
Approximating Constraint Satisfaction
Problems Symmetrically

Jamie R. Tucker-Foltz
Churchill College

A dissertation submitted to the University of Cambridge
in partial fulfilment of the requirements for the degree of

Master of Philosophy in Advanced Computer Science

University of Cambridge
Computer Laboratory

William Gates Building
15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

Email: jrt63@cam.ac.uk

June 16, 2020

Declaration

I, Jamie R. Tucker-Foltz of Churchill College, being a candidate for the

M.Phil in Advanced Computer Science, hereby declare that this report and

the work described in it are my own work, unaided except as may be specified

below, and that the report does not contain material that has already been

used to any substantial extent for a comparable purpose.

Total word count: 15,000 (not including front matter or appendices)

Signed:

Date: June 16, 2020

This dissertation is copyright c©2020 Jamie R. Tucker-Foltz.

All trademarks used in this dissertation are hereby acknowledged.

Acknowledgments

I would like to thank Anuj Dawar for suggesting this exciting and fruitful
project for me to work on, and also for his unparalleled attentiveness and
generosity as a supervisor. He has always been available to quickly answer
my questions and read what I have written, from my vague outlines of ideas
to my long and detailed proofs. I am extraordinarily grateful for all of the
time and advice he has given me.

I would also like to thank the Winston Churchill Foundation for funding my
year in Cambridge and generously supporting me when COVID-19 hit and I
was suddenly forced to return to the USA.

Most importantly, a huge thank you to my parents who have kept me happy
and well-fed as I wrote this the bulk of this thesis from home.

Dedicated in memory of Lyle A. McGeoch.

Abstract

We investigate the extent to which the optimal value of a constraint satifac-
tion problem (CSP) can be approximated by some sentence of fixed point
logic with counting (FPC). It is known that, assuming P 6= NP and the
Unique Games Conjecture, the best polynomial time approximation algo-
rithm for solving any CSP is given by solving and rounding a specific semidef-
inite programming relaxation. We prove an analogue of this result for algo-
rithms that are definable as FPC-interpretations, which holds without the
assumption that P 6= NP. While we are not able to drop (an FPC-version of)
the Unique Games Conjecture as an assumption, we do present some partial
results toward proving it. Specifically, we give a novel construction which
shows that, for all α > 0, there exists a positive integer q = poly(1

α
) such

that no there is no FPC-interpretation giving an α-approximation of Unique
Games on a label set of size q.

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Constraint satisfaction problems and approximation 3

2.1.1 Semidefinite programming and the
Goemans-Williamson algorithm 5

2.1.2 Inapproximability . 8
2.1.3 Unique games . 8

2.2 Background on logic . 11
2.2.1 Descriptive complexity and FPC 11
2.2.2 Finite structures for CSPs 14
2.2.3 Table of signatures . 16
2.2.4 Lower bounds for FPC 16
2.2.5 Interpretations . 18

2.3 Definable inapproximability 19

3 Approximating constraint satisfaction problems in FPC 21
3.1 An FPC sentence approximating MaxCut 21
3.2 General algorithm for CSPs 25
3.3 An FPC analogue of Raghavendra’s result on unique games

and semidefinite programming 29

4 Results on Unique Games 35
4.1 The label-lifted instance . 36
4.2 The case of k = 2 . 38
4.3 FPC-inexpressibility of solving UniqueGames exactly 41
4.4 FPC-inapproximability of UniqueGames 48

5 Conclusion 59

Appendix 65

i

A Highly unsatisfiable GroupUniqueGames construction . . 65
B Proof of Lemma 4.1.1 (the label-lifted instance has the

same satisfiability) . 66
C Proof of Proposition 4.3.1 (LFP sentence for UniqueGames

complete satisfiability) 69
D Cops and robbers construction 70
E Proof of Lemma 4.3.3 (soundness of U2) 71
F Proof of Lemma 4.3.5 (Duplicator’s invariant) 72
G Proof of Lemma 4.4.1 (most edges are good edges) . . 77

H Proof of Lemma 4.4.3 (soundness of Ũ2 and thus U2) . 78
I Proof of Lemma 4.4.4 (paths of length r can be made

consistent) . 83
J Proof of Lemma 4.4.6 (no paths in Fi(u) with endpoints

in Ti−1) . 85
K Derivation of bound on the growth of q 87

ii

List of Figures

2.1 A UniqueGames instance over the label set {1, 2}. 9

4.1 One possible construction for the GroupUniqueGames instances
U1 and U2 using the graph H := K4. 43

4.2 The path of the robber. 45
4.3 The first necessary move of the robber. 47
4.4 The tree Ti(u). 53

D.1 An example of the construction of H where k = 4. 70

iii

List of Tables

2.1 Table of signatures. 16

v

Chapter 1

Introduction

The study of approximation algorithms asks the question, “Given some NP-

hard optimization problem P , what is the smallest multiplicative error to

which we can approximate the optimal values of instances of P using a poly-

nomial time algorithm?” For some problems, the error can be made arbitrar-

ily small, while for others, there is a fundamental limit beyond which any

better approximation could be used to solve the problem exactly, which is

impossible unless P = NP. In some cases it is known exactly what this limit

is, while in others it is still open.

In this thesis we ask the same question, but with the additional requirement

that the algorithm must be definable in fixed point logic with counting (FPC).

Roughly, an algorithm is definable in FPC if it respects the natural symme-

tries of its input, without making any arbitrary choices that break those

symmetries. (The formal connection between polynomial time algorithms,

FPC and symmetry is discussed in greater detail in Section 2.2.)

In a recent paper, Atserias and Dawar [1] give the first (to the author’s

knowledge) FPC-inapproximability results, showing that the problems 3XOR,

3SAT, VertexCover and LabelCover cannot be approximated closer than within

specific constant factors in FPC. We extend this work to consider a broad

class of problems, called constraint satisfaction problems (CSPs).

1

Using a reduction from the UniqueGames problem to an arbitrary CSP Λ,

Raghavendra [2] shows that, assuming P 6= NP and the Unique Games Con-

jecture, the best polynomial time approximation algorithm for Λ is given

by solving and rounding a specific semidefinite programming relaxation. In

Chapter 3 we argue, firstly, that this algorithm is definable in FPC, and sec-

ondly, that the reduction from UniqueGames is definable in FPC. Together,

these two facts imply an analogue of Raghavendra’s result for algorithms

that are definable in FPC, holding without the assumption that P 6= NP

(Theorems 3.2.2 and 3.3.3).

However, the result still depends on an FPC-version of the Unique Games

Conjecture (Conjecture 3.3.2). While we are unable to prove this conjec-

ture, we do make partial progress. In Chapter 4 we present a series of CFI-

constructions1 culminating in the following result (Theorem 4.4.7): for all

α > 0, there is an integer q = poly(1
α

) such that there is no FPC-definable

α-approximation algorithm for UniqueGames on a label set of size q.

1A CFI-construction is a construction used to prove a logical inexpressibility result
similar to that of Cai, Fürer and Immerman [3].

2

Chapter 2

Preliminaries

We assume that the reader is familiar with basic complexity theory, linear al-

gebra, group theory and notation from graph theory. All graphs we consider

are undirected, but may contain multiple edges between a pair of vertices

and/or loops from a vertex to itself. A graph is simple if it has no multiple

edges or self-loops. We also assume an intuitive understanding of the mean-

ing of sentences and formulas of first order logic.

2.1 Constraint satisfaction problems and ap-

proximation

An instance of a constraint satisfaction problem (CSP) is specified by a set of

variables taking values in some fixed, finite domain and a set of constraints

between certain subsets of variables. The objective is to assign values to the

variables to satisfy a maximum number of constraints, or, in the weighted

version, a set of constraints of maximum total weight.

The complexity of a CSP is determined by the size of the domain and the

kinds of constraints which are allowed. For example, suppose the domain

3

has size 3, and each constraint specifies that a certain pair of variables must

not take the same value. Thinking of the constraints as edges in a graph,

determining whether all constraints can be satisfied is the 3-Colourability

problem, which is NP-complete. If, instead, the domain has size 2, then

satisfying all constraints amounts to checking whether the graph is bipartite,

which is in P. However, satisfying a maximum number of constraints when

it is impossible to satisfy all of them is still NP-hard; this is the same as the

MaxCut problem, where we have to partition the vertices of a graph into two

sets such that a maximum number of edges are cut by the partition.

Since finding the exact optimal value is NP-hard for almost any interesting

CSP, the next logical question is, is it possible to efficiently approximate the

optimal value? For 0 ≤ α ≤ 1, an α-approximation algorithm for a CSP Λ is

a polynomial time algorithm that, given an instance of Λ with optimal value

x∗, returns a value x such that αx∗ ≤ x ≤ x∗. Usually, an α-approximation

algorithm works by finding a specific assignment of variables f and returning

the number of constraints it satisfies; the hard part is in proving that there

is no alternative assignment that beats f by more than a factor of 1
α

. The

constant α is called the approximation ratio attained by the algorithm.

For example, there is a greedy 1
2
-approximation algorithm for MaxCut by

Sahni and Gonzalez [4] which iteratively places vertices, in arbitrary order,

on the side of the partition that maximizes the number of cut edges between

the new vertex and the already-placed vertices. At each step, at least half of

the new edges are cut, for otherwise the new vertex should have been placed

on the other side. So in the end, if there are m edges, at least m
2

edges are

cut, i.e., the returned value of the cut x must satisfy m
2
≤ x. If x∗ denotes

the maximum number of edges that can be cut, then x∗ ≤ m, so

x∗

2
≤ m

2
≤ x ≤ x∗,

and thus we have a 1
2
-approximation algorithm.

The analysis of the Sahni-Gonzalez algorithm reveals an important point

about how one often thinks about approximately “solving” a constraint sat-

4

isfaction problem. This proof shows us that, instead of returning x, the

algorithm could have instead just returned the value m
2

. The greedy algo-

rithm serves as nothing more than a proof of existence of such a cut, and

actually carrying out this computation does not yield a better approximation

ratio in the worst case. Intuitively, we expect that any reasonable algorithm

for approximating a CSP should return not just the number of constraints

satisfied, but also an assignment of values to variables which satisfies that

many constraints. However, from a purely theoretical standpoint, this is un-

necessary, and it is important to keep this in mind for Chapter 3 when we

consider a setting where it is impossible to compute such an assignment.

2.1.1 Semidefinite programming and the

Goemans-Williamson algorithm

Semidefinite programming is an extremely powerful tool in the design of ap-

proximation algorithms. It is a generalization of linear programming which

allows for certain kinds of nonlinear constraints, yet it is still solvable in poly-

nomial time up to arbitrary precision. A semidefinite program (SDP) is spec-

ified by an n×n objective matrix C, a collection of n×n constraint matrices

{Ak}k∈[m] and a collection of corresponding constraint bounds {bk}k∈[m]. All

numbers and matrices are Q-valued. Given such an SDP, a feasible solution

is an n× n matrix X such that, for all k ∈ [m],

〈Ak, X〉 :=
∑
i∈[n]

∑
j∈[n]

Ai,jXi,j ≤ bk,

and, additionally, X is semidefinite, written X � 0. There are many equiv-

alent definitions of semidefiniteness [5, App. A]; the most useful one for our

purposes is that X � 0 if there exists an n×n matrix B such that X = B>B.

An SDP is feasible if the set of feasible solutions is nonempty, and bounded

if the set of feasible solutions is bounded. The objective is to find a feasible

solution X that maximizes the value of 〈C,X〉.

