
Cognitive Dimensions and Multiple Notations

Tim Wright and Andy Cockburn

September 1, 2005

Contents

1 Classification Scheme 1
1.1 Sample Programming Environments1

1.1.1 Logo 1
1.1.2 StageCast. 3
1.1.3 OpenOffice.org. 4

1.2 Three Fundamental Activities. . . 4
1.3 Three Cognitive Gulfs 5
1.4 Language Signatures. 6

2 Advanced Multiple Notation Environ-
ments 7
2.1 Environments with multiple nota-

tions for reading. 7
2.2 Environments with multiple nota-

tions for writing 7
2.3 Environments with Multiple Nota-

tions for Reading and Writing . . 9
2.4 Environments with an Arbitrary

Number of Notations. 9

3 Green and Petre’s Cognitive Dimen-
sions 9

4 Summary 10

Abstract

Cognitive Dimensions is widely used framework
to evaluate visual notations. Our research indi-
cates that many programming environments let
people program using multiple notations. Unfor-
tunately, Cognitive Dimensions does not provide
mechanisms to assess the relationship between the
notations. In this paper we introduce our view of
how notations are used in programming environ-
ments and we perform a preliminary extention of
cognitive dimensions so it applies over multiple
dimensions.

Much of this work is taken from Tim Wright’s
PhD thesis [21].

1 Classification Scheme

Central to our understanding of how notations are
used in programming environments are two con-
cepts: the activities people perform while pro-
gramming and a method of specifying how the ac-
tivities are supported by notations in a program-
ming environment. We determined the fundamen-
tal activities by performing an activity-based de-
composition of programming, and identified three
fundamental activities: reading programs, writing
programs, and watching programs run. We call
our method of specifying how the activities are
supported in a programming environment a Lan-
guage Signature. This section introduces our three
programming activities and Language Signatures.
To aid the explanation of the activities and gulfs,
we begin by introducing three programming envi-
ronments that will be used as examples throughout
this chapter: Logo, StageCast, and OpenOffice,
and we examine how notations are used in these
environments.

1.1 Sample Programming Environ-
ments

This section describes three sample programming
environments and examines how notations are
used in these environments. From these environ-
ments, we learn two things. First, that program-
ming environments do use multiple notations and
that using different notations could cause prob-
lems for users of the environments). Second, these
notations are used for three separate programming
activities: reading, writing, and watching. These
three activities are the foundation of the frame-
work for understanding how notations are used
programming environments and are discussed fur-
ther in the following section.

1.1.1 Logo

Logo, developed by Papert, is an environment
where users edit text to control how a turtle moves

1

sub transpose
rem --
rem define variables
dim document as object
dim dispatcher as object
rem --
rem get access to the document
document = ThisComponent.CurrentController.Frame
dispatcher = createUnoService("com.sun.star.frame.DispatchHelper")

rem --
dim args1(1) as new com.sun.star.beans.PropertyValue
args1(0).Name = "Count"
args1(0).Value = 1
args1(1).Name = "Select"
args1(1).Value = true

dispatcher.executeDispatch(document, ".uno:GoLeft", "", 0, args1())

rem --
dispatcher.executeDispatch(document, ".uno:Cut", "", 0, Array())

rem --
dim args3(1) as new com.sun.star.beans.PropertyValue
args3(0).Name = "Count"
args3(0).Value = 1
args3(1).Name = "Select"
The largest number of end-user programming environments use two notations.
args3(1).Value = false

dispatcher.executeDispatch(document, ".uno:GoRight", "", 0, args3())

rem --
dispatcher.executeDispatch(document, ".uno:Paste", "", 0, Array())

end sub

Figure 1: Automatically generated OpenOffice.org macro to transpose two adjacent characters.

2

Figure 2: A mockup of the Logo Programming
Environment. Users read and write programs us-
ing text, but see a turtle move around drawing lines
when their program is executed.

around a screen and draws lines [12]. For exam-
ple, a user might type:

REPEAT 4 [Do the following 4 times
FD 50 MoveForwarD 50 units
RT 90 TurnRighT 90 degrees

]

and see a picture of a square. A mock-up Logo
environment is shown in Figure2.

