
Green, T. R. G. (2000) Instructions and descriptions: some cognitive aspects of programming and similar activities. Invited paper, in
Di Gesù, V., Levialdi, S. and Tarantino, L., (Eds.) Proceedings of Working Conference on Advanced Visual Interfaces (AVI 2000). New
York: ACM Press, pp21-28. Also available in pdf form via www.ndirect.co.uk/~thomas.green/workStuff/papers/

Instructions and Descriptions:
some cognitive aspects

of programming and similar activities
T. R. G. Green

Computer-Based Learning Unit
University of Leeds
Leeds LS9 2JT, UK

thomas.green@ndirect.co.uk

ABSTRACT
The Cognitive Dimensions framework outlined here is
generalised broad-brush approach to usability evaluation for
all types of information artifact, from programming languages
through interactive systems to domestic devices. It also has
promise of interfacing successfully with organisational and
sociological analyses.

Keywords
Usability evaluation, cognitive dimensions, notations,
telephone, Prolog, spreadsheet, cognitive psychology.

1. INTRODUCTION
We are living through a technological revolution, in which
much research is necessarily dominated by immediate aims
and short-term goals, and most research papers report some
new accomplishment. The accomplishment may be useful but
generalisations from one creation to another are very weak,
unless the second is a direct descendant from the first. This
paper is a contrast.

Science-based engineering rests on idealisations (capacitance,
gravity). Physical or chemical theory describing these
idealisations is combined with experience and craft knowledge
to give useful and reliable outputs. Briefly, science-based
engineering describes known phenomena in ways that are
potentially useful, and that is the goal of the work I shall
describe.

I shall address, not particular devices or interfaces, but the
world of 'information artifacts' – systems and devices that
store, display, and manipulate information. Research in this
area partakes sometimes of science, sometimes of engineering,
sometimes of product design, and indeed even sometimes of
sociology. I have sympathies with all of those but my own
work has lain mainly in the first two.

I shall sketch a framework in which idealisations of user
activities are related to idealisations of the properties of
information artifacts. Unlike, say, capacitance, let alone
gravity, these idealisations are not the result of years of
reflection by scientists of genius; they are most definitely
preliminary efforts, crude and in need of polishing.

Nevertheless, even as it stands, I claim that the framework
meets to a fair extent its goal of describing phenomena In
potentially useful ways.

The phenomena it describes are those where cognitive
resources and limitations meet information structures. One
potential use is to foresee ways in which a particular structure
might fail to meet its users' hopes. More importantly, the
framework can help us to learn from successes and mistakes,
by offering descriptions at a level of abstraction that
encourages generalization. With its aid one can see that the
identical problems bedevil very different devices, such as the
‘fossil’ problem that occurs both in Unix systems and in
simple home music sequencers, leading to ‘mature disfluency’
[11]; or one can see that similar design manoeuvres with
identical consequences have occurred both in the design of
word-processors and in the design of domestic central heating
controllers. In short, unlike any other HCI technique I know of,
it is explicitly concerned with the internal structure of
information and how that structure affects usability.

I call this framework the cognitive dimensions of notations [9]
because, although I am not entirely happy with any of the
words – neither 'cognitive', nor 'dimension', nor 'notation' –
that seems to be the best phrase going. And although I take
credit for many of the ideas, I must make it clear that many
others have collaborated, criticised, clarified, and contributed.
Some will be mentioned in this paper but I owe thanks to all of
them.

Of course, such a framework is too complex to describe
properly in this talk. I shall do no more than sketch the main
features and some brief illustrations. See [15] for a full
description; see [18] for a detailed application to one domain,
that of visual programming languages.

The approach is very general. A good usability method for
assessing the information structures of phones should also be
a good method for assessing programming environments, and
vice versa (allowing, perhaps, some specialisations in each
case). The cognitive dimensions framework succeeds
reasonably well in that aim. I shall therefore first sketch the
framework and then demonstrate its application to a typical

mailto:thomas.green@ndirect.co.uk

2

domestic telephone and to the design of a programming
environment, two very different situations.

Finally I shall suggest how the approach might interface to
approaches at a different level of analysis, such as Nardi's
analysis of spreadsheet usage [21].

2. COGNITIVE DIMENSIONS
The cognitive dimensions of notations framework (CDs) is
intended to provide a quick and approximate (‘broad-brush’)
approach to usability analysis. I believe it is important to
develop such approaches, ones that non-specialists will find
easy to understand and easy to use. The framework therefore
avoids any kind of detailed cognitive analysis, although it has
a cognitive underpinning. There are very few new ideas in the
approach. Most of the ideas will seem very familiar, in fact –
but few of them have been extracted and named. It is the
process of lexicalisation that makes it possible to generalise
from one situation to another, to foresee that the success of
difficulty attending a particular artifact may be shared by
another artifact with a very different superficial appearance.

