding two 
new constraints to the distance function. The first was to 
penalise long distances between successive measurements for 
the same patient, creating temporal locality as a basis for 
thinking about trajectory. The second was to promote 
proximity for measurements taken at the point where a patient 
had died, meaning that these were more likely to cluster 
together, with the result that mortality would correspond to 
particular “places” within the optimised layout. The third was 
to include the surgery that the patient had undergone as a 
strongly weighted factor, meaning that cases tended to be 
grouped according to procedure, corresponding to natural 
classifications used by clinicians.  

We optimised the visual rendering to convey local detail 
of individual trajectories, while also offering a distribution 
overview of thousands of these. This involved manipulation 
of hue gradients, line widths, and alpha (transparency) values 
so that each trajectory could be viewed as a progression from 
condition at admission (blue at the start of the line) to either 
mortality or discharge (red or green). Within the clusters of 
different surgery types, those types that are more risky can be 
identified by greater density of red trajectories. 

This design reflects a Bayesian approach to clinical 
decision making. Rather than claiming statistical likelihood of 
treatment outcomes, we focused on assisting clinicians by 
improving ease of access to relevant prior cases among the 
thousands they might consider, and making this information 
more readily available as a counter to the usual heuristic biases 
in clinical judgment. We therefore focused on selecting a 
small number of comparator cases, sufficiently similar to 
suggest relevance to a patient currently under consideration, 
but presented within an interpretive metaphor that would 
facilitate reflection on the current case, while not over-
determining the conclusions that might be drawn. 

ICUMAP includes many features for interaction with the 
data archive, always aiming both to provide users with 
statistical overviews while comparing and contrast a patient 
currently being treated with cases from the historical records. 
When mousing over the map, the trajectories for individual 
patients are highlighted. The measured values for that patient 
at this time are shown on histograms showing overall 
distributions, so users can see at a glance how typical this 
patient is. When one histogram is selected, a mask over the 
map visually fades areas where the value of this variable is 
low. 
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These features allow clinicians to review prior likelihood, 
variability, value exceptions, and other broad statistical 
properties of the large database. However, it is necessary to 
keep in mind that the t-SNE ‘landscape’ does not necessarily 
provide any continuity with respect to a single variable – the 
variation in masks and intensity is therefore rendered with 
large tiles to reveal this blotchy variability, and discourage 
misleading interpretation.  

In this final case study, we explicitly evaluated the extent 
to which our design approach is understood and appreciated 
by domain experts. This involved a focus group with expert 
staff, and controlled task observation with students. 

A. Focus Group Evaluation 
We invited eight clinicians and a hospital information 

analyst to a focus group workshop, at which we demonstrated 
the functionality of ICUMAP, explaining each aspect of 
system functionality before pausing for comments and 
discussion. 

We report two primary topics of discussion that arose. The 
first was the question of which data in the EHR database has 
the most clinical value for predicting or modifying treatment 
outcomes. There were diverse opinions, with some senior 
clinicians strongly advocating use of particular measurements 
(some of which are not presently recorded in the EHR at all). 
The second topic focused on the main theme of this paper, 
which was skepticism regarding the ‘sales’ message of 
predictive analytics. Many participants had encountered 
products that claimed to deliver predictive functionality 
through multivariate data mining. Clinicians were skeptical 
that such prediction was possible. Their view was that single 
variables reflect critical aspects of patient condition, and that 
multivariate analysis (and hence dimension reduction 
visualisations) does not significantly add to clinical judgment.  

Nevertheless, our central design strategy, drawing clinical 
attention to a small number of previous cases similar to the 
current patient, appeared to be welcomed. Scepticism about 
the value of predictive analytics was directed at other systems 
(or speculation about what our system might be), while there 
was productive conversation about the identified similar 
patients. 

B. Controlled experiment evaluation 
We recruited six participants to evaluate ICUMAP in a 

controlled task. Three were clinical professionals (two 
medical students nearing the end of their studies, and one 
registrar intensivist), and three students from non-medical 
(engineering, physics, computer science) backgrounds. A 
predefined data set was loaded, and each participant worked 
through the same series of interpretive tasks. At the start of 
each task, the participant was asked an interpretive question 
without prompting them about ICUMAP functionality. If they 
had not recognized the expected functionality, the relevant 
system function would be explained (using a predefined text) 
before proceeding. 

In order to compare interpretation of the t-SNE cluster 
visualization to more conventional statistical visualisations, 
participants were first shown a screen with only the histogram 
distributions. The participant was asked questions regarding 
their interpretation of these historical distributions, and then 
shown values for a small number of individual test patients 
drawn from the database to represent distinctive types, before 
being offered the opportunity to compare these individual 

patients to the overall population. The clinical participants 
were asked how they would interpret the condition of each test 
patient in their clinical judgment. After making their 
interpretations, the clinical participants were additionally 
asked to report how confident they were.  

The t-SNE cloud visualization was then revealed, with the 
explanation that this represented change over time for the 
same measurements. Participants were asked for their 
unprompted interpretation of design elements. If they did not 
volunteer key aspects (time-courses, proximity, mortality), 
these were explained. Features were tested in turn, each time 
offering an opportunity for the participant to make their own 
interpretation before the design was explained. Finally, a 
small number of patients were selected, each chosen to 
represent a particular type of surgery or outcome. Participants 
were asked for their interpretation of likely treatment 
outcomes, taking into account other patients automatically 
highlighted as ‘similar’. At each point where participants 
offered an interpretation, they were asked to quantify their 
level of confidence in that judgment. 