The Logo environment contains two notations.
The first is the textual description of what the turtle
will do when the program is executed and is used
when a user reads or writes a program. The second
notation is the collection of lines that are drawn as
the turtle that moves around the screen as well as
the turtle itself drawing the lines. This notation is
used for watching a program run

We postulate that the difference in notations be-
tween the reading/writing and watching activities
could cause problems for a user as they must rea-
son about one notation using another notation. For
example, a user might ask themselves “why did the
turtle turn right instead of left” and have to rea-
son about their program by asking “Is my mistake
typingLT instead ofRT or FD instead ofBW?”.
Later in this chapter we examine this type of us-
ability problem, caused when users must interact
with different notations for different programming
activities.

1.1.2 StageCast

StageCast (formally called KidSim or Cocoa) is a
programming environment for 2D visual simula-
tions [17]. 2D simulations are programs that run
in a two dimensional area of a screen where agents
can move around and interact with other. An ex-
ample simulation is shown in Figure3. StageCast
users writebefore-afterrules to define behaviour

Figure 3: A 2D simulation. Many program-
ming environments, including StageCast [17],
AgentSheets [16], and Playground [4], use this do-
main for programming. The environment pictured
(PatternProgrammer) was developed by Wright
[20].

Figure 4: A before/after rule similar to those used
in StageCast [17]. A user is writing a program
to move a baboon past a bush. When StageCast
executes, it will search the simulation for arrange-
ments of agents matching the left-hand side of the
rule and replace the agents with the arrangement
of agents on the right-hand side of the rule.

3

in the simulation. A before after rule has two parts:
an arrangement of agents to search for in the sim-
ulation, and an arrangement of agents with which
to replace the found agents. An example rule is
shown in Figure4 (on page3).

StageCast avoids problems of different nota-
tions by using the same notation for reading, writ-
ing, and watching programs: users write before-
after rules by manipulating visual representations
of agents and when users run their program they
see the same set of agents move around and inter-
act with each other.

Unfortunately, StageCast is not perfect. Us-
ability studies of StageCast found that children
have trouble predicting what StageCast will do
when their program is executing [13]. The prob-
lem was caused by a difference in StageCast’s rule
scheduling algorithm and users’ expectations of
rule scheduling. This type of problem, where the
way a program is executed is different from user’s
expectations of how it will be executed, is investi-
gated in this chapter.

1.1.3 OpenOffice.org

OpenOffice.org is a free1 word processing pro-
gram with capabilities similar to Microsoft Word.
In particular, OpenOffice.org provides functional-
ity so users can program macros to manipulate
their documents. Users program using the sym-
bols provided by the environment: for example, a
user wishing to program a macro to transpose two
adjacent letters might turn on macro recording, se-
lect and cut the letter to the right of the mouse cur-
sor, then move the cursor left and paste the let-
ter. Users can then execute the macro and watch
letters in their document change places. Unfortu-
nately, if users discover a problem with their pro-
gram they must either re-demonstrate the program
from scratch or edit their program using a complex
textual language: OpenOffice Basic (an example
of OpenOffice Basic can be found in Figure1 on
page2).

We postulate that this difference, between the
notation used for writing and watching programs
and the notation used for reading and writing the
program, could cause usability problems for a user
of OpenOffice. Again, this chapter examines this
type of usability problem, caused by users inter-
acting with different notations for different pro-
gramming activities.

1OpenOffice.org is licensed under the GNU GPL.

1.2 Three Fundamental Activities

The previous section describes three programming
environments: Logo, StageCast, and OpenOffice,
and describes several ways programming environ-
ments can use notations. The three environments
described use notations in very different ways:
Logo uses one notation for editing programs and
another notation for watching programs; Stage-
Cast uses the same notation for editing and watch-
ing programs; and OpenOffice uses one notation
for writing and watching programs and another
notation for editing programs. By decompose the
editing task into two sub-tasks, reading and writ-
ing, we uncover three fundamental programming
activities: reading, writing, and watching. These
three activities are both fundamental to program-
ming and fundamental to our framework for un-
derstanding how notations are used in program-
ming environments. We now describe each activ-
ity in depth.

Reading is the act of viewing a notation describ-
ing program behaviour, writing is the process of
using a notation to describe program behaviour,
and watching is the act of viewing program be-
haviour, either viewing an animation of the nota-
tion or viewing the behaviour specified by the no-
tation. The activities are shown in Figure7. Also,
we use the term the “program representation” to
refer to any notation used for reading and we use
the term the “program visualisation” to refer to
any notation used for watching: program visual-
isations can range from animations of the code to
agents interacting in a 2D simulation.