By spurning the issues of superficial appearance, this
framework has to give up the hope of achieving detailed
performance time predictions, such as KLM [5] offers. What it
gains is both generality and depth: fundamental similarities
can be discerned between very different devices.

The CDs are therefore presented as an analytical vocabulary
for design discussion. Many of the dimensions reflect
common usability factors that experienced designers might
have noticed, but did not have a name for. Giving them a name
allows designers to discuss these factors easily. Furthermore,
there is no perfect user interface, notation, or representation;
designers must make trade-offs. A discussion vocabulary
allows the trade-offs to be discussed and their consequences
anticipated. It is not possible to create a design that has perfect
characteristics in every dimension -- making improvements
along one dimension often results in degradation along
another.

The framework applies to information artifacts including
household appliances, telephones, and novel interaction
devices as well as conventional computer systems. Most
information artifacts are probably important to several
stakeholders, with different priorities and different criteria.
Necessarily my outlook as a cognitive psychologist best fits
me to discuss certain types of criteria, and I shall concentrate
on ease of use by relatively experienced users.

2.1 The fundamental question
Every evaluation technique asks one fundamental question. In
the CDs framework, that question is: are the users’ intended
activities adequately supported by the structure of the
information artifact?

And as a supplementary: if not, what design manoeuvre would
fix it, and what trade-offs would be entailed?

So the evaluation, in a nutshell, consists in classifying the
intended activities, analysing the cognitive dimensions, and
deciding whether the requirements of the activities are met.

2.2 Activities
No usability analysis can proceed far unless we have some idea
of what the artifact will be used for; yet at the same time, there
are good reasons to avoid highly detailed task analyses; such
analyses are lengthy to construct, require specialised

experience, and in the end do not capture the labile nature of
everyday activities. Instead of using a detailed task analysis,
the CDs framework just classifies 6 generic activities. A given
artifact will support some of these activities better than others,
and the analyst should decide which ones are required.

incrementation: adding cards to a cardfile, formulas to a
spreadsheet or statements to a program

transcription: copying book details to an index card;
converting a formula into spreadsheet or
code terms

modification: changing the index terms in a library
catalogue; changing layout of a
spreadsheet; modifying spreadsheet or
program for a different problem

exploratory design: sketching; design of typography,
software, etc; other cases where the final
product cannot be envisaged and has to
be ‘discovered’

searching: hunting for a known target, such as
where a function is called

exploratory discovering structure or algorithm, or
understanding: discovering the basis of classification

Each activity places different demands on the system. Nothing
in what follows is good or bad except with reference to an
activity that we wish to support.

2.3 The Components of Information Artifacts
Information artifacts, as described in this framework, have four
components:

an interaction language or notation;
an environment for editing the notation;
a medium of interaction;
and possibly, two kinds of sub-devices.

2.3.1 Interaction languages and notations
The notation is what the user sees and edits: letters, musical
notes, graphic elements in CAD. When the ‘notation’ is
invisible, we shall deem it an interaction language, such as
pressing buttons on a radio, dialling numbers on a telephone,
clicking the mouse on a computer.

2.3.2 Editing environments
Different editors have different ontologies. Some word
processors have commands operating on paragraphs,
sentences, words and letters, while others only recognise
individual characters. Some editors allow access to history,
others deny it. Editors are usually the sub-devices that support
the creation and management of abstractions – see below.

2.3.3 Medium of interaction
Typical media are paper, visual displays, and auditory
displays. The important attributes are persistence/transience
and constrained-order/free-order. Button presses are transient
(unless a history record is available, as a helper sub-device);
writing on paper is persistent. We shall say little about it here
but it should be noted that some information structures are
only successful for their intended purpose when used with a
persistent medium; for example, writing even a short program
using speech alone, without access to any persistent medium,
is extremely difficult.

3

2.3.4 Sub-devices
Many devices and structures contain sub-devices. Two kinds
are distinguished. Helper devices offer a new view, e.g. cross-
referencers in programs, outline views in word processors.
Helper devices are not always so formal, however: If the user
typically writes notes on the backs of envelopes or sticks
Post-It notes on the side of the screen, they should be regarded
as helper devices, part of the system. The CDs framework is
meant to encompass as much of the system as seems
reasonable, and if Post-It notes are typically part of the system,
they should form part of the analysis.