A paradigm in the design of approximation algorithms is to define a semidef-

5

inite program whose variables represent the variables of the input CSP in-

stance, with the objective matrix capturing the quantity to be maximized in

the problem. It is usually straightforward to write the constraints of the SDP

so that an integral solution satisfying all of the constraints represents a valid

solution to the CSP. However, after solving the SDP, we may get a solution

with variables taking non-integral values, so the optimal SDP value may be

larger than the value of the optimal integral solution. Thus, the final step is

to “round” the variables to integers, preserving feasibility without reducing

the objective value too much. The approximation ratio attained by such an

algorithm depends crucially on the analysis of the rounding step.

The canonical example of this technique is in the Goemans-Williamson algo-

rithm for approximating MaxCut [6]. In the algorithm, a cut in an n-vertex

graph is thought of as an assignment of ±1 to each of n variables v1,v2, . . . ,vn,

each representing one of the vertices, where the variables assigned 1 represent

one side of the cut and the variables assigned −1 represent the other side.

If an edge between vertex i and vertex j crosses the cut, then vivj = −1,

so 1 − vivj = 2. If such an edge does not cross the cut, we instead have

1 − vivj = 0. Therefore, the objective can be written as follows, where wi,j

is the weight of the edge between vertex i and vertex j (so each wi,j ∈ {0, 1}
for an unweighted graph):

Maximize
1

2

∑
i<j

wi,j(1− vivj)

subject to vi ∈ {−1, 1} ∀i ∈ [n]

This is a quadratic integer program, so there are no known efficient algorithms

to compute an optimal assignment. Instead, the Goemans-Williamson algo-

rithm solves the following relaxation, where vi and vj are vectors that are

allowed to take on values in the unit sphere Sn−1:

Maximize
1

2

∑
i<j

wi,j(1− 〈vi, vj〉)

subject to vi ∈ Sn−1 ∀i ∈ [n]

6

By defining variables Xi,j := 〈vi, vj〉, this maximization problem becomes an

SDP, since the constraint that vi ∈ Sn−1 can be written as the pair of linear

constraints Xi,i ≤ 1 and Xi,i ≥ 1, while X � 0 if and only if X = B>B

for some B, which happens if and only if each Xi,j is the inner product of

columns i and j of B—thus the vi vectors are precisely the columns of B.

The first step is to solve this SDP, which can be done in polynomial time

via various algorithms [7]. Given a solution X = B>B, the next step is to

extract the matrix B. This can be accomplished efficiently via an algorithm

known as incomplete Choleski decomposition [8, Alg. 4.2.2]. The vectors

v1,v2, . . . ,vn then define an embedding of the input graph into n-dimensional

Euclidean space. The final cut is obtained by splitting these points by a

random hyperplane through the origin: choose a random h ∈ Sn−1 and define

one side of the cut to be all vertices i such that 〈h, vi〉 ≥ 0. Leveraging the

geometry behind this algorithm, one can compute that the expected value of

the cut is at least
αGW

2

∑
i<j

wij(1− vi · vj)

where

αGW := min
0≤θ≤π

2θ

π(1− cos θ)
≈ 0.87856.

Since the value of the optimal cut is at most the optimal SDP value,

1

2

∑
i<j

wij(1− vi · vj),

this gives an (αGW−δ)-approximation algorithm for any δ > 0, where the −δ
comes from the fact that we cannot solve SDPs exactly, but can solve them up

to any arbitrarily small error. (Technically, it is a randomized approximation

algorithm, though it was subsequently derandomized [9].)

7

2.1.2 Inapproximability

The Goemans-Williamson algorithm was the first improvement from the triv-

ial 1
2
-approximation algorithm of Sahni and Gonzalez in 19 years, and remains

the best known approximation algorithm for MaxCut to date. One might nat-

urally ask, is there any better polynomial time algorithm, achieving an even

greater approximation ratio than αGW? Unconditionally answering such a

question in the negative is hopeless since we cannot even rule out the exis-

tence of an efficient algorithm solving MaxCut exactly. Until the P vs. NP

question is resolved, the best we can hope for is a guarantee that an algorithm

is the optimal polynomial time approximation algorithm assuming P 6= NP.

The standard technique for showing such so-called inapproximability results

for a maximization problem Λ is to show that the following gap problem,

written Gapc,sΛ for 0 < s ≤ c (borrowing notation from [10]), is hard: given

an instance I of Λ in which either

(1) the optimal value of I is at least c, or

(2) the optimal value of I is less than s,

decide which of the two cases (1) or (2) holds. Suppose there existed an
s
c
-approximation algorithm A for Λ. Then, given an instance I of Λ, we can

run A to compute the approximate value x. Since x ≤ x∗, if x ≥ s we know

we are not in case (2), so we must be in case (1). Otherwise, if x < s, we

know that the optimal value is at most c
s
x < c

s
s = c, so we cannot be in

case (1), and hence must be in case (2). Thus, we can use A to decide the

gap problem in polynomial time, so if deciding the gap problem is NP-hard,

then there does not exist an α-approximation algorithm for any α ≥ s
c

unless

P = NP. The ratio s
c

is called the gap ratio.

2.1.3 Unique games

A central research question in the study of approximation algorithms con-

cerns the approximability of a certain constraint satisfaction problem, called

8

UniqueGames. For any positive integer q, UG(q) is the unweighted CSP where

the domain has size q and constraints may be imposed between pairs of vari-

ables such that the value of one variable uniquely determines the value of the

other. It is often convenient to think of UniqueGames instances as being de-

fined on some graph G, where the vertices represent variables and each edge

{u, v} ∈ E(G) has a permutation πu,v on the label set [q] defining which la-

bels for vertex u correspond to which labels for vertex v. The goal is to label

the vertices with elements from [q] to be consistent with a maximum number

of permutations. For example, Figure 2.1 shows a UG(2) instance with edge

permutations written in cycle notation, along with one of the optimal vertex

labelings, satisfying 3
4

of the constraints.

Figure 2.1: A UniqueGames instance over the label set {1, 2} represented
graphically, along with one optimal solution (green). Only the bottom edge
(red) is unsatisfied by this solution.

The uniqueness property of the constraints makes it easy to determine whether

an instance is completely satisfiable. However, when the input instance is not

completely satisfiable, there are no known good algorithms for approximating

the maximal fraction of simultaneously satisfiable constraints. Indeed, it has

been shown that for any δ > 0, there exists a q such that Gap 1
2
,δUG(q) is NP-

hard [11, Theorem I.5]. As a consequence, for a sufficiently large label set,

it is impossible to approximate UniqueGames to within any constant factor.

The Unique Games Conjecture (UGC) is a strengthening of this statement:

9

Conjecture 2.1.1 (Unique Games Conjecture). For all ε, δ > 0, there exists

a positive integer q such that deciding Gap1−ε,δUG(q) is NP-hard. In other

words, for a large enough label set, it is NP-hard to distinguish instances in

which at least 1− ε constraints can be satisfied from instances in which less

than δ constraints can be satisfied.

Unlike the other central open problems in complexity theory, UGC is a con-

jecture built upon another conjecture. It is not claiming that it is “impossi-

ble” to solve the UniqueGames gap problem; rather, that it is NP-hard. Thus,

even if the UGC is proven, one will still not be able to make any uncondi-

tional claims about the nonexistence of algorithms until P 6= NP is proved as

well. This is one reason it is believed that the UGC will be resolved sooner

than other longstanding open questions.

If it is true (as most researchers suspect), many other inapproximability re-

sults would immediately follow. Khot, Kindler, Mossel and O’Donnell [12]

show that, assuming the UGC, it is NP-hard to approximate MaxCut to

within any factor greater than αGW. In other words, this seemingly arbitrary

constant obtained by the geometric analysis of the Goemans-Williamson al-

gorithm is, in fact, the optimal approximation ratio, a fundamental constant

for the MaxCut problem. Subsequently, Raghavendra [2] discovered a general

explanation for this surprising fact, proving that, for every CSP Λ, there is

a specific polynomial time SDP-based algorithm, which is equivalent to the

Goemans-Williamson algorithm when Λ = MaxCut, attaining the optimal

approximation ratio assuming the UGC (and P 6= NP).

In Chapter 4 we consider a special subclass of UniqueGames instances which

we call GroupUniqueGames instances (sometimes called Max2Lin in the liter-

ature). These are instances with the following additional properties:

(1) The set of labels is identified with a finite Abelian group A.

(2) For every edge permutation π, there is some g ∈ A such that π(x) =

g + x (we always write the group operation additively). Thus, we can

identify the set of edge permutations with A as well.

10

2.2 Background on logic

This thesis concerns approximating CSPs not with polynomial time algo-

rithms but with sentences of logic. What does this mean? There is a natural

way in which a description of a computational problem in a formal logic

can be translated into an algorithm for solving it. Conversely, algorithms

for solving problems can, in many cases, be translated back into logical sen-

tences describing the problem being solved. Under this correspondence, the

resources used by the algorithm (time, space, nondeterminism, etc.) cor-

respond to the operators which are allowed by the logic (different kinds of

quantifiers, inductive definitions, etc.). The study of this correspondence is

known as descriptive complexity, a more detailed and complete discussion of

which is the topic of several books; see [13], for example. Here we only give

a brief introduction to the ideas and notation of descriptive complexity that

are needed for this thesis.

2.2.1 Descriptive complexity and FPC

Sentences of logic and the structures whose properties they describe are all

defined with respect to a vocabulary, or signature, which enumerates special

symbols that are necessary to talk about a given problem. All vocabularies

we consider are relational, meaning the only special symbols allowed are for

relations (no function or constant symbols). A relational vocabulary τ takes

the form

τ := 〈Ra1
1 , R

a2
2 , . . . , R

am
m 〉,

where ai is the arity of relation symbol Ri (the arity is sometimes dropped

when obvious from context). A τ -structure consists of a nonempty set, called

its universe, together with relations instantiating, or interpreting, as it is

commonly called, the symbols of the signature τ . To make a programming

analogy, if a vocabulary τ is a type, then a τ -structure is a term of that type.

11

A τ -structure A with universe A is written as

A := 〈A,RA
1 , R

A
2 , . . . , R

A
m〉,

where each RA
i is a relation over A of arity ai.

For example, the vocabulary of graphs, τgraph, consists of a single binary

relation, E2. A graph can be encoded as a τgraph-structure G = 〈V,EG〉 in

which the universe V is the set of vertices and the edge relation symbol E is

interpreted by a symmetric relation EG consisting of all the edges.

The fundamental question asked in descriptive complexity is, given some vo-

cabulary τ and some decision problem P concerning τ -structures, what logic

is needed to express P? For example, the problem of deciding whether a

graph is 2-regular (meaning all vertices have exactly 2 neighbours) is ex-

pressible in first order (FO) logic, by the sentence

∀u∃v1∃v2(¬(v1 = v2))∧E(u, v1)∧E(u, v2)∧∀v3 E(u, v3)→ (v3 = v1∨v3 = v2).

Any property expressible in FO logic can be decided in polynomial time (as

a function of the size of the universe of the input structure), but it is not

the case that any polynomial time decidable property is expressible in FO

logic—for example, there is no sentence of FO logic expressing the property

that a graph is connected. It is therefore said that FO logic does not capture

the complexity class P. Thus, several extensions to FO logic have been

proposed. LFP is an extension of FO logic allowing for relational variables

to be defined inductively, in such a way that LFP-definable properties can

still be computed in polynomial time (see [13, Chapter 4]). If we assume

that the input structure is ordered, meaning that the vocabulary comes with

a binary relation “≤” interpreted as a total order on the universe, then LFP

captures P. This important result is known as the Immerman-Vardi Theorem

[14, 15].