To use an example (described in the previous
section and also shown in Figure7), consider a
user of a word processing program who wants
to write a program to transpose two characters.
First, using their word processor’s programming
by demonstration mechanism, they record them-
selves transposing two characters. This record-
ing of their behaviour is the writing activity, and
in this example they are writing using the icons
and behaviour provided by their word processor.
Next, they execute their macro a couple of times to
transpose various characters that were out of order.
This execution of their program is the watching ac-
tivity. Again, in this example, they are watching
their program using the icons and symbols pro-
vided by the word processor. After they have exe-
cuted their macro several times, they discover that
there is a bug in their macro: the macro transposes
the two characters to the left of the cursor instead
of the intended behaviour of the two characters

4

1. User has intentions and a
model of how system works.

2. These intentions must be
expressed using a set of
allowable actions.

3. User must interpret state of
system to determine how well
intentions have been met.

I want to make the
fridge colder

I turn the left dial

Hmm. The fridge got colder,
 but the freezer got warmer.

User Updates
Model of system

Gulf of
Evaluation

Gulf of
Execution

Figure 5: Donald Norman’s gulfs of Execution
and Evaluation. The gulf of execution is “the dif-
ference between user intentions and allowable ac-
tions” and the gulf of evaluation is “the amount
of effort the the person must exert to interpret the
physical state of the system and to determine how
well the expectations and intentions have been
met” [10]

surrounding the cursor. To fix their program, the
user opens their macro in the macro editor to first
read and understand it. This is the reading activ-
ity. In many current word processors, they will see
their code in a textual form close to a conventional
programming language. In this example, the pro-
gram representation is the textual form they view
to edit their macro while the program visualisation
refers to the dynamic effects caused by the user ex-
ecuting their program.

1.3 Three Cognitive Gulfs

In 1988, Norman examined the real world for us-
ability problems [10]. He identified two cogni-
tive gulfs: the gulfs of execution and evaluation.
He describes the gulf of execution as “the dif-
ference between user intentions and allowable ac-
tions” and the gulf of evaluation as reflecting “the
amount of effort the the person must exert to in-
terpret the physical state of the system and to de-
termine how well the expectations and intentions
have been met”. For example, imagine someone
trying to decrease the temperature of a fridge (Fig-
ure5). First, they examine the dials on the fridge
and note two dials. Assuming that one dial is
for the fridge and the other dial for the freezer,
they turn the left hand dial to the right. This dif-
ference between the user’s intentions (make the
fridge colder) and the allowable actions (two dials
that can be turned left or right) is the gulf of exe-
cution. After letting the fridge’s temperature sta-
bilise, the user notices that while the fridge has be-

1. User has intentions and a
model of how system works.

2. These intentions must be
expressed using a set of
allowable actions (language
syntax).

3. User must interpret state of
system to determine how well
intentions have been met.

I want to make a
computer game

I type some stuff

What does 'compile
error' mean?

User Updates
Model of system

Gulf of
Execution

Gulf of
Evaluation

Figure 6: Donald Norman’s gulfs of Execution
and Evaluation in a programming context [10].
The gulf of execution is the difference between
a user’s model of desired program behaviour and
how they must express their program to the com-
puter while the gulf of evaluation is how hard it
is for the user to figure out if they have expressed
their program correctly.

come colder, the freezer has also become warmer.
The effort the user must expend interpreting the
system and understanding why their actions had
a different effect than they expected is Norman’s
gulf of evaluation. Norman’s gulfs are shown in
Figure5.

Figure 6contextualizes Norman’s gulfs in a pro-
gramming context. While the gulf of execution
is still applicable (users must translate their men-
tal model into the symbols of a programming lan-
guage), the gulf of evaluation has become more
complex: a program has both a static representa-
tion and a dynamic visualisation that users must
interpret to determine how well their intentions
have been met. To distinguish the different gulfs
of interpreting the representation of visualisation,
we decompose Norman’s gulf of evaluation into
two gulfs: the gulf of representation and the gulf
of visualisation.

So, in a programming context, Norman’s two
gulfs become three (and are shown in Figure7). A
gulf of expression is created when the user’s men-
tal model of desired program behaviour differs to
how the user must express the program for read-
ing. A gulf of representation is created when the
user’s mental model of program behaviour and the
program representation. A gulf of visualisation is
created when the user’s mental model of program
behaviour differs from the program visualisation.