Redefinition devices allow the main notation to be changed.
Macro recorders in contemporary word processors allow a
sequence of commands to be replaced by a single command.
Macros are a typical abstraction, and systems that allow
abstractions to be created or modified always require a sub-
device to work as an abstraction manager.

Sub-devices, whether helper devices or redefinition devices,
often have their own notations or interaction languages that
are separate from the main notation of the system, and an
independent set of cognitive dimensions. The dimensions of
these devices must be analysed separately. Thus, the macro
recorder has different properties from the word-processor in
which it is embedded.

A typical example: In a system with weak support for
exploratory design, such as Pascal or C++, users will probably
sketch out designs using a different information artifact with
different properties (e.g. paper) as a helper device. Such 'twin-
device' systems seem to invite 'improvement' to eliminate the
need to use paper, or whatever, but it is possible that they work
very well as they are and do not need to be 'improved': the two
partners are perhaps blessed with complementary virtues.

2.4 Notational Dimensions
The main point of the CDs framework is to consider the
notations or interaction languages and how well they support
the intended activities, given the environment, medium, and
possible sub-devices. We do this by considering a set of
‘dimensions’. Each dimension describes an aspect of an
information structure that is reasonably general. Furthermore,
any pair of dimensions can be manipulated independently of
each other, although typically a third dimension must be
allowed to change (pairwise independence)1. In today's talk I
shall only discuss a small number of dimensions, and do so
very briefly. The full list is currently 13, and each needs far
more space than can be given here.

None of these dimensions is evaluative when considered on its
own. Evaluation must always take into account the activities
to be supported.

1 The notion of pairwise independence has caused difficulties

to some readers. To illustrate, consider a given mass of an
ideal gas, with a temperature, a volume, and a pressure. The
volume can be changed independently of the pressure but
the temperature must change as well; or the volume can be
changed independently of the temperature, but the pressure
must change accordingly. Similarly for any other pair of
dimensions.

Viscosity: resistance to change.
A viscous system needs many user actions to accomplish one
goal. Changing all headings to upper-case may need one
action per heading. (Environments containing suitable
abstractions can reduce viscosity.) We distinguish repetition
viscosity, many actions of the same type, from knock-on
viscosity, where further actions are required to restore
consistency.

Visibility: ability to view components easily.
Systems that bury information in encapsulations reduce
visibility. Since examples are important for problem-solving,
such systems are to be deprecated for exploratory activities;
likewise, if consistency of transcription is to be maintained,
high visibility may be needed.

Premature commitment: constraints on the order of
doing things.

Self-explanatory. Examples: being forced to declare identifiers
too soon; choosing a search path down a decision tree; having
to select your cutlery before you choose your food.

Hidden dependencies: important links between entities
are not visible.

If one entity cites another entity, which in turn cites a third,
changing the value of the third entity may have unexpected
repercussions. Examples: cells of spreadsheets; style
definitions in Word; complex class hierarchies; HTML links.

Role-expressiveness: the purpose of an entity is readily
inferred.

Role-expressive notations make it easy to discover why the
programmer or composer has built the structure in a particular
way; in other notations each entity looks much the same and
discovering their relationships is difficult. Assessing role-
expressiveness requires a reasonable conjecture about
cognitive representations (see the Prolog analysis below) but
does not require the analyst to develop his/her own cognitive
model or analysis.

Error-proneness: the notation invites mistakes and the
system gives little protection.

Enough is known about the cognitive psychology of slips and
errors to predict that certain notations will invite them.
Prevention (e.g. check digits, declarations of identifiers, etc)
can redeem the problem.

Abstraction: types and availability of abstraction
mechanisms.

Abstractions (redefinitions) change the underlying notation.
Macros, data structures, global find-and-replace commands,
quick-dial telephone codes, and word-processor styles are all
abstractions. Some are persistent, some are transient.

Abstractions, if the user is allowed to modify them, always
require an abstraction manager -- a redefinition sub-device. It
will sometimes have its own notation and environment (e.g.
the Word style sheet manager) but not always (for example, a
class hierarchy can be built in a conventional text editor).

Systems that allow many abstractions are potentially difficult
to learn.

2.5 Evaluating Systems wrt Activities
At last we are in a position to evaluate something in the CDs
framework. Evaluation has two steps. The first is to decide
what generic activities a system is desired to support. Each
generic activity has its own requirements in terms of cognitive

4

dimensions, so the second step is to scrutinise the system and
determine how it lies on each dimension. If the two profiles
match, all is well. A tentative tabulation of the support
required for each generic activity can be found in[15].