Over unordered structures, however, LFP is not even able to express the

simple property that the input structure has an even number of elements in

12

its universe. For this, we can augment LFP with the ability to quantify over

numeric variables (taking values from 0 up to the size of the input), along

with counting quantifiers, which assert that a certain number of objects sat-

isfy a certain predicate (see [13, Sec. 12.3]). The resulting logic is called fixed

point logic with counting (FPC). While FPC-definable properties are decid-

able in polynomial time, FPC still does not capture P, but counterexamples

are highly nontrivial. Nevertheless, a wide range of powerful algorithmic

techniques, including linear and semidefinite programming, are expressible

in FPC, making it an important logic to study.

Since the order of the elements assumed by the Immerman-Vardi theorem

can be completely arbitrary, the only power gained from assuming an order

relation is the ability to repeatedly choose arbitrary elements. In the absence

of an ordering relation, indistinguishable elements must be treated equally.

Thus, FPC encapsulates the idea of symmetric computation. Polynomial

time algorithms correspond to FPC sentences only if they do not make ar-

bitrary, symmetry-breaking choices. A non-example is solving systems of

linear equations over finite fields. The standard algorithm for this problem

is Gaussian elimination, which requires one repeatedly choose a pivot. In

the presence of an ordering of the rows and columns of a matrix, one can

choose the nonzero entry in the least column of the ordering, breaking ties

by choosing the least row. Without an order, any such choice would break

the symmetry of the input problem, so the only thing a symmetric algorithm

could do is to try all possible pivots at each iteration, which would take an

exponential amount of time. Indeed, it has been shown that solving sys-

tems of linear equations (over finite fields) is not definable in FPC [16]. It

is difficult to rigorously define exactly what is meant by “symmetry break-

ing,” though hopefully the intuition is clear. Anderson and Dawar [17] give a

precise instantiation of this meta-observation defined in terms of symmetric

circuits.

13

2.2.2 Finite structures for CSPs

To represent an unweighted CSP as a relational structure, we use a vocab-

ulary consisting of relation symbols P1,P2, . . . ,Pm, one for each kind of con-

straint of the problem. An instance A = 〈A,PA
1 , P

A
2 , . . . , P

A
m〉 has a universe

A consisting of the set of variables, where each PA
i defines the set of of tuples

of variables to which the constraint P i is applied. For example, in 3SAT,

there are m = 8 different kinds of constraints (clauses), all of arity 3, where

P1 is for clauses of the form (x1 ∨ x2 ∨ x3), P2 is for clauses of the form

(x1 ∨ x2 ∨ x3), and so on. For UniqueGames on a label set of size q, there is

one constraint Pπ of arity 2 for each permutation π : [q] → [q]. We call this

vocabulary τUG(q).

To represent a weighted CSP, we first have to introduce some extra machinery

to deal with numbers. This definition is loosely based on the structures used

by Dawar and Wang [18] to represent vectors and matrices. We can represent

a natural number n as a relational structure n = ([b], Bn) in the vocabulary

τN := 〈B,≤〉. The universe [b] has size b = dlog2(n + 1)e, ≤ is a binary

relation interpreted as the usual linear order on [b] (from least significant

bits to most significant bits), and B is a unary relation encoding the bit

representation of n, i.e.,

Bn := {k ∈ [b] | the kth (least significant) bit of n in binary is 1}.

To represent negative integers, we add a new unary relation symbol S to τN

to obtain a new vocabulary τZ, where n is positive if and only if Sn = ∅. To

represent rational numbers, we replace B with unary relation symbols N and

D for the numerator and denominator (which act in the same way as B) to

obtain a new vocabulary τQ.

Let Λ be a CSP. To represent a weighted instance of Λ, we have to combine

variables and numbers together. That is, we use what is known as a two-

sorted universe, in which there are two different kinds of elements, in this

14

case a variable sort T and a number sort [b], where

b := dlog2 (1 + (max numerator or denominator of any constraint weight))e .

The vocabulary τΛ consists of the usual order relation ≤ which is interpreted

by the instance A as a total order on [b] and relation symbols Ni, Di and Si

of arity ri + 1 for each constraint type i of arity ri, where Ni is interpreted

as

NA
i := {(x, k) ∈ T ri × [b] | the kth bit of the numerator of

the weight of constraint i applied to tuple x in binary is 1},

Di is like Ni, but for the denominator, and SA
i (x, ·) is empty if and only if the

weight of constraint i applied to x is negative. Having negative weights allows

us to consider minimization problems as well as maximization problems,

matching Raghavendra’s [2] framework for CSPs; the objective is always to

maximize the total weight. Since the order relation is only imposed on the

bit positions, not the variables, we can still represent unordered structures

without breaking symmetry.

15

2.2.3 Table of signatures

For reference, Table 2.1 lists several important signatures used throughout

this thesis. The signatures τmat and τSDP are introduced in Section 3.1.

Signature Relation symbols Used to represent

τN ≤2, B1 Natural numbers
τZ ≤2, B1, S1 Integers
τQ ≤2, N1, D1, S1 Rationals
τgraph E2 Graphs
τUG(q) P 2

π for π : [q]→ [q] Unweighted UG instances

τΛ

≤2; N ri+1
i , Dri+1

i , Sri+1
i

for each constraint
type i of arity ri

Weighted Λ instances

τMaxCut ≤2, N3
1 , D3

1, S3
1 Weighted MaxCut instances

τmat ≤2, X3, D3, S3 Matrices

τSDP
≤2, X4

A, D
4
A, S

4
A, X

2
b ,

D2
b , S

2
b , X

3
C, D

3
C, S

3
C

Semidefinite programs

Table 2.1: Table of signatures. Each ≤2 is interpreted as an order on bit
positions only, not on variables or abstract indices. Note that τMaxCut and
τmat are the same up to renaming. We write X instead of N in τmat just to
be consistent with the notation of Dawar and Wang [18].

2.2.4 Lower bounds for FPC

To show that a property P is definable in FPC, we just need to exhibit a single

FPC sentence φ and prove that a structure A satisfies φ (written A |= φ)

if and only if A has property P . Showing that a property is not definable

in FPC is trickier, since we must argue that no such sentence works. The

standard proof technique is to assume, for the sake of contradiction, that

there was such a sentence φ defining P . Then there exists a k such that φ

can be translated into Ck, the fragment of infinitary FO logic with counting

quantifiers consisting of (possibly infinite) sentences with only k variables

[19]. We denote the minimum such k by µ(φ). To show the contradiction, we

16

construct a pair of structures A = Ak and B = Bk such that A has property

P but B does not, yet any sentence of Ck cannot distinguish A from B, in

the sense that A satisfies any Ck sentence if and only if B does. When this

is the case, we write A ≡Ck B.

There is a useful characterization of the relation ≡Ck in terms of a game

between two players, Spoiler and Duplicator, called the k-pebble bijective

game. The board on which they play consists of the universe A of structure

A and the the universe B of structure B. Spoiler’s objective is to prove that

the structures are different, while Duplicator’s objective is to pretend that

they are the same. There are k pairs of pebbles, initially not placed anywhere.

Throughout the game, the pairs of pebbles will be placed on elements of the

two universes, one pebble in each universe. Each round of the game consists

of three parts:

(1) Spoiler picks up one of the k pairs of pebbles, removing them from the

board.

(2) Duplicator gives a bijection f : A → B such that, for all 1 ≤ i ≤ k, if

the ith pebble pair is placed on some pair of elements ai ∈ A, bi ∈ B,

then f(ai) = bi.

(3) Spoiler places the pebbles back down, placing one pebble on some a ∈ A
and the other pebble on f(a) ∈ B.

At the end of a round, Spoiler wins if the map sending each pebbled element

in A to its correspondingly-pebbled element in B is not a partial isomorphism

between the two structures, i.e., there is some relation in one of the two

structures that holds of a set of pebbled elements, but the corresponding

relation does not hold in the other structure of the correspondingly-pebbled

elements. If Spoiler is unable to win the game in any finite number of moves,

then Duplicator wins.

Theorem 2.2.1 (Hella [20]). Duplicator wins the k-pebble bijective game

played on A and B if and only if A ≡Ck B.

So, to show that two structures are indistinguishable, and thus that φ does

17

not express P , we just need to present a winning strategy for Duplicator.

2.2.5 Interpretations

So far we have only discussed sentences of logic acting as algorithms for de-

cision problems. If a logical sentence corresponds to a Turing machine, then

whether a structure satisfies the sentence corresponds to whether the Tur-

ing machine accepts the encoding of that structure. For some applications,

however, it is useful to consider Turing machines which output something

more complicated than “accept” or “reject.” The logical analogue of such a

machine is called an interpretation.

To construct an interpretation Θ, suppose we are given an input structure

A in some signature σ, and wish to define the output B = Θ(A) in some

potentially different signature τ . First we must define the universe of B in

terms of the universe of A. This can be done by taking the universe of B to

be the set of d-tuples of elements of A satisfying some FPC formula of d free

variables, written in the vocabulary σ. By choosing d large enough, we can

define universes of size up to nd, where n is the size of the input structure.

Next, we must define each relation symbol appearing in τ . For a symbol Ri

of arity ai, we must define on which ai-tuples of elements of B, i.e., ai-tuples

of d-tuples of elements of A, the relation RB
i holds. This can be accomplished

via a FPC formula of dai free variables, again written in the vocabulary σ,

where we take the relation to hold if and only if the formula is satisfied.

Thus, a d-ary FPC-interpretation of τ in σ is defined by a finite sequence of

FPC formulas in the vocabulary σ, as outlined above [1, Sec. 2.2]. For an

interpretation Θ, we define µ(Θ) to be the maximum value of µ(φ) for any

formula φ of Θ.

Just as polynomial time reductions can be used to transfer computational

hardness results from one problem to another, interpretations can transfer

logical inexpressibility results from one problem to another: if some property

P of σ-structures is not definable in FPC, and there is an interpretation Θ of

18

τ in σ such that a σ-structure A has property P if and only if the τ -structure

Θ(A) has property P ′, then P ′ is not definable in FPC either.

Interpretations also give us a useful way to define what it means to “solve”

an optimization problem. Recall that, for a CSP Λ, τΛ is the vocabulary of

weighted instances of Λ, and τQ is the vocabulary of rational numbers. By

an FPC-definable algorithm for Λ we mean an interpretation Θ of τQ in τΛ

such that, for any τΛ-structure A, the optimal value of A is equal to Θ(A).

2.3 Definable inapproximability

Combining our earlier definitions of FPC-definable algorithm and approxima-

tion algorithm, we say that, for a CSP Λ and for 0 ≤ α ≤ 1, an FPC-definable

α-approximation algorithm for Λ is an FPC-interpretation Θ of τQ in τΛ such

that, for any τΛ-structure A of optimal value x∗, αx∗ ≤ Θ(A) ≤ x∗.

In a recent paper, Atserias and Dawar [1] prove the first (to the author’s

knowledge) inapproximability result for FPC. Their main construction is a

pair of 3XOR instances (like 3SAT except with XORs in place of ORs between

literals) Ak and Bk for any k, such that Ak is completely satisfiable, Bk is only
1
2

+ δ satisfiable (for arbitrarily small δ), but Ak ≡Ck Bk. As a consequence,

there is no FPC-definable α-approximation algorithm for α > 1
2
, for if there

was such an FPC-interpretation Θ, if we let δ be such that 1
2

+ δ < α and let

k := µ(Θ), we would necessarily have Θ(Ak) = Θ(Bk), which contradicts the

requirements that Θ(Ak) ≥ αn and Θ(Bk) ≤ (1
2

+ δ)n (where n is the total

number of constraints). This is analogous to showing that a gap problem is

hard—in this case, s = 1
2

+ δ and c = 1, so the gap ratio is (1
2

+ δ)/1 = 1
2

+ δ.

Atserias and Dawar then show that several existing gap-preserving reductions

from 3XOR to other problems could be cast as FPC-interpretations, resulting

in FPC inapproximability bounds for 3SAT, VertexCover and LabelCover.