As an example, consider a user writing a pro-
gram to transpose two letters. If the user is using
a word processor with a macro recorder, they can
write the program using the icons and behaviour

5

Figure 7: The gulfs of expression, representation,
and visualisation and their associated activities.
In this example a user is writing a program us-
ing programming by demonstration mechanisms.
The user is reading an computer generated repre-
sentation of their program. When they run their
program they see letters in their document being
transposed.

of their word processor. As they are likely fa-
miliar with the icons and behaviour of their word
processor, we argue they have a low gulf of ex-
pression. However, imagine that their word pro-
cessor had no macro recorder and the user had to
write their program using a conventional textual
language (like Visual Basic). Unless the user is ex-
perienced with this conventional textual notation,
they will be unfamiliar with the notation and we
argue the notation creates a high gulf of expres-
sion.

We define the gulf of visualisation as the cogni-
tive difference between a user’s mental model of
program behaviour and the program visualisation
(what the program actually does as it executes).
To continue the example of a user writing a pro-
gram to transpose two letters, consider the possi-
bility that when the users executes their program,
the program does not behave as expected. Al-
though the program does not behave as expected,
it uses the same symbols and behaviour that the
user wrote the program in (the icons and behaviour
of their word processor), so we argue that there is
a low gulf of visualisation (in this example we are
using the notation the user wrote their program in
as a cognate for their mental model).

We define the gulf of representation as the cog-
nitive difference between the users mental model
of their program and the program representation.
As an example, consider our user who is writing a

program to transpose two letters. After they have
written their program, they run their program and
discover that it doesn’t work as expected. When
they view their program, they see conventional
textual program code. Like the gulf of visualisa-
tion, we can use the notation the user wrote the
program in as a cognate for their mental model. As
the notation consisting of the icons and behaviour
of a user’s word processor is very different from
a conventional textual programming language, we
argue this example creates the risk of a high gulf
of representation.

Smith, Cypher, and Tesler have also done work
contextualising Norman’s gulfs in a programming
context [18]. They argue that the appropriate way
to make programming easier is to reduce Nor-
man’s gulfs by moving the system closer to the
user. Their assumption in this is that there is a con-
sistent representation of the programming system:
people write, read, and watch programs using the
same notation. Our structure of the three activi-
ties (reading, writing, and watching) and the three
gulfs (execution, representation, and visualisation)
gives us flexibility to argue about systems that use
different notations for the three activities, or even
different notations for the same activity. We use
an abstract syntax for how notations are used in
programming environments called Language Sig-
natures. Language Signatures are described in the
following section.

1.4 Language Signatures

By describing how programming environments
use notations for our three activities we can com-
pare different programming environments and dis-
cover ways of using notations that help users
when programming and ways of using notations
that hinder users when programming. Unfortu-
nately, the description of how different notations
are used for different activities is long, increasing
the chance that someone will misread a notation
description. They also make comparing how nota-
tions are used in different programming environ-
ments harder. For an example description, con-
sider Logo. Logo is a programming environment
where programmers describe how a turtle moves
around a 2D surface and draws lines. An example
logo program with output is shown in Figure2.
The description of how notations are used in Logo
is: users read and write programs using textual
commands and watch a turtle draw lines.

To avoid parsing problems, and to help people
compare different how different programming en-

6

vironments use different notations, we use Lan-
guage Signatures. A Language Signature suc-
cinctly expresses how a programming environ-
ment uses different notations for the three funda-
mental programming activities. It is written inside
square brackets with plus (+) symbols separating
different notations. Each notation is described by
stating the activities it supports, abbreviated to RE

(Reading), WR (Writing), and WA (Watching) and
separated by slash (/) symbols. For clarity, a tex-
tual description of the notation’s symbols can be
subscripted to the description of the activities sup-
ported by that notation. To continue our exam-
ple, Logo’s Language Signature is [RE/WRtext +
WAturtle, lines].

An alternative to the Language Signature syn-
tax we decided on is to have the Language Sig-
nature describe first activities and second the no-
tations used for that activity. The Logo signa-
ture might then look like this: [Retext + Wrtext

+ Waturtle,lines]. This way of expressing Lan-
guage Signatures suffers several flaws: it is hard
to immediately determine the number of notations
present in an environment; it is hard to determine
if Logo uses the same notation for reading and
writing, and it is hard to see which activities a no-
tation does not support.