For example, transcription is very undemanding. No new
information is being created so premature commitment is not a
problem. Nothing is being altered, so viscosity is not a
problem. On the other hand, to preserve consistency of
treatment from instance to instance, visibility may be required.

Incrementation creates new information and sometimes there
may be problems with premature commitment. The most
demanding activity is exploratory design. A sizeable literature
on the cognitive psychology of design has established that
designers continually make changes at many levels, from
detailed tweaks to fundamental rebuildings. Viscosity has to
be as low as possible, premature commitment needs to be
reduced, visibility must be high, and role-expressiveness –
understanding what the entities do – must be high.

Beware a temptation. Do not readily believe that your system
is purely incrementational. As information accumulates users
are likely to wnt to re-order it – a modification activity, which
is much more demanding. (Example: at first, young people put
books or music CDs on their shelves in random order; later
they impose a bit of a system; st ill later, they probably revise
the system, as their tastes change or as their collection grows.)

2.6 Trade-offs
A virtue of this framework is that it illuminates design
manoeuvres in which one dimension is traded against another.
Although no proper analysis of trade-offs exists, we can point
to certain relationships. One way to reduce viscosity is to
introduce abstractions, but that will always require an
abstraction manager in which to define the abstractions and
some early commitment to choose which abstractions to
define. The abstractions themselves may then become viscous,
introduce hidden dependencies, etc. This topic needs much
more research.

3. EXAMPLES
The following two examples demonstrate the framework’s
applicability to very different types of information artifacts.
The first is the humble telephone; the second deals with
Prolog. The telephone example shows that even an apparently
simple device has an internal structure that dictates many
usability aspects. The Prolog example shows that CDs quickly
reveal (at least in hindsight) reasons why an extensive
software project might have difficulties.

3.1 The Telephone
Consider first a familiar device, a telephone with a memory.
The intention is not to reveal new insights into telephones,
but to make it clear how the terms of the framework are
deployed and how the procedure works. To make it concrete,
we shall consider a commercial model, the British Telecom
Duet 80, but the major features are not unusual. (An interactive
web-based virtual telephone with similar features is available
[13]). This telephone has 10 memory slots, numbered 0-9,
which allow numbers to be stored and recalled. There is no
internal memory for names attached to numbers, but the
handset hosts a piece of card ruled into 10 compartments,
labelled 0 to 9, on which the instruction book advises the user
to record names associated with the memories (and

furthermore, advises the use of a pencil, rather than a pen, to
allow emendation).

The main interaction language is obviously the numbers used
in dialling; they are expressed in a transient medium, as
button presses, and the environment for manipulating the
notation is nil – all you can do is to dial the number, it cannot
be edited in any way.

There are two sub-devices. The first is the memory for storing
codes. This is a ‘redefinition’ device, since it allows button
sequences to be redefined as ‘meaning’ other button presses.
The second sub-device, the piece of card recording the stored
codes, is a helper device – it has no effect on the main
notation, it just records what was stored in the memories.

For the main device, the principal user activity is
transcription, from a written telephone number (in a directory,
for instance) to a sequence of button presses. This is a very
simple artifact. The interaction language is well-known to be
error-prone (i.e. dialling errors are frequent, especially doublet
errors such as turning 1134 into 1334) and highly viscous: in
the environment of the BT Duet 80, as of many of domestic
models, there is no Undo function, and after if any one of up to
say 15 or more digits is misdialled, the user must cancel the
attempt and start again. The user can choose whether or not to
make use of the stored codes, so this device is abstraction-
tolerant, but has to decide in advance which codes to store, so
early, possibly premature, commitment is required.

For the redefinition device (the memory) deciding on the
principal user activity is a bit harder: when the telephone is
first used, the activity will be incrementation – storing the
number for Aunt Mary, for example. Later, however, there could
be other activities. You may have forgotten whether you stored
the number for Aunt Mary, and want to find out – a search
activity. Because the memories have no visibility at all, you
will find it very difficult to know (unless you recorded all
your stored codes using the ‘helper device’, also known as the
piece of card).

When the memories are full, you may need to re-allocate them,
because you have realised that it is more important to be able
to dial the emergency services quickly than to dial Aunt Mary
quickly. That is a modification activity. Individual memories
can easily be reset – the viscosity is low, and each one can be
changed independently of the others – there are no hidden
dependencies.

Consider, however, the problem of keeping the numbers in a
defined order. Perhaps you believe in putting the fire service
number into the first slot, so that you can dial it readily, and
so on. If you find yourself moving all the existing numbers
into new positions, you will find that the telephone has very
high viscosity.