19

Chapter 3

Approximating constraint

satisfaction problems in FPC

In this section we prove an FPC-analogue of Raghavendra’s result [2] that,

assuming the UGC, the optimal approximation algorithm for any CSP is ob-

tained by rounding a specific SDP relaxation. The proof consists of verifying,

firstly, that Raghavendra’s general polynomial time algorithm is definable as

an FPC-interpretation of τQ in τΛ, and secondly, that Raghavendra’s reduc-

tion from UniqueGames to Λ is definable as an FPC-interpretation of τΛ in

τUG(q). We begin by discussing the special case of MaxCut.

3.1 An FPC sentence approximating MaxCut

To translate the Goemans-Williamson algorithm into an FPC-interpretation,

we must first understand how to translate its core subroutine: solving a

semidefinite program. This is studied by Dawar and Wang [18], who define

a vocabulary τSDP for SDP instances and an FPC-interpretation which ap-

proximately solves them. Like the vocabulary τΛ for weighted CSPs, SDPs

are defined over a multi-sorted universe, with an unordered sort for indexing

21

the rows and columns of matrices, another unordered sort for indexing the

constraints and, finally, an ordered sort for representing numbers in binary.

There are 10 relation symbols,

τSDP := 〈≤2, X4
A, D

4
A, S

4
A, X

2
b , D

2
b , S

2
b , X

3
C , D

3
C , S

3
C〉,

encoding the constraint matrices {Ak}, corresponding constraint vectors {bk}
and objective matrix C. The X relations encode the numerators, the D re-

lations encode denominators, and the S relations encode signs. For example,

if a tuple (k, i, j,m) is in the relation DA
A it means that, in the kth constraint

matrix of SDP A, the mth bit of the numerator of the entry at row i, column

j is a 1. If the unary relation SA
C(i, j, ·) is nonempty, it means that the entry

of the objective matrix of A at row i, column j is negative. As usual, ≤
encodes the total order on the bit sort.

The output of an SDP solver is the matrix of optimal variable values, which

is encoded in the vocabulary

τmat := 〈≤2, X3, D3, S3〉,

similarly as in the encoding of C.

Theorem 3.1.1 (Dawar and Wang [18]). There is an FPC-interpretation Φ

of τmat in τSDP ∪̇ τQ such that, given a bounded and feasible SDP A (encoded

as a τSDP-structure) and some δ > 0 (encoded as a τQ-structure), Φ(A, δ)
encodes a matrix X which is within δ of a feasible solution to A (e.g., in the

L2-norm), and has value within δ of an optimal solution.

Notice how it is crucial that the index sets are unordered. If the entire

universe was ordered, then the statement would follow immediately from

the Immerman-Vardi Theorem, but would be useless. For example, in the

SDP for MaxCut, the rows and columns of the matrices, as well as the linear

constraints, correspond to vertices. If there was a relation symbol in τSDP

which must encode the order on these rows, columns and constraints, then,

to define the SDP from the MaxCut instance we would have to define that

22

order, which is impossible if the vertices are not ordered to begin with. Since

there is no such order on the index and constraint sorts, we may simply define

the row sort to be the vertex set, and so on.

Setting up the rest of the MaxCut SDP is easy, but tedious, so here we just

go through one example. Consider the task of defining the relations XC and

DC . Recalling the SDP for MaxCut defined in Section 2.1.1, for i < j, the

coefficient in row i, column j of the objective matrix is −1
2
wij. Thus, an

arbitrary entry (i, j,m) is in the relation XC (respectively, DC) if and only

if the mth bit of the numerator (respectively, denominator) of −1
2
wij is a 1.

Recall that, in the encoding for MaxCut instances, the weights are encoded

as ternary relations N1 and D1 expressing the numerator and denominator

in binary. Since multiplying by 1
2

is the same as shifting the bits of the

denominator up by 1, we may define XC(i, j,m) to be true if and only if

N1(i, j,m) (3.1)

is true, and define DC(i, j,m) be true if and only if D1(i, j,m − 1) is true,

i.e.,

∃m1 m1 ≤ m ∧ (¬∃m2 m1 ≤ m2 ∧m2 ≤ m) ∧D1(i, j,m1) (3.2)

is true. In this case, both (3.1) and (3.2) are FO formulas; all that we require

is that they be FPC formulas. More complicated arithmetical operations can

be translated into FPC formulas as well [21, Sec. 3.3], so we ignore these

details hereafter.

Thus, we have an interpretation of τSDP in τMaxCut, which we can compose

with the interpretation Φ from Theorem 3.1.1 to obtain an approximately

optimal solution matrix X. The next steps of the Goemans-Williamson al-

gorithm are to find a matrix B such that X = B>B and pick a random

hyperplane h. From h and B, we would then be able to define the two sets

of the cut, and from that, the value of the cut. The first difficulty is that

the incomplete Choleski decomposition algorithm for extracting B contains

symmetry-breaking steps, as it is similar to Gaussian elimination. The dif-

23

ficulty runs even deeper though. In fact, the whole approach to these latter

steps of the algorithm is unattainable in FPC, since merely defining a cut at

some intermediate step would break symmetry. For instance, if the input is

a set of size 2n containing edges of nonzero weight only between n disjoint

pairs of vertices, then there are 2n optimal cuts in the graph with automor-

phisms taking any one to any other. Since FPC-interpretations must respect

automorphisms of the input structure, if some sentence of FPC was able to

select one of these cuts, it would have to simultaneously select all of them.

This is impossible, since the output of an FPC-interpretation necessarily has

polynomial size.

Therefore, we must compute the optimal value without ever computing a

specific cut, or even computing a specific valid matrix B, for that matter.

While we may not be able to compute in FPC the exact value returned

by the algorithm, we can at least use Goemans’ and Williamson’s analysis

to bound it. As mentioned in Section 2.1.1, the expected value of the cut

returned by the algorithm is at least

αGW

2

∑
i<j

wij(1− vi · vj) =
αGW

2

∑
i<j

wij(1−Xi,j).

Fortunately, this quantity is definable in FPC, since we have already con-

structed FPC definitions for wi,j (part of the input) and Xi,j (coming from

the interpretation Φ of Theorem 3.1.1). The rest is just simple arithmetic,

so each bit can be defined by an FPC formula.

Thus, we have shown the following result, which completely parallels Goe-

mans’ and Williamson’s result for polynomial time computation.

Theorem 3.1.2. For any ε > 0, there is an FPC-definable

(αGW − ε)-approximation algorithm for MaxCut.

The −ε factor comes from the fact that, in applying Theorem 3.1.1, we can-

not solve the SDP exactly, but only up to an additive δ. By choosing δ

sufficiently small, we can ensure by continuity that the approximation ratio

is at least αGW − ε.

24

3.2 General algorithm for CSPs

The translation into FPC of Raghavendra’s [2] general approximation algo-

rithm for any CSP is similar in essence to that of MaxCut. We first define an

SDP from a given instance, then apply Theorem 3.1.1, then extract the op-

timal value. Throughout the remainder of this chapter, we make the simpli-

fying assumption (as Raghavendra does) that CSP instances are normalized

so that the sum of all weights is in [−1, 1].

Given an instance I of CSP Λ, with variable set V , domain [q] and constraint

set P , Raghavendra’s algorithm defines and solves an SDP called the LC

relaxation [2, Sec. 4.5]. For any constraint P ∈ P , let V(P) denote the set

of variables appearing in constraint P , and weightI(P) denote the weight

of that constraint. The variables of the SDP consist of a set of (q · |V|)-
dimensional vectors,

{bi,a | i ∈ V , a ∈ [q]},

and a set of probability distributions over local assignments of variables

within each constraint,

{µP | P ∈ P}.

That is, each µP variable is a distribution over [q]V(P). The LC relaxation1 is

as follows:

1Raghavendra’s original LC relaxation looks slightly different because it is written us-
ing a more general notation, in which constraints are arbitrary “payoff” functions from
assignments to values in [−1, 1]. The SDP written here is what results when constraints
are merely “satisfied” or “unsatisfied,” with satisfied constraints yielding payoffs equal to
their weights.

25

Maximize
∑
P∈P

weightI(P) P
f∼µP
{f satisfies P}

subject to 〈bi,a,bj,b〉 = P
f∼µP
{f(i) = a, f(j) = b}

∀P ∈ P , i, j ∈ V , a, b ∈ [q]

µP ∈ 4([q]V(P)) ∀P ∈ P

At first, the LC relaxation may look like an ordinary quadratic program, yet

it is implicitly an SDP. To show that Raghavendra’s algorithm can be defined

in FPC, however, we have to put this SDP into the explicit form required by

Theorem 3.1.1.

First observe that the probability distributions µP can be defined as sets of

numbers

{µP (f) | P ∈ P , f : V(P)→ [q]}

summing to 1. Thus, we may rewrite the LC relaxation as:

Maximize
∑
P∈P

∑
f :V(P)→[q]
satisfying P

weightI(P)µP (f) (3.3)

subject to 〈bi,a,bj,b〉 =
∑

f :V(P)→[q]
f(i)=a, f(j)=b

µP (f) ∀P ∈ P , i, j ∈ V , a, b ∈ [q]

µP (f) ≥ 0 ∀P ∈ P . f : V(P)→ [q]∑
f :V(P)→[q]

µP (f) = 1 ∀P ∈ P

Since there are two kinds of variables, vectors and scalars, we take the vari-

able matrix X to be block-diagonal, where the first block has rows and

columns indexed by V × [q], with X(i,a),(j,b) representing the inner product

〈bi,a,bj,b〉. The second block is indexed by
∏

P∈P [q]V(P), where each diagonal

26

entry X(P,f),(P,f) represents µP (f) and off-diagonal entries are zero. All of the

constraints can then easily be written as linear constraints on entries of X.

Also, observe that X is semidefinite if and only if both blocks are. Since the

second block is diagonal and all entries are nonnegative anyway, it is always

semidefinite, so X is semidefinite if and only if the first block is, which hap-

pens if and only if there exist vectors bi,a for each i ∈ V , a ∈ [q], such that

X(i,a),(j,b) ≡ 〈bi,a,bj,b〉. Thus, we indeed have a semidefinite program.

To define an interpretation of τSDP in τΛ, the first step is to define the universe

of the index sort in τSDP (the bit sort and constraint sort universes must be

defined as well, but they are much easier, so we ignore them) in terms of

the universe of τΛ, which is V . As described in the previous paragraph, the

universe of the index sort must represent

(V × [q]) ∪̇
∏
P∈P

[q]V(P).

Let P1,P2, . . . ,Pm be the constraint types and let k be the maximum arity

of any constraint (recall that there are only finitely many constraint types

allowed, so k and m are universal constants for the problem Λ, and do not

depend on the instance at hand). Adding extra (ignored) variables to the

second block of the matrix, we can enlarge the index set to be

(V × [q]) ∪̇
(
[m]× [q]k × Vk

)
,

representing an index (P, f) as (t, a1,a2, . . . ,ak, i1,i2, . . . ,ik), where P is of

type Pt and the first set of consecutive i-variables up to the arity of P are

assigned the corresponding a-values. Thus, the index sort can be constructed

from q disjoint copies of V and mqk disjoint copies of Vk. Since q, m and k

are constants, a universe like this can be defined via FO formulas using the

method of finite expansions [1, Sec. 2.2].

Similarly as with MaxCut, defining the rest of the interpretation is easy but

tedious. Inspecting the LC relaxation (3.3), it is clear that all coefficients

of the objective matrix, constraint matrices and constraint bounds can be

27

defined via FO formulas and simple arithmetic, so the SDP can be defined

via a FO interpretation.

After solving the SDP, Raghavendra’s algorithm then proceeds to round the

bi,a vectors to an integral solution [2, Theorem 5.1]. As with the Goemans-

Williamson algorithm, there are many symmetry-breaking steps in this pro-

cess, so we must find a different way to extract the approximately optimal

value.