2 Advanced Multiple Notation
Environments

2.1 Environments with multiple nota-
tions for reading

This section describes programming environments
that have multiple notations for reading and one
notation for writing. These programming environ-
ments all risk creating a gulf of expression: with
multiple notations for reading and one for writ-
ing they must have at least one read-only notation.
Two environments in this category overcome this
gulf by providing an transient read-only notation:
the program is read through the computer’s speak-
ers. Unfortunately only informal studies have ex-
amined the effects of a transient notation.

We found three programming environments in
this category: AgentSheets, Pecan, and Mondrian.

AgentSheetsis a programming environment for
visual simulations [16]. Users describe agent
behaviour with an iconic language. The
AgentSheets environment can also read a
program through the computers speakers,

and has a [RE/WR/WAiconic + REspoken +
WAagents] Language Signature. Anecdotal
evidence about AgentSheets reveals that us-
ing multiple program representations helps
users write and understand programs2. We
believe that AgentSheets’ spoken notation
does not create a gulf of expression because
the spoken representation is transient: users
intuitively know they cannot edit a spoken
representation. However, more research is
needed to confirm this belief, and examine
the effect of letting people write using a
spoken notation: letting people dictate pro-
grams to computers (which would change
AgentSheets’ signature to [RE/WR/WAiconic

+ RE/WRspoken + WAagents]).

Mondrian is a programming by example sys-
tem for creating interactive drawings [8].
Users can program new commands into Mon-
drian by creating before-after rules. While
users are creating these rules, Mondrian reads
the users’ commands through the computer’s
speakers, and Mondrian can also convert the
user-defined rules into Lisp code.

Pecan produces a read-only Nassi-Shneiderman
diagram from code [14]. Although we could
not find any papers describing usability stud-
ies of Pecan, we argue that Pecan risks creat-
ing a gulf of expression because users might
build a mental model of program behaviour
based on the Nassi-Shneiderman diagram,
and then want to edit the Nassi-Shneiderman
diagram directly.

2.2 Environments with multiple nota-
tions for writing

Environments with multiple notations to write pro-
grams, but one way to read programs, risk creating
a gulf of representation: users must map from the
notation they used for writing to the notation they
use for reading. We found one three-language en-
vironment with multiple ways to write a program:
Leogo [2]. Leogo levers the gulf of representation
to teach users to program and is pictured in Fig-
ure8.

Leogo is an extension of Logo where users can
program using three different notations: textual
logo code, an iconic version of the code using but-
tons for commands and sliders for amounts, and a

2Informal conversation with Alexander Reppenning

7

Type Description
Text The notation is based on users typing or manipulating textual statements.

The statements might be like conventional code or more natural. Exam-
ple environments that use a textual notation are Alice [3], Hands [11],
and C [7].

Iconic Iconic notations are notations that use icons for programming statements
or have animated icons for visualisations. Flowcharts programming no-
tations are an example of iconic programming notations. Environments
with an iconic visualisations include StageCast and PatternProgrammer
(see Figure3).

User Interface Some programming environments use the set of symbols present in a
standard user interface for writing and watching programs. Typically,
these environments are programming by demonstration environments
(PBD) where users can demonstrate behaviour using a standard user in-
terface and the PBD environment attempts to infer the user’s program
and use the program at a later time.

Tangible Tangible notations use (for program representation) physical items in
place of program statements, or (for program visualisation) physical
items that move and interact. An example environment that has a tan-
gible representation is AlgoBlock: users join together physical cubes
where each cube represents a single Logo statement [19]. An exam-
ple environment that uses a tangible visualisation is Electronic Blocks:
when a program is run, users see physical blocks make sounds, lights,
move around, and interact with each other [23].

Table 1: Description of some common notation types used in Language Signatures.