Lastly, the remaining sub-device, the piece of card, so
thoughtfully supplied with the device. This is principally
used for transcription (e.g. recording the code for Aunt Mary),
but must also be sometimes used for modification (when you
decide to delete Aunt Mary in favour of the police).
Transcription is not impaired by high viscosity (unless the
notation is liable to errors – for now, we’ll assume that it isn’t)
but modification obviously depends on low viscosity. You are
therefore well advised to use pencil, not pen!

5

3.2 Textual vs. graphical Prolog editors
The logic programming language Prolog has much to offer, but
is notoriously difficult for novices. In the hope of
ameliorating their problems a tree-based graphical editor, Ted,
was implemented but an evaluation [22] gave disappointing
results. In a fine example of analysis-by-hindsight, I have
argued [12] that for all its other virtues, Ted failed to solve
some of the major usability problems of conventional Prolog.
A précis of that analysis follows.

3.2.1 CDs of conventional Prolog
The CDs analysis of conventional Prolog was made on the
assumption that for many Prolog novices, building even a
small fragment of code is an exercise in exploratory design, as
has been shown to be the case with novice users of other
programming languages. The successful support of
exploratory design places certain stringent demands on the
notation and its working environment: low viscosity and high
role-expressiveness are essential. These turn out to be
problematic in Prolog. (Other CDs will not be discussed, for
obvious space economics.)

Viscosity has to be considered for individual tasks, so a basket
of representative tasks is necessary to create a representative
overall measure. On the whole Prolog has little viscosity, even
in a conventional text editor, but adding a new ‘programming
plan’, though not difficult, has some unusual properties. A
simple illustration, from Green [10], showed that for a
plausible example, structured Basic has less viscosity than
Prolog. (Siddiqi and Roast [26] offered a Prolog version that
was less viscous than Green’s, but even so, it was more viscous
than the Basic program.) The example in question starts with a
program to compute the average of a series of integers and
modifies it to a program that also computes the ‘filtered
average’ of the series, where the filtered average is the average
of all non-zero elements; that is a reasonable example of the
sort of modification a novice might make as the program was
developed.

Role-expressiveness, the other important requirement, requires
a little knowledge of the cognitive psychology of
programming for its analysis. Assuming that programs are
written by translating cognitive structures into code, it
follows that part of the process of comprehending a program is
parsing it back into the original cognitive components [14].
What will these cognitive structures be? Historically, it has
been proposed that Pascal novices think in terms of ‘plans’,
groups of statements that typically consume some data,
operate upon on it in some characteristic way, and produce
results for use by another plan [27] [29]; there is some
empirical evidence to support this proposal, although the
‘plan’ is at best only one of the possible cognitive structures
that programmers may employ. (E.g. Pennington [28]
demonstrated that text st ructures were also relevant; Gilmore
and Green [7] demonstrated that control-flow structures were
also important for Pascal novices; Bellamy and Gilmore [1]
suggest that the apparent structure depends on the task;
Burkhardt et al., [4] distinguish between different types of
text-derived structures, the textbase (from reading-to-recall)
and the situation model (from reading-to-do); Green and
Navarro [17] showed that visual/spatial components are
sometimes relevant; and so on.). Practically the only study on
Prolog [28] found evidence suggesting that a closely similar
structure, the ‘schema’ [6] was a good fit to the recall data of
Prolog experts and to a lesser extent of Prolog novices.

Role-expressiveness, in the context of programming, then
becomes a measure of how easily the code can be parsed into
‘plans’ or ‘schemas’.

Anecdotal evidence suggests that Prolog is much harder to
decompose than Pascal: according to at least one theory of
parsing, that is exactly what one would expect. Prolog, like
assembly code, allows many different program structures to be
built by combining a very small number of notational
elements in different ways. There are no lexical distinctions
between these elements, merely different rearrangements of the
same symbols. Pascal, on the other hand, has plentiful lexical
cues which help to distinguish different program structures
from each other.

The importance of lexical cues in human natural language
parsing was postulated many years ago [3], [8]. Pascal has
many important lexical indicators, such as while, for, etc.,
which immediately distinguish between different syntactic
constructs and which give big clues to distinguishing between
different schemas; Prolog, in contrast, has very few. Compare
the Pascal and Prolog versions of a count fragment (Figure 1).
In each case we have some distinctive clues (the zero and the
expression N=N+1 or its Prolog equivalent) but the process
that is being applied is more clearly indicated in the Pascal in
two ways: the while, obviously enough, and the indentation,
which is a strong help. Prolog, of course, has indentation, but
it is less useful in picking out control structures.