For any I ∈ Λ (that is, I is an instance of CSP Λ) let opt(I) denote the max-

imal value I, and let sdp(I) denote the maximal value of the LC relaxation

of I (which may be greater). For any c ∈ R, define

GapΛ(c) := inf
I∈Λ, sdp(I)=c

opt(I).

As with MaxCut, we can compute the value of sdp(I) in FPC by applying

Theorem 3.1.1. Using that value alone, the best approximation algorithm

we can hope for would be to simply return GapΛ(sdp(I)). If the goal is just

to guarantee an approximation ratio of α for some fixed constant α which is

the worst-case ratio between a and GapΛ(a) overall all values a, then we are

done, for we can just return α·sdp(I), which is computable in FPC. However,

Raghavendra’s rounding algorithm has a stronger performance guarantee:

that it always returns a solution of value at least GapΛ(sdp(I)−η)−η for any

fixed constant η > 0. To meet this guarantee without breaking symmetry,

we instead use another one of Raghavendra’s results.

Theorem 3.2.1 (Raghavendra [2, Theorem 5.2]). For every constant η > 0

and every CSP Λ, GapΛ(c) can be computed to an additive approximation of

η in time exp(exp(poly(kq/η))), where k and q are constants depending only

on Λ.

This algorithm approximates the infimum over all instances by computing

opt(I) and sdp(I) for a set of instances S of size exp(exp(poly(kq/η))). Note

that k, q and η are constants that do not depend on I, so S is just a fixed,

finite set of instances. So, in other words, the mapping c 7→ GapΛ(c) is

28

essentially stored in a large, but finite, lookup table, where the value of

GapΛ(c) on an arbitrary input c is approximated by looking at the greatest

entry of the table below c. Using a (very large) disjunction over all of the

entries in the table, is possible to write a FO interpretation Θ of τQ in τQ

approximating GapΛ(c), of the form

Θ(c) := max
I∈S

sdp(I)<c

opt(I)− η

(as described in Section 3.1, this can be translated into more primitive logical

definitions of each bit in the numerator and denominator).

Composing this interpretation with the interpretations defining and solving

the LC relaxation, we have the following result, generalizing Theorem 3.1.2.

Theorem 3.2.2. For any CSP Λ and any ε > 0, there is an FPC-definable

algorithm, which, on instance I ∈ Λ of SDP value sdp(I) = c, returns a

value of at least GapΛ(c)− ε.

Note that there are two sources for the ε error term, coming from the δ in

Theorem 3.1.1 and the η in Theorem 3.2.1.

3.3 An FPC analogue of Raghavendra’s re-

sult on unique games and semidefinite

programming

The performance guarantee of Raghavendra’s algorithm is optimal in the

following sense.

Theorem 3.3.1 (Raghavendra [2, Theorem 7.1]). Assume the Unique Games

Conjecture. For any CSP Λ, for all η > 0 and −1 < c ≤ 1, it is NP-hard to

distinguish between instances I ∈ Λ with value at least c− η from those with

29

value at most GapΛ(c).

As a consequence, if we assume the UGC and P 6= NP, Raghavendra’s al-

gorithm gives the best possible approximation ratio of any polynomial time

algorithm. Our goal is to prove an FPC-analogue of this result, so first we

must define an FPC-version of the UGC.

Conjecture 3.3.2 (FPC-UGC). For all ε, δ > 0, there exists q such that

there is no sentence φ of FPC such that, for all τUG(q) structures A,

(1) if at least a 1 − ε fraction of constraints in A can be satisfied, then

A |= φ, and

(2) if at most a δ fraction of constraints in A can be satisfied, then A 6|= φ.

Theorem 3.3.1 is proved via a series of gap-preserving reductions from

UniqueGames to Λ. We show that each of these is an FPC-reduction.

First is an elementary reduction of Khot [10, Sec. 2.4] taking as input an

arbitrary UniqueGames instance and producing a new instance with approx-

imately the same satisfiability such that the underlying graph structure is

bipartite. Basically, two duplicate copies of the variable set are created, and

for each constraint of the input instance between a pair of variables (u, v), we

have constraints in the new instance between u in the first copy and v in the

second copy, and vice versa. Next is a series of three reductions due to Khot

and Regev [22, Lemmas 3.3, 3.4 and 3.6] taking as input a bipartite, possibly

weighted UniqueGames instance and producing a bipartite, unweighted in-

stance of approximately the same optimal value, with some additional useful

properties in the case where the input is highly satisfiable. With the ex-

ception of Lemma 3.4, all of these reductions are “gadget reductions” which

are easily implemented as FO reductions, with FO formulas defining what

constraints appear and simple arithmetical operations defining their weights.

Lemma 3.4 passes from a weighted to an unweighted instance by replacing

weighted edges by multiple edges sharing the same constraint2. Inevitably,

2Even though we started with an unweighted instance, Lemma 3.3 produces a weighted
instance, so it is still necessary to perform this reduction.

30

there is a slight bit of rounding error that occurs. To ensure that all vertices

on the left side of the bipartite graph have the same degree (an important

property used later), each vertex x on the left side is assigned an arbitrary

vertex y0(x) of positive weight on the right side, then weights are rounded

down on all edges from x besides the one to y0(x), and any extra edges

are added to y0(x) in the end. Choosing y0(x) for each x arbitrarily clearly

breaks symmetry, preventing this reduction from being translated into an

FPC-interpretation. To circumvent this problem, we may simply define y0(x)

to be the variable corresponding to x from Khot’s reduction which duplicated

the variable set (one can easily verify that the uniqueness of this choice is

preserved by the reduction in Lemma 3.3 of [22]).

Finally, we come to Raghavendra’s reduction from UniqueGames to Λ. It is

defined with respect to some fixed instance I of CSP Λ with variables taking

values in [q]. The input to the reduction is an unweighted unique games

instance Φ with label set [R], whose underlying graph G is bipartite, with

vertex set V (G) =WΦ ∪ VΦ. The output is a verifier, which is an algorithm

that randomly selects a constraint of the form allowed by Λ and returns a

numeric “payoff” if the constraint is satisfied, and zero if it is not satisfied.

The verifier can therefore be viewed as an instance of Λ, where the weight of

a constraint is the probability it is selected by the verifier multiplied by the

payoff.

The input to the verifier is an assignment F of values in [q] to every element

of VΦ × [q]R. The verifier performs the following steps3:

(1) Pick a constraint P of I, uniformly at random4. Denote the variables

in P by V(P) =: {s1,s2, . . . ,sk}.

3This is paraphrased from Raghavendra’s verifier [2, Sec. 7.5] and its main subroutine,
the “dictatorship test” [2, Sec. 7.3].

4Raghavendra’s framework [2, Definition 2.4.2] allows for constraints of CSPs to have
probabilities associated with them which get multiplied by the payoffs/weights in calcu-
lating the value of an assignment of variables, in which case those probabilities should
be used as a distribution for this step, rather than the uniform distribution. We have
not included these probabilities because they are redundant, as they can without loss of
generality be absorbed into the payoffs/weights on the constraints.

31

(2) Pick a random vertex w ∈ WΦ.

(3) Independently pick k neighbours v1,v2, . . . ,vk ∈ VΦ of w, uniformly at

random (there may be duplicates).

(4) Independently generate k [q]-valued vectors of length R, z̃s1 , z̃s2 , . . . , z̃sk
using a random procedure that depends only on the instance I and not

on Φ.

(5) For each i ∈ [k], permute the components of the vector z̃si by πw,vi to

obtain the vector zi := πw,vi(z̃si), then check the value of the variable

(vi, zi) under F .

(6) If P is satisfied by k-tuple of values obtained in step (5), return the

weight of P , otherwise return 0.

One can view this verifier as an instance f(Φ) of the CSP Λ where the variable

set is VΦ × [q]R. Similarly as discussed in Section 3.2, it is possible to define

this universe as qR disjoint copies of VΦ in FPC. So, in order prove that

the reduction Φ 7→ f(Φ) can be realized as an FPC-interpretation, all that

remains is to show that the weights of each of the constraints of f(Φ) can be

defined in FPC.

The weight of an arbitrary constraint P of type t occurring on an arbitrary

tuple of variables (v, z) = ((v1, z1), (v2, z2), . . . , (vk, zk) is

P{P is chosen in step (1)} · P{(v, z) is queried in step (5)} · weightI(P)

The product of the first and last of these three terms is 0 if there is no such

constraint P of type t occurring on those variables in I, and

weightI(P)

of constraints in I

otherwise (in which case P is unique). This is clearly definable in FPC, so

all that remains is to check that the middle term is definable in FPC as well.

32

This can be rewritten as

P{(v, z) is queried in step (5)}

=
∏
i∈[k]

(
P{vi is the ith vertex chosen in step (3)}

· P{zi is the ith vector computed in step (5)}
)

=
1

|WΦ|
∑
w∈WΦ

∏
i∈[k]

P{vi is the ith vertex chosen in step (3)

given w is chosen in step (2)}

· P{zi is the ith vector computed in step (5)

given w is chosen in step (2)}

=
1

|WΦ|
∑

w∈WΦ s.t. ∀i∈[k], {vi,w}∈E(G)

1

(deg v)k

·
∏
i∈[k]

P{zi is the ith vector computed in step (5)

given w is chosen in step (2)}

=
1

|WΦ|
∑

w∈WΦ s.t. ∀i∈[k], {vi,w}∈E(G)

1

(deg v)k

·
∏
i∈[k]

P{π−1
w,vi

(zi) is the ith vector drawn in step (4)}.

Since the procedure in step (4) depends only on the fixed instance I and not

Φ, computing the probabilities in the last line can be done by lookup, e.g., by

writing out all of the cases in a long FPC sentence. Hence, this entire formula

boils down to simple arithmetic and case analysis, so it can be translated into

an FPC-interpretation using the methods discussed in previous sections.

Composing all of the FPC-interpretations together, we have the following

result, paralleling Theorem 3.3.1.

Theorem 3.3.3. Assume Conjecture 3.3.2 (FPC-UGC). For a any CSP Λ,

for all η > 0 and −1 < c ≤ 1, there is no sentence φ of FPC such that φ

33

is satisfied by all τΛ-structures A with maximal value at least c− η and φ is

unsatisfied by those with maximal value at most GapΛ(c).

Proof. Suppose there was such a φ. As Raghavendra shows, the reduction

from UniqueGames to Λ maps highly satisfiable UniqueGames instances to τΛ-

structures with maximal value at least c − η, and maps highly unsatisfiable

UniqueGames instances to Λ instances with maximal value at most GapΛ(c).

As we have argued in this section, this reduction is definable as an FPC-

interpretation Θ. Therefore, if we “compose” Θ with φ (replacing relation

symbols in φ by their definitions as τUG(q)-formulas according to Θ, etc.), we

get an FPC sentence in vocabulary τUG(q) violating Conjecture 3.3.2. Hence,

no such φ exists.

As a consequence, if we assume the FPC-UGC, there is no better FPC-

definable approximation algorithm than that of Theorem 3.2.2.

34

Chapter 4

Results on Unique Games

As Chapter 3 has shown, understanding the limits to which UniqueGames

can be approximated in FPC is the key gap in our knowledge of definable

inapproximability of CSPs. Thus, in this chapter, we examine UniqueGames

in detail. The fundamental question we ask is, given some fixed integer k,

to what extent can a sentence φ of FPC where µ(φ) = k separate instances

of different optimal values? To build intuition, we begin by considering the

simple cases where k ∈ {1, 2, 3}. We then present a novel CFI-construction

proving that there is no FPC-interpretation giving the exact optimal value

of a UG(4) instance. This construction is then generalized to prove the main

result of this chapter (Theorem 4.4.7), that it is impossible to approximate

the optimal value of a UG(q) instance to within any constant factor α in FPC

(where q = poly(1
α

)).