Figure 8: The Leogo programming environment.
Users can manipulate any of three notations (tex-
tual, iconic, or directly-manipulate the turtle), and
see the results immediately in the other two nota-
tions. For example, a user who wants to move the
turtle forward 50 units can either drag the turtle
forward 50 units and see the statement “FD 50”
appear as well as the icon for forward movement
depress and a slider advance to 50, or they can type
“FD 50” and watch the changes in the iconic rep-
resentation and the output domain.

direct-manipulation notation where users can ma-
nipulate the turtle immediately. Changes in one
notation in Leogo are immediately reflected in the
other two notations (see Figure8). The rational
behind using multiple notations was to help users
lever their knowledge of how a turtle and iconic
interfaces work to help children learn Logo. An
evaluation of Leogo found that children could use
Leogo, and that they tended to pick one nota-
tion and stay with that. Leogo’s Language Sig-
nature is [WR/WAturtle, lines + WR/WAiconic +
RE/WR/WAtext], and is shown in Figure8.

One of Leogo’s motivations was to help aid
knowledge transfer from a notation children would
be familiar with (the way the turtle moved) to a
notation that provided more power (the textual no-
tation). Both these environments provide multiple
notations for reading and writing—one close to the
task domain and one close to conventional code.
The designers argue that this decision is useful as
it can aid knowledge transfer from domain spe-
cific knowledge to knowledge about conventional
code. Unfortunately the designers of the two en-
vironments did not perform an evaluation of the
successes of the knowledge transfer.

8

Figure 9: A screen snapshot of Mulspren: A MUl-
tiple Language Simulation PRogramming ENvi-
ronment.

2.3 Environments with Multiple No-
tations for Reading and Writing

Mulspren is a three-language environment that
uses multiple languages to read and write pro-
grams [22]. Mulspren avoids the risk of creating
gulfs of expression, representation, and visualisa-
tion by using duel languages for writing and read-
ing: users can move seamlessly between two tex-
tual languages modifying either and viewing the
changes in both. Both languages are animated
when a program is executed. We plan to use Mul-
spren to evaluate the effects of multiple languages
on users without the hindrance of gulfs of repre-
sentation and expression. A screen snapshot of
Mulspren is inFigure 9.

2.4 Environments with an Arbitrary
Number of Notations

The only environment we reviewed that supports
an arbitrary number of notations is the Garden
programming environment [15] (Garden is a suc-
cessor of the Pecan programming environment,
which is described in the previous section). Users
of Garden write programs in one of any num-
ber notations, and can add new notations to the
Garden environment. Reiss describes how a user
can extend Garden so the user can program us-
ing petri-nets. Despite this expressive power of
Garden, users must use the same notation to read
their program as the one in which they wrote
their program. This means that Garden pro-
vides n notations for writing but only one for

reading—the notation that the user wrote their pro-
gram in. We write Garden’s Language Signature
as [(WR+WR+. . .)/RE] rather than [RE/WR +
RE/WR + . . .], as the latter conveys that users can
move between the different notations after they
had started writing code.

Unfortunately no user studies were performed
on Garden, so we can neither analyse what the ef-
fects of user-extensible environments are on users
nor examine what gulfs are created in a user-
extensible programming environment.

3 Green and Petre’s Cognitive
Dimensions

Cognitive Dimensions is a framework developed
to analyse visual programming notations and the
programming environments used to create, mod-
ify, and execute the notations [6]. The frame-
work has thirteen dimensions, ranging from error-
proneness (how easily can programmers make er-
rors) to viscosity (how easily can programmers
change an existing program). The framework was
developed to create a set of heuristics that an ex-
pert can use to critique a programming notation.
In this way, they are related to the heuristics used
for ordinary user-interface evaluation [9], but are
tightly focused on usability issues related to pro-
gramming notations.

Cognitive dimensions and Language Signa-
tures examine different and complimentary as-
pects of notation use in programming environ-
ments. Whereas Cognitive Dimensions provides
heuristics to examine the usability of a particular
notation, Language Signatures provide heuristics
to examine how multiple notations in an environ-
ment notations interact with each other and with
the user. This difference in scope of the two frame-
works means that both are useful when designing
and building programming environments.

While the Cognitive Dimensions framework
was created with the goal of analysing program-
ming notations, some of the dimensions can be
extended to analyse the the relationships between
programming notations.

Abstraction Gradient. The abstraction gradient
dimensions analyses the minimum and max-
imum levels of abstraction, and looks at the
ability for a programmer to abstract frag-
ments of a program. An extension of this di-
mension to multiple notations would examine

9

the relationships between the abstraction gra-
dient of each notation, and look what happens
to one notation when a programmer abstracts
part of the program in the other notation.