[Pascal]
N := 0;
while expression true do

begin
N := N+1;
compute new expression
end

[Prolog]
count([],0).
count([A|B], N) :-
 count(B, N1),
 N is N1 + 1.

Figure 1: Pascal has lexical indications of control flow,
Prolog does not.

(This sort of comparison is never clearcut. The most
convenient data structure for Prolog is the list, which lends
itself readily to algorithms that consume each member; lists
are clumsy in Pascal, so I have used an abstract form of
expression.)

Because of the lack of lexical cues, different Prolog programs
can appear very similar on the page: subtle differences are
important. The two fragments in Figure 2 use quite different
techniques. To distinguish them it is necessary to see how the
arguments are used in the body of the rule. (Don’t think you
can just count the arguments, because in real examples there
will be other arguments dealing with other aspects of the
processing.)

6

tripleA([], []).
tripleA([H1|T1], [H2|T2]):-

H2 is 3*H1,
tripleA(T1, T2).

tripleB([], Y, Y).
tripleB([H1|T1], X, Y):-

H2 is 3*H1,
tripleB(T1,[H2|X],Y).

Figure 2: two Prolog fragments appear similar but work
differently.

How relevant is the lack of lexical indicators? If their absence
makes it difficult to parse for relevant structures, then role-
expressiveness will be impaired. Green and Borning [16]
demonstrated just how poor Prolog’s role-expressiveness
might be. They applied a plausible and successful
psycholinguistic model of human natural-language parsing
[20] to the parsing of Prolog and Pascal, using the counting
fragment as their simplest example. Obviously, they were not
concerned with whether Prolog sentences were syntactically
correct, but with extracting chunks corresponding to
postulated cognitive structures, such as ‘programming plans’.

In this model, there can be many fragments that are candidates
for unification with each other. If the wrong ones join up, the
parsing will fail. The more lexical cues are present, and the
more powerful they are, the better the success rate. When
applied to Prolog, with its relative dearth of lexical cues, the
success rate was much less than when applied to equivalent
programs in Pascal. Worse, when the complexity of the
program was increased by adding extra components, the
difficulty of parsing the Prolog version increased much faster
than the difficulty of parsing the Pascal version.

3.2.1.1 CDs of the graphical editor Ted
The graphical editor displayed a tree of ‘techniques’, useful
combinations of Prolog code [2]. A program was developed by
adding a new technique to the tree. The displayed showed the
current state of the Prolog code and the associated tree.
Deleting material removed it completely – no access to past
history was possible.

Viscosity: Programmers using Ted had only one way to revise
their code: they had to edit the history tree. To change the
program, learners had to step back through the tree to where
the offending component had been added, and then delete that
component, thereby at the same deleting every subsequent
editing operation.

Evidently the knock-on viscosity could be extremely high if
the learner needed to change a choice that had been made far
back in the tree. To avoid this fate (premature commitment),
learners no doubt attempted to look far ahead, which may or
may not have been pedagogically useful.

It would seem that the Ted designers thought of the coding
activity as incrementation, rather than as exploratory design;
an easy mistake, but with serious consequences. This is the
temptation mentioned above.

Role-expressiveness: Since the Ted editor displayed standard
Prolog as its output code, the role-expressiveness was not
improved. The role-expressiveness of the techniques was also
very poor, because the output code does not indicate which
part of the code is associated with which technique.

Thus, overall the role-expressiveness might been made worse,
not better. (It would be possible to make an empirical test of
role-expressiveness, which would confirm or refute my
conjecture.)

In conventional Prolog, the opportunities for secondary
notation are severely limited – comments and indenting,
nothing more – but it seems that in Ted, even those
possibilities were removed: learners were therefore unable to
document the reasons for their editing choices.

On the other hand, the Ted editor reduced some of the error-
proneness of conventional Prolog, by prebventing
mismatched parentheses, inconsistent spelling, unfinished
comments, and so on. Trivial though they may be, these add to
learners’ problems and in the case of inconsistent spelling
they can be very difficult to catch.

3.2.2 Textual vs graphical Prolog: conclusions
If my cursory analysis is correct (and it must be emphasized
again that it is cursory, and is not based on experience with the
actual tool), then Ted seems to have taken a wrong path. The
problems that were identified in conventional Prolog, using
the cognitive dimensions framework, were poor role-
expressiveness and high viscosity. Ted seems to have made no
contribution to solving those problems.

With hindsight, therefore, it seems not too surprising that the
results were disappointing. Since the Ted environment had
many excellent features, it would be good to see further work
in the same direction.