While none of the constructions in this chapter yield stronger lower bounds

on the approximability of UniqueGames than what are known for polynomial

time computation, they are still valuable for two main reasons. First, the

lower bounds do not rely on the assumption that P 6= NP, so the results

are truly novel. Second, the constructions themselves are qualitatively quite

different from existing UniqueGames constructions in that they exploit a par-

ticular weakness of FPC-definable algorithms: the inability to solve systems

of linear equations. As such, they provide a new set of tools with which to

35

attack Conjecture 3.3.2.

4.1 The label-lifted instance

Recall from Sections 2.2.4 and 2.3 that, to establish FPC inapproximability

results for a given problem, it suffices to produce, for any integer k, two

instances Ak and Bk (for UniqueGames, these are τUG(q)-structures, using the

unweighted encoding) with very different optimal values such that Duplicator

wins the k-pebble bijective game played on Ak and Bk.

For k = 1, this is fairly trivial, as all relations in τUG(q) have arity 2 and there

is only one pebble. Thus, as long as the two structures have the same size,

Spoiler can never win.

For k = 2, we must be more clever, since we now have to ensure that,

when there is already one pebble pair on the board, Duplicator’s bijection

preserves all of the edge labels incident to the pebbled vertices. To this end,

we define an operator G on GroupUniqueGames instances, similar to the G

operator used by Atserias and Dawar [1, Sec. 3.2], and also implicitly used

by Atserias, Bulatov and Dawar [16, Sec. 3].

Given a GroupUniqueGames instance U with group A and variable set

{xv | v ∈ V },

G(U) is a GroupUniqueGames instance with group A and variable set

{xgv | v ∈ V, g ∈ A}.

For every equation

xv1 − xv2 = z

36

in the constraint set of U and every g1, g2 ∈ A, we have the equation

(xg1
v1
− g1)− (xg2

v2
− g2) = z

in the constraint set of G(U). We call G(U) the label-lifted instance1 of U .

The hope is that it is easier for Duplicator to win the k-pebble bijective game

on G(U1) and G(U2) than on the original pair U1 and U2, while at the same

time, applying G does not change how satisfiable an instance is. Formally,

for any s ∈ [0, 1], we say that an (unweighted) UniqueGames instance U is

s-satisfiable if there is some assignment of variables satisfying at least an

s-fraction of the constraints of U . We say that the satisfiability of U is the

maximum s such that U is s-satisfiable.

Lemma 4.1.1. For any GroupUniqueGames instance U , the satisfiability of

G(U) is the same as the satisfiability of U .

Proof sketch. If xv is an assignment2 satisfying at least an s fraction of the

constraints of U , then it is not too hard to see that the assignment xgv := xv+g

satisfies at least an s fraction of the constraints of G(U). For the other

direction, given an assignment xgv satisfying an s-fraction of the constraints

of G(U), we argue that there exists some mapping f : V → A such that

an s-fraction of the constraints between the variables {xf(v)
v | v ∈ V } are

satisfied. It is then shown that the assignment xv := x
f(v)
v − f(v) satisfies at

least an s-fraction of the constraints of U . See Appendix B for the details.

1This construction is similar to the label-extended graph of a UniqueGames instance (see,
for example, [23, 24]), but it is not the same thing. The label extended-graph is obtained
by taking all of the edges with identity constraints in the label-lifted instance.

2We sometimes use a symbol like xv or xg
v to denote a specific variable, and sometimes

to denote the value assigned to that variable. When v is unspecified, as it is here, we mean
a function assigning a value to each variable. Throughout this chapter, it should be clear
from context which of the three meanings we intend.

37

4.2 The case of k = 2

We are now able to prove the FPC-UGC (Conjecture 3.3.2) in the special

case where µ(φ) = 2. In fact, the result is slightly stronger because it holds

even for ε = 0.

Theorem 4.2.1. For all δ > 0, there exists an integer q such that there is

no sentence φ of FPC such that µ(φ) = 2 and, for all τUG(q) structures A,

(1) if A is completely satisfiable, then A |= φ, and

(2) if A is not δ-satisfiable, then A 6|= φ.

Proof. Let δ be given, and suppose toward a contradiction that there did ex-

ist some sentence φ satisfying (1) and (2). Let U2 be any GroupUniqueGames

defined over an underlying graph G that is simple such that U2 is not δ-

satisfiable (see Appendix A). We then define U1 to be the GroupUniqueGames

instance obtained by turning all of the constraints in U2 into identity con-

straints (so U1 is completely satisfiable). We claim that G(U1) ≡C2 G(U2).

To prove this, let the variable sets of U1 and U2 be

{xv | v ∈ V },

so that the variable sets of G(U1) and G(U2) are

X = {xgv | v ∈ V, g ∈ A},

as in the definition of the label-lifted instance. Duplicator’s strategy in the

2-pebble bijective game is to always give a bijection f : X → X (from the

universe of G(U1) to the universe of G(U2)) with the following property:

For all v ∈ V , there exists g∗(v) ∈ A such that f(xgv) ≡ xg+g
∗(v)

v . (4.1)

So, in any given round, Duplicator’s bijection is completely determined by a

map g∗ : V → A.

38

If there are no pebbles on the board when duplicator is giving a bijection,

then Duplicator can choose any g∗. Otherwise, suppose that one pebble pair

is on xg1
v0

in the universe of U1 and the corresponding pebble is on xg2
v0

in the

universe of U2 (it must be the same v0 for both elements, since we may assume

inductively all of Duplicator’s previous bijections satisfied (4.1)). Then, for

any v ∈ V , we define

g∗(v) :=


g2 − g1 if v = v0

g2 − g1 − g3 if xv − xv0 = g3 is an equation in U2

anything otherwise

Note that the middle case is uniquely defined and disjoint from the first

case since G has no multiple edges or self-loops. The bijection f : X → X

determined by g∗ is valid because it respects the pebble pair which is already

placed:

f(xg1
v0

) = xg1+g∗(v0)
v0

= xg1+(g2−g1)
v0

= xg2
v0
.

Suppose that Spoiler places the second pair of pebbles on some arbitrary

(xgv, f(xgv)). The only way Spoiler could win at this step in the game is if

there was some equation between xgv and xg1
v0

in G(U1) with no matching

equation between f(xgv) and xg2
v0

, or vice versa. Such an equation can only

exist in either graph if v and v0 are neighbours, in which case g∗(v) is defined

according to the middle case, implying that, for any g3 ∈ A,

xv − xv0 = g3 is an equation in U2 ⇐⇒ g∗(v) = g2 − g1 − g3.

39

Therefore, for any arbitrary group element g4 ∈ A,

xgv − xg1
v0

= g4 is an equation in G(U1)

⇐⇒ (xgv − g)− (xg1
v0
− g1) = g4 − g + g1 is an equation in G(U1)

⇐⇒ xv − xv0 = g4 − g + g1 is an equation in U1

⇐⇒ g4 − g + g1 = 0

⇐⇒ g∗(v) = g2 − g1 − (g4 − g − g∗(v) + g2)

⇐⇒ xv − xv0 = (g4 − g − g∗(v) + g2) is an equation in U2

⇐⇒ (xg+g
∗(v)

v − g − g∗(v))− (xg2
v0
− g2)

= g4 − g − g∗(v) + g2 is an equation in G(U2)

⇐⇒ xg+g
∗(v)

v − xg2
v0

= g4 is an equation in G(U2)

⇐⇒ f(xgv)− xg2
v0

= g4 is an equation in G(U2),

so Spoiler is unable to reveal a difference between the two structures. Since

Spoiler can never win, Duplicator wins, and hence G(U1) ≡C2 G(U2). How-

ever, by Lemma 4.1.1, G(U1) must satisfy φ since it is completely satisfiable,

while G(U2) must not satisfy φ since it is not δ-satisfiable. As µ(φ) = 2,

this contradicts the fact that G(U1) ≡C2 G(U2); hence, no such sentence φ

exists.

This kind of argument is used several more times throughout this chapter,

with slight variation. The meta-theorem is that, for every constraint in U

which is satisfied by g∗, the corresponding function f is a partial isomorphism

over all of the corresponding constraints in G(U). We do not state this as a

formal theorem because there are some technicalities involved when we as-

cribe a different meaning to the word “satisfied” in later sections.

40

4.3 FPC-inexpressibility of solving UniqueGames

exactly

Starting at k = 3, we run into trouble in proving FPC-inapproximability

bounds, due to the following fact:

Proposition 4.3.1. For any positive integer q, there is a sentence φ of LFP,

where µ(φ) = 3, expressing the property that a UG(q) instance (encoded as a

τUG(q)-structure) is completely satisfiable.

Proof. See Appendix C.

Since LFP is a restriction of FPC, it is therefore impossible to prove a result

along the lines of Theorem 4.2.1 if µ(φ) ≥ 3. However, even though it is

possible to determine in FPC whether an instance is completely satisfiable,

we now prove that, in the case where the input is not completely satisfiable,

it is impossible to determine in FPC what the optimal value actually is.

This result is, in a way, superseded by that of Section 4.4, but the construc-

tion is interesting in its own right, and serves as a motivation for the more

complicated construction in the latter proof.

Fix a positive integer k. We exhibit a pair of τUG(q)-structures, Ak and Bk,
such that Ak has a strictly greater optimal value than Bk, but Ak ≡Ck Bk.
Let H = Hk be a simple graph satisfying the following four properties:

(1) H is connected.

(2) H is 3-regular.

(3) H is bipartite.

(4) The robber player wins the (k − 1)-cop edge-robber game3, as defined

below.

3There is a vast literature on so called Cops and Robbers games, in which a team of
cops is trying to catch a robber on a graph. See [25] for a survey. The author is unaware
if this particular variant has already been studied.

41

The k-cop edge-robber game played on a connected graph H:

There are k cops, controlled by the cop player, which may be placed

on vertices of H; and 1 robber, controlled by the robber player, which

may be placed on edges of H. The robber is initially placed on an

arbitrary edge in H, and the cops are initially not placed anywhere.

The cop player and robber player take turns, starting with the robber

player. On the robber player’s turn, the robber player may move the

robber along any path of edges in H that is unobstructed by a cop. On

the cop player’s turn, the cop player may move one cop to any vertex

of the graph without restriction. The cop player wins if the cops can

capture the robber on an edge {u, v}, meaning surround it with cops

on both vertices u and v. The robber player wins by infinitely evading

capture.

It is not too hard to show that such graphs exist; see Appendix D for details.

Similarly as done by Atserias, Bulatov and Dawar [16, Lemma 3], we use the

robber player’s winning strategy on the (k−1)-cop edge-robber game played

on H as part of Duplicator’s strategy in the k-pebble bijective game on Ak

and Bk.

The UniqueGames instances we construct are GroupUniqueGames instances

using the Klein four-group as A. For convenience, we denote the underlying

set of A by {e, a, b, c} where e is the identity element. Then group addition

is completely defined by the rules that

a+ a = b+ b = c+ c = e,

and adding any two distinct elements from {a, b, c} yields the third element.

It is well known [26] that any d-regular bipartite graph always has a perfect

matching, and thus by induction, that the edge set decomposes into a disjoint

union of d perfect matchings. Choose such a decomposition for H and assign

each of the 3 matchings to a distinct element of the set {a, b, c}. Let m :

E(H)→ A be the map the sends each edge to the element of A assigned to

the matching containing that edge. In other words, m labels each edge with

42

either a, b or c such that every vertex is incident to three edges that each

have a different label.

Define a GroupUniqueGames instance U1 with group A and variable set

{xv | v ∈ V (H)}.