We found that while all technical participants recognised 
histograms as describing statistical distribution, two medical 
participants initially misinterpreted histograms as 
representing change of a measure over time (the existing EHR 
system presents a patient overview with prominent time-series 
graphs). Once they understood the principle, they were able to 
use the data for assessments of a single patient. However, they 
relied on prior expectation of typical values (i.e. a value range 
learned during their studies) for initial assessment. Where they 
had less prior knowledge, they paid more attention to the 
plotted position of a value within the overall distribution. They 
used a time step control to explore progression and discuss 
changes in the patient’s condition over time, for example a 
crisis at one time step. They expressed more confidence in 
judgments when exploring this historical data. 

Technical participants immediately recognized that the 
ICUMAP visualization was a dimension-reduced view of 
multivariate data. None of the medical participants recognized 
this, and found the visual complexity overwhelming. After 
using the mouse to explore trajectories, they were able to 
identify properties of the visualization, although one remained 
uncomfortable throughout the session. All understood that the 
lines represented the trajectory for a patient, and that red and 
green reflected mortality. None recognized the basic principle 
of similar points being near each other. Two of the three 
recognised without prompting that clusters reflected type of 
surgery. 

Medical participants, in interpreting the overall structure 
of the cloud, tended to make comparisons between clusters. 
One expected (incorrectly) that larger clusters might reflect 
wider distribution of values, while others observed correctly 
that cluster size related to the number of patients in that 
cluster. 

The key principle of selecting and plotting a group of 
similar patients was recognized without prompting by all 
medical participants. When asked to make judgments based 
on this visualization, they did, as intended, immediately start 
to make comparisons, for example by starting to talk about 
relative length of stay, that they did not do when considering 
histograms alone. A major concern of ours was to avoid over-
interpretation of the similarity as predictive data. None of the 
participants expressed a confidence of 100%, with most 
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judgments being in the 50% to 80% reflecting a suitable 
degree of caution. One of the test patients, having healthy 
values and routine surgery, where all similar cases had been 
discharged successfully, led a participant to give a 90% 
assessment that this patient would also be discharged. These 
findings are encouraging, however, we noted a trend that the 
confidence judgments tended to increase over the course of 
the experiment, suggesting that growing familiarity with a tool 
may still lead to errors of the kind that we wish to avoid 
through our design philosophy. 

VI. DISCUSSION 
In this section, we summarise the design strategies that 

have been applied in these systems, relating them to the three 
broad contributions outlined in the introduction to the paper. 

Firstly, we suggest using graphic design cues to maintain 
ambiguity or uncertainty in presenting inferred information to 
users. This is a corrective to the increasing tendency in many 
machine learning systems to present the categorical output 
variables of logistic regression as simplistic either/or 
alternatives, replicating the errors that were systematically 
identified in the seminal work by Bowker and Star [16]. In 
Coda, we use desaturated colours to contrast automated 
suggestions with human-assigned labels, allowing natural 
interpretations such as complete desaturation (white) being 
equivalent to no judgment at all, while near-full saturation 
indicates that the system has identified duplicates that are 
safely amenable to trivial automation. In ForensicMesh, we 
eschew photo-realistic scene rendering in order to remind 
viewers that a geometric model is based only on a persistent 
coordinate system, not fully-observed state. 

Secondly, we suggest that users should be explicitly 
required to make their own judgement decisions. In a labelling 
system such as Coda this is trivially true. However, we should 
recall that most AI systems intentionally hide the labelling 
phase (usually done offline, via a different interface, and prior 
to system operation). In ICUMAP, we do not directly present 
statistical regression on patient condition as a basis for 
decision making, instead emphasising the clinician’s 
responsibility to retrieve and consider other cases - based on 
the particularity of clinical interventions and patient case 
histories. 

Thirdly, we suggest that systems draw attention to the 
ways that the model itself has been created through human 
processes, reminding users that these processes anticipate the 
ways the model can be used. The most extreme is 
SelfRaisingData, in which users are invited to completely 
“fabricate” data to reflect their ideas about the model. In 
ForensicMesh, we insert an “observer” into the scene, to 
emphasise that BWC video is not objective, but reflects the 
viewpoint of the person who was wearing the camera. In 
ICUMAP, the use of a query / recommendation interaction 
paradigm means that the “model” is transient, presented only 
as a byproduct of the user’s brushing over a cloud of patient 
journeys, or over distributions of measurement values. 

Each of these design strategies has potential for use in 
other collaborative problem-solving settings, and we look 
forward to workshop discussion considering analogies to 
other intelligent interaction scenarios. 

VII. CONCLUSION 
Although “computer says no” was introduced as a comedy 

trope, the extension of algorithmic decision making 
throughout society has become tragic, as when a British man 
was denied an ambulance because the triage algorithm 
determined that his case was not serious, despite the fact that 
he was in agony, correctly diagnosed his own condition, and 
subsequently died. Cheney-Lippold [4] quotes the operator 
“We cannot override this, and although there are paramedics 
in the control room for us to ask, I would not think the system 
would come up with the wrong answer” 

Our four case studies all involve use of data in mission-
critical or safety-critical settings. Enhancing reliability of data 
analysis in such settings is obviously an important research 
goal for data science and AI. However, at present, these are 
domains where expert human judgment is respected and 
human experts take responsibility (and liability) for their 
interpretations and decisions. This paper has considered a 
number of visual language design approaches through which 
expert responsibility can be maintained, with ‘intelligent’ 
analysis focused on making the necessary data salient and 
easily available for human judgment, rather than taking 
automated decisions. 
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