4. INTERFACING TO OTHER LEVELS OF
ANALYSIS
It is now well understood that information artifacts exist in a
social or organisational situation. ‘Mere’ usability is not
enough; they have to fit into patterns of activity. Yet few
people can be specialists in more than one area, and it is
regrettably the case that usability analyses and sociological or
related analyses often pass each other by.

I would therefore like to finish this sketch of the Cognitive
Dimensions framework by describing what I believe is a
successful link-up, in the area of that very popular artifact, the
spreadsheet. Nardi [21] has reported studies of spreadsheet use
in organisations and describes programming communities of
co-operating users. She distinguished three major roles: end-
users, supported by the strong visual formalism of the
spreadsheet, who found the formula language relatively easy
because it contained many domain-specific functions; a mid-
level group, who had no more training than end-users but who
adopted the role of crating small solutions for local needs; and
specialists at the system level. She also found that the
spreadsheet was an effective communication medium across
different levels and specialities in the organisation.

Hendry and Green [19] made a further study, aimed not at the
organisational aspects but at the individual usability, yet
using Nardi’s interview-based methods. We found that the
individual usability reports confirmed much of Nardi’s
analysis. We also reported on the cognition dimensions
approach to the spreadsheet. It emerged as an excellent device
for incremental usage, so that adding more formulas to an
existing spreadsheet was very easy. On the other hand, the
absence of any abstraction mechanisms, the poor role-
expressiveness and the pervasive hidden dependencies
encouraged undetected errors and made the inner workings of

7

any spreadsheet hard to grasp (poor exploratory
understanding) – although if the programmer (or anyone else
who has the workings in their head) is present, the lack of
abstraction facilities makes it very easy to explain what the
spreadsheet does, much easier than explaining an OO program.
Hence, the spreadsheet becomes an effective communication
device.

For similar reasons, the CDs analysis suggests that
exploratory design would be by no means as easy as
incrementation, which was confirmed by the reports from our
informants. Thus, one can readily see that these qualities
would be likely to encourage the separation of a pure end-user
role from a mid-level role.

There is more to be said about spreadsheets, but my purpose is
not to present all that is known, but to demonstrate that the
cognitive dimensions analysis can link up to an
organisational-level analysis, explaining why an artifact
comes to be used in particular ways. This is an area where it
would be extremely interesting to see far more research.

5. ACKNOWLEDGEMENTS
The framework has benefited from discussions with many
colleagues, especially Alan Blackwell, Rachel Bellamy, David
Gilmore and Marian Petre, but also many others. My thanks to
all.

6. REFERENCES
[1] Bellamy, R. K. E. and Gilmore, D. J. (1990) Programming

plans: internal or external structures? In K. J. Gilhooly, M.
T. G. Keane, R. H. Logie and G. Erdos (Eds.) Lines of
Thinking: Reflections on the Psychology of Thought. (Vol
1.) Wiley. 59-71

[2] Bowles, A. and Brna, P. (1999). Introductory Prolog: A
suitable selection of programming techniques. In P. Brna,
B. du Boulay and H. Pain (Eds.), Learning to Build and
Comprehend Complex Information Structures: Prolog as
a Case Study. Stamford, CT: Ablex

[3] Bratley, P., Dewar, H. and Thorne, J. P. (1967) Recognition
of syntactic structure by computer. Nature, Vol. 216, No.
5119, 969-973.

[4] Burkhardt, J.-M., Détienne, F. and Wiedenbeck, S. (1997)
Mental representations constructed by experts and
novices in object-oriented program comprehension. In
Howard S., Hammond J. and Lindgaard J. (Eds) INTERACT
‘97. Sydney: Chapman & Hall. 339-346

[5] Card, S. K., Moran, T. P. and Newell, A. (1983) The
Psychology of Human-Computer Interaction. Lawrence
Erlbaum.

[6] Gegg-Harrison, T. S. (1991) Learning Prolog in a schema-
based environment. Instructional Science, 20, 173-192.

[7] Gilmore, D. J. and Green, T. R. G. (1988) Programming
plans and programming expertise. Quarterly J. Exp.
Psychol. 40A, 423-442.

[8] Green, T. R. G. (1979). The necessity of syntax markers:
Two experiments with artificial languages. Journal of
Verbal Learning and Verbal Behavior, 18, 481-496.