For example, consider a programmer who is
working in a multiple notation programming
environment and wants to create a new ab-
straction by refactoring some common code
into a method. Conventionally, the abstrac-
tion gradient dimension would examine how
much work the programmer must do to per-
form the refactoring. However, in a multiple
notation programming environments, a envi-
ronment designer must also consider the ef-
fects on the other notations of the refactoring.

Closeness of Mapping.This dimension exam-
ines the mapping between the problem world
and the syntax and semantics of the pro-
gramming notation. The extension for mul-
tiple notations also examines the closeness
of mapping between the multiple notation:
how much cognitive effort a user must ex-
pend when switching notations.

Error-proneness. This dimension examines how
easy it is to make an error, and more impor-
tantly how easy it is to recover from an error.
An extension of this dimension into a mul-
tiple notation system would examine the ef-
fects of making an error in one notation on
the other notation.

For example, consider a user who makes an
error in one notation of a multiple notation
programming environment. An analysis of
the error-proneness dimension in a multiple
notation environment should consider ques-
tions including examining the effects of the
error on the other notations, and the recov-
erability from the error using the other nota-
tions.

Hard Mental Questions. Multiple notation pro-
gramming environments can create many ad-
ditional cognitive tasks that users must over-
come to be able to use the environment.
These were enumerated by Ainsworthet
al and include: understanding the relation-
ships between representations and the do-
main, translating between representations,
and, if designing representations, selecting
and constructing an appropriate representa-
tion [1]. A cognitive dimensions analysis

of multiple notation programming environ-
ments should include an analysis of how hard
these tasks are for a user to perform.

Role Expressiveness.This dimension refers to
the ease in which programs can be read (as
opposed to Hard Mental Questions or Close-
ness of Mapping which refer to the ease
in which a program can be written). In a
multiple notation programming environment,
users of this dimension to evaluation nota-
tion usability should examine how easy it is
for people to understand the relationship be-
tween the notations as well as read the indi-
vidual notations.

Secondary Notation and Escape From Formalism.
A secondary notation refers to extra infor-
mation that is not part of the actual program:
commenting and indentation. Green and Pe-
tre argue that support for secondary notation
is important for programming notations. In a
multiple notation programming environment,
a programmer using this dimension to anal-
yse the notations should consider the effects
of modifying a notation on the comments
and layout of the other notations.

Viscosity. Viscosity refers to a notations resis-
tance to local change, or to the ease in which
a programmer can make small changes to a
program. In a multiple notation program-
ming environment, small changes in one no-
tation could lead to large changes in another
notation. This high inter-notation viscos-
ity is especially likely if the two notations
use very different representations of the pro-
gram. For example, consider a multiple nota-
tion programming environment with two rep-
resentations of a program: a control flow
representation and a data flow representa-
tion. A simple change in the data flow rep-
resentation could equate to a large change
in the control flow representation. Program-
mers analysing multiple notation program-
ming environments should consider the ef-
fects of small changes in one notation on the
other notation.

4 Summary

This paper introduced our view of how notations
are used in programming environments and per-
formed a preliminary analysis of how cognitive

10

dimensions could be extended to analyse the rela-
tionship between notations in a programming en-
vironment. We believe that extending the analysis
of cognitive dimensions would make interesting
reading in the special issue journal on cognitive
dimensions.

References

[1] S.E. Ainsworth and N Van Labeke. Using
a multi-representational design framework to
develop and evaluate a dynamic simulation
environment. InDynamic Information and
Visualisation Workshop, Tuebingen, July
2002.

[2] A. Cockburn and A. Bryant. Leogo: An
equal opportunity user interface for pro-
gramming. Journalof Visual Languages&
Computing, 8(5–6):601–619, 1997.

[3] Matthew Conway, Steve Audia, Tommy Bur-
nette, Jim Durbin, Rich Gossweiler, Shuichi
Koga, Chris Long, Beth Mallory, Steve Mi-
ale, Kristen Monkaitis, James Patten, Joe
Shochet, David Staak, Richard Stoakley,
John Viega, Jeff White, George Williams,
Dennis Cogrove, Kevin Christiansen, Rob
Deline, Jeff Pierce, Brian Stearns, Chris
Sturgill, and Randy Pausch. Alice: Lessons
Learned from Building a 3D System for
Novices. InHumanFactorsin Computing
Systems:CHI 2000ConferenceProceedings
(USA), pages 486–493, April 2000.