For every edge {v1, v2} ∈ E(H) we have two constraints: xv1 + xv2 = e and

xv1 + xv2 = m({v1, v2}). From U1, define another instance U2 by choosing

an edge {v∗1, v∗2} such that m({v∗1, v∗2}) = a, and redefining the constraints

involving that edge to be xv1 + xv2 = b and xv1 + xv2 = c. See Figure 4.1 for

an example where H := K4.

Figure 4.1: One possible construction for the GroupUniqueGames instances
U1 and U2 using the graph H := K4, where {v∗1, v∗2} := {v3, v4}.

As in the proof of Theorem 4.2.1, our pair of indistinguishable structures are

Ak := G(U1) and Bk := G(U2).

Lemma 4.3.2. The satisfiability of U1 (and thus of G(U1)) is 1
2
.

Proof. Clearly, no more than 1
2

of the constraints of U1 can be satisfied, since

the constraints come in inconsistent pairs: if one is satisfied, the other must

not be satisfied. The assignment xv := e attains this bound of 1
2

by satisfying

43

the constraint xv1 +xv2 = e in each pair. The claim about G(U1) follows from

Lemma 4.1.1.

Lemma 4.3.3. The satisfiability of U2 (and thus of G(U2)) is strictly less

than 1
2
.

Proof sketch. This follows from a parity argument, considering how the num-

ber of satisfied constraints changes with respect to individual changes in an

assignment of variables. See Appendix E for the details.

Lemma 4.3.4. G(U1) ≡Ck G(U2).

Proof. While playing the k-pebble bijective game on G(U1) and G(U2), Du-

plicator simultaneously plays the (k− 1)-cop edge-robber game on graph H,

making use of the robber player’s winning strategy to hide the edge where

G(U1) and G(U2) differ. Initially, this edge is r0 := {v∗1, v∗2}.

Every time Duplicator needs to give a bijection between the two universes,

Duplicator first updates the positions of the cops on H to be

{v ∈ V (H) | there is a pebble pair on (xg1
v , x

g2
v) for some g1, g2 ∈ A}.

Note that, since the previous round, Spoiler has placed one pebble pair down

and picked up another, so there are at most k − 1 cops, at most one of

which has moved from the previous turn. This constitutes a valid move

of the cop player, so there must exist a winning response from the robber

player. So suppose that, on the ith round, this winning strategy dictates that

the robber be moved from edge ri−1 to edge ri, through a path of vertices

p0, p1,p2, . . . ,p`, p`+1, where ri−1 = {p0, p1} and ri = {p`, p`+1} (so if the

robber does not move, then ` = 0). For each j ∈ [`], let ej be the unique

edge incident to pj which is not part of the path, as shown in Figure 4.2.

44

Figure 4.2: The path in H from the robber’s old location at edge ri−1 to its
new location at edge ri.

As in the proof of Theorem 4.2.1, on round i of the k-pebble bijective game,

Duplicator gives a bijection fi of the form

fi(x
g
v) := xg+g

∗(i,v)
v .

Define g∗(0, v) := e for all v. On every round i (the ith time Duplicator is

giving a bijection), Duplicator’s strategy is to set

g∗(i, v) :=

g∗(i− 1, v) +m(ej) if v = pj ∈ {p1,p2, . . . ,p`}

g∗(i− 1, v) otherwise
,

where pj and ej are determined by the robber’s move on round i as described

in the previous paragraph. Note that the only vertices for which the bijection

is different from the bijection in the previous round are those involving the

vertices in {p1,p2, . . . ,p`}. Since the robber’s move is valid, none of these

vertices are occupied by a cop, and hence none of these variables are pebbled.

Thus, the bijection fi is valid (assuming inductively that the bijection from

the previous round fi−1 was valid).

All that remains to prove is that Spoiler cannot expose a difference between

G(U1) and G(U2). This follows from the following stronger claim, which we

prove by induction on i:

45

Lemma 4.3.5. For all i ≥ 0, for all g ∈ A, for all variables xg1
v1

and xg2
v2

:

(1) If {v1, v2} 6= ri, there is a constraint xg1
v1

+ xg2
v2

= g in G(U1) if and only

if there is a constraint fi(x
g1
v1

) + fi(x
g2
v2

) = g in G(U2).

(2) If {v1, v2} = ri, there is a constraint xg1
v1

+ xg2
v2

= g in G(U1) if and only

if there is not a constraint fi(x
g1
v1

) + fi(x
g2
v2

) = g in G(U2).

To see how this implies that Spoiler never wins, suppose to the contrary

that there was a constraint between two pebbled elements xg1
v1

and xg2
v2

in one

structure with no matching constraint between the corresponding elements

in the other structure. Lemma 4.3.5 says that fi is a partial isomorphism

everywhere except around the edge ri, so the only way this can happen is if

{v1, v2} = ri. But this means that the cops have trapped the robber, which

is a contradiction.

The full proof of Lemma 4.3.5 is rather tedious, and hence is relegated to

Appendix F. Instead, let us work through the example from Figure 4.1.

The robber player has a winning strategy in the 2-cop edge-robber game on

H = K4 by always moving to an edge between 2 vertices which do not have

cops on them, so Duplicator should be able to win the 3-pebble bijective

game played on G(U1) and G(U2).

Initially, the robber is on the edge r0 = {v3, v4} ∈ E(H); this is the only

edge where U1 differs from U2, and hence the only place where Spoiler could

potentially expose a difference between G(U1) and G(U2). As Spoiler is about

to place its first pebble, there is no reason for the robber to move, so Du-

plicator gives the identity bijection, corresponding to g∗(1, v) ≡ e. Suppose

Spoiler places the first pebble pair on xg1
v1

in both instances for some g1 ∈ A.

Accordingly, Duplicator places a cop on v1. As there is still no movement

required from the robber, Duplicator again gives the identity bijection. Now

suppose Spoiler places the second pebble pair on xg4
v4

in both instances for

some g4 ∈ A. After Duplicator places a corresponding cop on v4, the win-

ning strategy for the robber player requires the robber to move through v3

to {v2, v3}, as illustrated in Figure 4.3.

46

Figure 4.3: The first necessary move of the robber.

Therefore, according to Duplicator’s strategy, after Spoiler picks up the third

pebble pair, Duplicator updates

g∗(3, v3) := m(v1, v3) = b.

Why does Lemma 4.3.5 still hold? Let us verify that it holds for a particular

pair of variables, xev1
and xev3

. The main idea is that permuting the variables

involving v3 by adding b does not change the set of equations between v1

variables and v3 variables, so if Lemma 4.3.5 held in round 2, it will still hold

in round 3. We initially have the equations

xev1
+ xev3

= e and xev1
+ xev3

= b

in G(U1), and correspondingly,

xev1

=

f2(xev1
)

+ xev3

=

f2(xev3
)

= e and xev1

=

f2(xev1
)

+ xev3

=

f2(xev3
)

= b

47

in G(U2). After updating g∗, f3(xev3
) = xbv3

, in which case the pair of equations

between the G(U2) variables becomes

xev1
+ xbv3

= b and xev1
+ xbv3

= b+ b,

which is the same set of equations as between xev1
and xev3

in G(U1) (since

b + b = e), so Lemma 4.3.5 is still satisfied for xev1
and xev3

. The other cases

follow by similar reasoning. Crucially, Lemma 4.3.5 tells us that the bijection

f3 now preserves the constraints involving the bottom edge {v3, v4} (one can

check that f2 does not have this property), so even if the third pebble pair

is placed on variables involving v3, Spoiler still does not win.

Putting together Lemmas 4.3.2, 4.3.3 and 4.3.4, we have the following result.

Theorem 4.3.6. For any q ≥ 4, there is no sentence of FPC expressing

the property that at least half of the constraints of a τUG(q) structure are

satisfiable (and hence no FPC-definable algorithm returning the exact satis-

fiability). This holds even when restricting to GroupUniqueGames instances

using the Klein four-group defined over an underlying graph that is 6-regular

and bipartite.

4.4 FPC-inapproximability of UniqueGames

We now generalize the construction from Section 4.3 to show that UniqueGames

is inapproximable to within any constant factor in FPC. Specifically, we show

a (1
2`
, α

2`
) inapproximability gap for UG(2m) for arbitrarily small α, where m

and ` are both O(log(1
α

)).

Let us begin with a high-level overview of how the construction presented

in this section compares with that of Section 4.3. In that construction, the

instances U1 and U2 use the Klein four-group, which is the additive part of

F2
2, the 2-dimensional vector space over the finite field with 2 elements. Each

pair of constraints (henceforth bundle of constraints) between each pair of

48

vertices gives Duplicator a choice when defining the bijection f between the

universes of G(U1) and G(U2): given the value of g∗(v1) there are always 2

choices of g∗(v2) which satisfy at least one of the constraints of the bundle

between v1 and v2, which is useful, since satisfying a bundle makes f locally

consistent with the corresponding relations of the two structures (meaning

that it preserves constraints involving v1 and v2). Furthermore, these choices

can be concatenated so that there are 4 ways to satisfy at least one constraint

from each bundle along a path of length 2. Since F2
2 only has 4 elements,

this means that any path of length 2 can be made locally consistent given

the values of its two endpoints, i.e., Duplicator can always find a value for

g∗(u) satisfying the bundles between u and v1, and between u and v2, given

arbitrary values for g∗(v1) and g∗(v2). The construction presented in this

section replaces F2
2 with Fm2 , with a bundle of 2` constraints between every

pair of vertices, for suitably large integers 0 < ` < m. A key difference

is that it is no longer possible to make an arbitrary path of length 2 locally

consistent. However, we are able to show that there exists some r such that it

is possible to make any path of length r locally consistent (see Lemma 4.4.4).

This allows Duplicator to win as long as the base graph H has suitably high

girth.

Formally, we begin by fixing constants ε, γ ∈ (0, 1
2
), e.g., they might as well

just be defined as 1
4
. Let α ∈ (0, 1] be given; the goal is to show that there is

no FPC-definable α-approximation algorithm for UniqueGames. First, choose

a positive integer d (the degree of every vertex in H) large enough so that

d ≥ 16

α2
(ln(d) + 2 + ln(2)− ln(ε)) , (4.2)

d >
4

(1− 2γ)α
. (4.3)

(Note that (4.3) automatically follows from (4.2) for γ := 1
4
.) Next, define

the integers ` and m to be

` := dlog2(d) + 2 log2(e)e , (4.4)

49

(where e = 2.718 . . . is the base of the natural logarithm)

m :=

⌈
`− log2

((
1

2
− γ
)
α− 2

d

)⌉
. (4.5)

Note that the logarithm in (4.5) is well-defined because of (4.3) and the fact

that γ < 1
2
. Finally, define the integer r to be

r := dm ln(2)− ln(γ)e . (4.6)

For any k, let H̃ = H̃k be any4 d-regular simple graph of girth at least

(k + 1)2r. For every edge {v1, v2} ∈ E(H̃), independently choose a uni-

formly random vector b(v1, v2) = b(v2, v1) ∈ Fm2 and a uniformly random

`-dimensional subspace5 Z(v1, v2) = Z(v2, v1) ⊆ Fm2 . Say that an edge

e ∈ E(H̃) is good if, for all paths v0, v1,v2, . . . ,vr of length r passing through

e, the set ⋃
i∈[r]

Z(vi−1, vi)

spans Fm2 . Edges of H̃ which are not good edges are called bad edges.

Lemma 4.4.1. With probability at least 1
2
, at most a γ fraction of the edges

of H̃ are bad edges.

Proof. See Appendix G.

Let H = Hk be the graph with vertex set V (H) := V (H̃) and edge set

E(H) := {e ∈ E(H̃) | e is a good edge}.