[9] Green, T. R. G. (1989) Cognitive dimensions of notations.
In A. Sutcliffe and L. Macaulay (Eds.) People and

Computers V. Cambridge: Cambridge University Press.
443-460

[10] Green, T. R. G. (1990) The cognitive dimension of
viscosity: a sticky problem for HCI. In D. Diaper, D.
Gilmore, G. Cockton and B. Shackel (Eds) INTERACT ’90.
Amsterdam: Elsevier. pp 79-86

[11] Green, T. R. G. (1995) Looking through HCI. Invited paper
at 10th Annual Workshop of BCS HCI Group. In Kirby, M.
A. R., Dix, A. J. and Finlay, J. E. (Eds.) People and
Computers X. CUP

[12] Green, T. R. G. Building and manipulating complex
information structures: issues in Prolog programming. In
P. Brna, B. du Boulay and H. Pain (Eds.), Learning to
Build and Comprehend Complex Information Structures:
Prolog as a Case Study. Stamford, CT: Ablex, 1999.
(Chapter 1, pp. 7 –27). See
http://www.ndirect.co.uk/~thomas.green/workStuff/Paper
s/PrologChap.RTF

[13] Green, T. R. G. (1999) A virtual telephone. Web-based
document, URL:
http://www.ndirect.co.uk/~thomas.green/workStuff/devic
es/phones/SmartPhoneE.html

[14] Green, T. R. G., Bellamy, R. K. E. & Parker, J. M. (1987).
Parsing and Gnisrap: a model of device use. Empirical
Studies of Programmers: Second Workshop. Norwood,
NJ: Ablex. 132-146

[15] Green, T. R. G. and Blackwell, A. F. (1998) Cognitive
dimensions of information artifacts: a tutorial. Web-based
document. URL:
http://www.cl.cam.ac.uk/users/afb21/publicat
ions/CDtutSep98.pdf

[16] Green, T. R. G. and Borning, A. (1990) The Generalized
Unification Parser: modelling the parsing of notations.
In D. Diaper, D. Gilmore, G. Cockton and B. Shackel (Eds.)
INTERACT ’90. Amsterdam: Elsevier. 951-957.

[17] Green, T. R. G. and Navarro, R. (1995) Programming plans,
imagery, and visual programming. In Nordby, K.,
Helmersen, P. H., Gilmore, D. J, and Arnesen, S. (1995)
INTERACT-95. London: Chapman and Hall (pp. 139-144).

[18] Green, T. R. G. and Petre, M. (1996) Usability analysis of
visual programming environments: a 'cognitive
dimensions' framework. J. Visual Languages and
Computing, 7, 131-174.

[19] Hendry, D. G. and Green, T. R. G. (1994) Creating,
comprehending, and explaining spreadsheets: a cognitive
interpretation of what discretionary users think of the
spreadsheet model. Int. J. Human-Computer Studies,
40(6), 1033-1065.

[20] Kempen, G. and Vosse, T. (1989) Incremental syntactic
tree formation in human sentence processing: an
interactive architecture based on activation decay and
simulated annealing. Connection Science, 1, 273-290.

[21] Nardi, B. (1993) A Small Matter of Programming:
Perspectives on End-User Computing. MIT Press.

[22] Ormerod, T. C. and Ball, L. J. An empirical evaluation of
Ted, a techniques editor. for Prolog programming. In W.
D. Gray and D. A. Boehm-Davis (Eds.), Empirical Studies

http://www.ndirect.co.uk/~thomas.green/workStuff/Paper
http://www.ndirect.co.uk/~thomas.green/workStuff/devic
http://www.cl.cam.ac.uk/users/afb21/publicat

8

of Programmers: Sixth Workshop. Newark, N. J. : Ablex,
1996.

[23] Pennington, N. (1987) Stimulus structures and mental
representations in expert comprehension of computer
programs. Cognitive Psychology, 19, 295-341.

[24] Rist, R. S. (1986) Plans in programming: definition,
demonstration, and development. In E. Soloway and S.
Iyengar (Eds.), Empirical Studies of Programmers.
Norwood, NJ: Ablex. 28-47.

[25] Romero, P. (1999). Focal structures in Prolog. In Green T.,
and Brna P. (Eds.), Proceedings of the Psychology of
Programming Interest Group, 11th Workshop.
http://www.cogs.susx.ac.uk/users/juanr/elicit.ps

[26] Siddiqi, J. I. and Roast, C. R. (1997) Viscosity as a
metaphor for measuring modifiability. IEE Proc. Software
Engineering, 144(4: August), 215-223.

[27] Soloway, E. and Ehrlich, K. (1984) Empirical studies of
programming knowledge. IEEE Transactions on Software
Engineering, SE-10, 595-6

http://www.cogs.susx.ac.uk/users/juanr/elicit.ps

	Instructions and Descriptions:
	some cognitive aspects
	of programming and similar activities
	T. R. G. Green