[4] Jay Fenton and Kent Beck. Playground:
An Object Oriented Simulation System with
Agent Rules for Children of All Ages. In
Proc. OOPSLA ’89, pages 123–137, New
Orleans, Louisiana, United States, 1989.

[5] Ephraim P. Glinert, editor. Visual
Programming Environments, Paradigms
andSystems. IEEE Computer Society Press
Tutorial, 1990.

[6] T.R.G. Green and M. Perte. Usability Analy-
sis of Visual Programming Environments: A
‘Cognitive Dimensions’ Framework.Journal
of Visual Languages& Computing, 7:131–
174, 1996.

[7] Brian W. Kernighan and Dennis M. Ritchie.
The C Programming Language. Prentice
Hall, 1978.

[8] Henry Lieberman. Watch what I do:
Programmingby Demonstration, chapter 16:
Monderain: A Teachable Graphical Editor.
MIT Press, 1993.

[9] Jakob Nielsen.Usability Engineering. Mor-
gan Kauffman, 1993.

[10] DA Norman. The Psychologyof Everyday
Things. London: Basic Books, 1988.

[11] John F. Pane, Chotirat ”Ann” Ratanama-
hatana, and Brad A. Myers. Studying the
language and structure in non-programmers’
solutions to programming problems.
International Journal of Human-Computer
Studies, 54:237–264, 2001.

[12] S Papert. Mindstorms — Children,
Computers,and Powerful Ideas. Harvester
Press, Brighton, 1980.

[13] Cyndi Rader, Cathy Brand, and Clayton
Lewis. Degrees of Comprehension: Chil-
dren’s Understanding of a Visual Program-
ming Environment. InHuman Factorsin
ComputingSystems: CHI ’97 Conference
Proceedings(USA), pages 351–358, March
1997.

[14] S.P. Reiss. Pecan: Program development
systems that support multiple views. In
[5], pages 324–333. IEEE Computer Society
Press Tutorial, 1990.

[15] S.P. Reiss. Working in the garden envi-
ronment for conceptual programming. In
[5], pages 334–345. IEEE Computer Society
Press Tutorial, 1990.

[16] Alexander Repenning. Agentsheets
: an Interactive Simulation Environ-
ment with End-User Programmable
Agents. In Proceedingsof the IFIP
ConferenceonHumanComputerInteraction
(INTERACT ’2000, Tokyo, Japan), 2000.

[17] David Canfield Smith, Allen Cypher, and
Jim Spohrer. KidSim: Programming
Agents without a Programming Language.
Communicationsof the ACM, 37(7):54–67,
July 1994.

[18] David Canfield Smith, Allen Cypher, and
Larry Tesler. Novice Programming Comes
of Age. Communicationsof the ACM,
43(3):75–81, March 2000.

11

[19] Hideyuki Suzuki and Hiroshi Kato.
Interaction-Level Support for Collabo-
rative Learning: AlgoBlock — An Open
Programming Language. In John L.
Schnase, editor,Proc.ComputerSupported
CollaborativeLearning’95, pages 349–355,
Bloomington, Indiana, October 1995.

[20] Tim Wright. Pattern programmer. Unpub-
lished programming environment.

[21] Tim Wright. Collaborative and
Multiple-Notation Programming
Environments for Children. PhD the-
sis, University of Canterbury, 2005.

[22] Tim Wright and Andy Cockburn. Mul-
spren: a MUltiple Language Simulation
PRogramming ENvironment. InIEEE
SymposiaonHuman-CentricLanguagesand
Environments, pages 101–103, Arlington,
Virginia, September 2002.

[23] Peta Wyeth and Helen C. Purchase. Pro-
gramming Without a Computer: A New In-
terface For Children Under Eight. Proc.
Australian Computer ScienceConference,
22(5):141–148, 2000.

12

	Classification Scheme
	Sample Programming Environments
	Logo
	StageCast
	OpenOffice.org

	Three Fundamental Activities
	Three Cognitive Gulfs
	Language Signatures

	Advanced Multiple Notation Environments
	Environments with multiple notations for reading
	Environments with multiple notations for writing
	Environments with Multiple Notations for Reading and Writing
	Environments with an Arbitrary Number of Notations

	Green and Petre's Cognitive Dimensions
	Summary