We define Group Unique Games instances U1, Ũ1, U2 and Ũ2 using the addi-

4Regular graphs of arbitrarily high girth and degree are known to exist; see Lazebnik,
Ustimenko and Woldar [27], for example.

5What this means is, randomly choose a set of ` linearly independent vectors and take
the span. Choose the first vector uniformly at random from Fm

2 \ {0}, then choose each
subsequent vector uniformly at random from the subset of Fm

2 which is not in the span of
the previously chosen vectors.

50

tive group structure on Fm2 . The variable sets of all four instances are

{xv | v ∈ V (H)}.

For every edge {v1, v2} ∈ E(H̃), Ũ1 and Ũ2 have 2` constraints between the

corresponding variables. In Ũ1, the constraints are

{xv1 − xv2 = z | z ∈ Z(v1, v2)},

whereas in Ũ2, the constraints are

{xv1 − xv2 = z + b(v1, v2) | z ∈ Z(v1, v2)}.

Finally, U1 and U2 are obtained from Ũ1 and Ũ2 by removing all constraints

on pairs of variables corresponding to bad edges, i.e., with constraints defined

in the exact same way as Ũ1 and Ũ2, but only for edges {v1, v2} ∈ E(H).

Lemma 4.4.2. The satisfiability of U1 (and thus of G(U1)) is 1
2`

.

Proof. As in the proof of Lemma 4.3.2, at most one constraint can be satisfied

from each bundle, so the total satisfiability is at most 1
2`

. The assignment

xgv := g attains this bound by satisfying the z = 0 constraint in each bundle

(every subspace Z(v1, v2) must contain z = 0).

Lemma 4.4.3. With probability at least 1
2
− ε, the satisfiability of U2 (and

thus of G(U2)) is less than α
2`

.

Proof sketch. The main idea is that, since very few edges are bad edges by

Lemma 4.4.1, the satisfiability of Ũ2 closely approximates the satisfiability of

U2. Since Ũ2 is sufficiently dense and the constraints are random, it is highly

unlikely that there is any assignment satisfying significantly more constraints

than a random assignment. See Appendix H for the details.

51

Lemma 4.4.4. Let p = v0, v1,v2, . . . ,vn be a path in H of length n ≥ r. Given

any values in Fm2 for g∗(v0) and g∗(vn), it is possible to extend g∗ to all of

the intermediate vertices of p so that the map f(xgv) := x
g+g∗(v)
v is a partial

isomorphism between G(U1) and G(U2) over the set {xgv | v ∈ p, g ∈ Fm2 }.

Proof sketch. If f is a partial isomorphism, we can add any vector z ∈
Z(vi−1, vi) to g∗(vi−1) or g∗(vi) and f will still preserve the constraints in-

volving vi−1 and vi. Since all edges are good, the set of all such vectors z

in each subspace along p spans Fm2 , we can add vectors at the appropriate

places in the path to obtain any desired difference between g∗(v0) and g∗(vn).

See Appendix I for the details.

Lemma 4.4.5. G(U1) ≡Ck G(U2).

Proof. It is without loss of generality to assume H is connected, for otherwise

Duplicator can apply the strategy presented here on each connected compo-

nent separately. On every round i of the k-pebble bijective game played on

G(U1) and G(U2), for any u ∈ V (H), let Ti(u) be a minimal tree containing

u and all pebbled vertices of H (that is, vertices v ∈ V (H) such that some

variable xgv is pebbled in one of the two structures) just after Spoiler has

picked up a pebble. Let Pi(u) denote the set of all of the vertices in Ti(u)

which have degree at least 3 or contain a pebbled vertex, also including u.

Define Ti := Ti(u
∗
i) and Pi := Pi(u

∗
i), where u∗i is the new vertex pebbled in

round i. Finally, define the forest Fi(u) to be the subgraph of Ti(u) \ Ti−1

(what this notation means is, remove all edges in Ti−1 from Ti(u), then re-

move isolated vertices) consisting of all segments in Ti(u) between vertices in

Pi(u)∪V (Ti−1) which have length less than r. See Figure 4.4 for an example.

52

Figure 4.4: The tree consisting of all vertices and edges in the figure is Ti(u).
This is a minimal tree that includes all pebbled vertices, which are filled
in red, and vertex u, which is near the top left corner. The green dashed
line outlines the boundary of Ti−1 (not all vertices and edges of this tree are
shown, just those that intersect Ti(u)). Assuming that r = 3 (which is not
nearly large enough for this many pebbles; this is just for the purpose of
illustration), the forest Fi(u) is as depicted in blue, consisting of the lettered
vertices A through H and all of the edges between those vertices.

We need the following lemma, which is proved in Appendix J. The proof

uses the fact that H has girth at least (k + 1)2r.

Lemma 4.4.6. On any round i, for any vertex u ∈ V (H), there does not

exist any path contained in Fi(u) with both endpoints in Ti−1.

Let Xi(u) denote the variable set of G(U1) and G(U2) restricted to Ti(u),

Xi(u) := {xgv | v ∈ Ti(u), g ∈ Fm2 }.

53

On each round i, Duplicator’s strategy is to define functions

g∗(i, u, ·) : V (Ti(u))→ Fm2

for each u ∈ V (H), satisfying the following two properties:

(1) For any pebbled vertex v ∈ V (H), g∗(i, u, v) = g∗(i− 1, u∗i−1, v).

(2) The map fi,u : Xi(u)→ Xi(u) defined by

fi,u(x
g
v) := xg+g

∗(i,u,v)
v

gives a partial isomorphism between G(U1) and G(U2).

Duplicator then presents Spoiler with the bijection

fi(x
g
v) := xg+g

∗(i,v,v)
v ,

which is valid by property (1). No matter which vertex u∗i Spoiler chooses,

the map fi,u∗i agrees with fi over u∗i , so we know that fi,u∗i respects all pebble

pairs since fi does. Therefore, since the edge between any pair of adjacent

pebbled vertices of H must be in Ti (by applying Lemma 4.4.6 to round i+1),

Spoiler cannot win, as the map sending each pebbled element in the universe

of G(U1) to the correspondingly-pebbled element of G(U2) is a restriction of

fi,u∗i , which is a partial isomorphism by property (2).

All that remains is to show how Duplicator can satisfy properties (1) and

(2) on each round i, assuming inductively that they are satisfied on round

i − 1. Fix a vertex u ∈ V (G). Duplicator defines g∗(i, u, ·) in three steps:

first over V (Ti(u))∩V (Ti−1), then over V (Fi(u)) \V (Ti−1), then finally, over

the remaining vertices (V (Ti(u)) \ V (Ti−1)) \ V (Fi(u)).

Over V (Ti(u)) ∩ V (Ti−1), Duplicator simply sets

g∗(i, u, v) := g∗(i− 1, u∗i−1, v),

which is well-defined over V (Ti−1) and clearly satisfies both properties (1) and

54

(2), inductively assuming that g∗(i− 1, u∗i−1, ·) did. Since V (Ti(u))∩V (Ti−1)

contains all pebbled vertices, we no longer have to worry about property (1);

we just have to define g∗(i, u, ·) on the remainder of V (Ti(u)) so that property

(2) is satisfied.

Duplicator then uses the following algorithm to define g∗(i, u, ·) over V (Fi(u))\
V (Ti−1):

while true do
if there exists {v1, v2} ∈ E(Fi(u)) such that g∗(i, u, v1) is defined but
g∗(i, u, v2) is not defined then

g∗(i, u, v2)← g∗(i, u, v1) + b(v1, v2)
else if there exists v ∈ V (Fi(u)) such that g∗(i, u, v) is not defined then

g∗(i, u, v)← anything
else

return
end

end

Observe that the constraints involving each edge in Fi(u) considered in the

first case are preserved by fi,u: for all g1, g2, z ∈ Fm2 ,

xg1
v1
− xg2

v2
= z is an equation in G(U1)

⇐⇒ (xv1 + g1)− (xv2 + g2) = z is an equation in U1

⇐⇒ (xv1 + g1)− (xv2 + g2) = z + b(v1, v2) is an equation in U2

⇐⇒ (xv1 + g1 + g∗(i, u, v1))

−(xv2 + g2 + g∗(i, u, v1) + b(v1, v2)) = z is an equation in U2

⇐⇒ xg1+g∗(i,u,v1)
v1

− xg2+g∗(i,u,v1)+b(v1,v2)
v2

= z is an equation in G(U2)

⇐⇒ xg1+g∗(i,u,v1)
v1

− xg2+g∗(i,u,v2)
v2

= z is an equation in G(U2)

⇐⇒ fi,u(x
g1
v1

)− fi,u(xg2
v2

) = z is an equation in G(U2).

For example, if Fi(u) is as in Figure 4.4, then the first iteration of the algo-

rithm would define g∗(i, u, B) so that the constraints involving A and B are

consistent under fi,u. The next iteration would then define g∗(i, u, C) so that

55

the constraints involving B and C are consistent. Similarly, the next two

iterations would set g∗(i, u,D) and g∗(i, u, E) (these could happen in either

order). On the fifth iteration, we would hit the second case of the algorithm

and set one of g∗(i, u, F), g∗(i, u,G) or g∗(i, u,H) arbitrarily. The final two

iterations would set the other two values according to the first case.

Since the edges encountered in the first case are always made consistent, the

only way that fi,u could fail to be a partial isomorphism over Fi(u) is if, at

some iteration, there were two different edges satisfying the condition in the

first case. Since Fi(u) is a forest, the only way that this could happen is if

some connected component of Fi(u) had two distinct vertices v1 and v2 on

which g∗(i, u, ·) was already defined before the algorithm started, which can

only happen if v1, v2 ∈ V (Ti−1). But this means that there is a path in Fi(u)

from v1 to v2 that violates Lemma 4.4.6. Thus, property (2) is still satisfied.

At this point, the only remaining edges of Ti(u) which Duplicator needs to

worry about are those which are in Ti(u) \ Ti−1 but are not in Fi(u). By the

definition of Fi(u), this consists of paths of length at least r, each with a

disjoint set of intermediate vertices. Since g∗(i, u, ·) has not yet been defined

on any of the intermediate vertices, Duplicator can apply Lemma 4.4.4 to

each one separately. Thus, (2) is satisfied over the entirety of Xi(u).

Putting these lemmas together, we can now prove the main result of this

chapter.

Theorem 4.4.7. For any constant α > 0, there exists a positive integer q =

O(1
α2 log(1

α
)) such that there is no FPC-definable α-approximation algorithm

for UG(q). This holds even when restricting to GroupUniqueGames instances.

Proof. Suppose toward a contradiction that there was an FPC-definable α-

approximation algorithm for UG(q), i.e., an FPC-interpretation Θ of τQ in

τUG(q). Let k := µ(Θ). Then fix γ := ε := 1
4

and use the construction defined

in this section to pick a sufficiently high integer m. Let q := 2m (see Appendix

K for a derivation of the bound on q). It follows from Lemmas 4.4.2, 4.4.3 and

4.4.5 that, with probability at least 1
2
− ε = 1

4
, this construction succeeds in

56

producing a pair of Ck-equivalent τUG(q)-structures, G(U1) and G(U2) (which

are, in fact, GroupUniqueGames instances), whose optimal values differ by a

factor of α. Specifically, when the construction succeeds, the optimal value of

G(U1) is n
2`

and the optimal value of G(U2) is strictly less than αn
2`

, where n is

the total number of constraints. Since the probability of success is nonzero,

there is some pair of structures produced by this construction satisfying

those properties. As G(U1) ≡Ck G(U2), Θ must yield the same value x ∈ Q
on both instances. Since Θ gives an α-approximation on G(U1), we have

α · n
2`
≤ x (recall the definition from Section 2.3). However, since Θ gives an

α-approximation on G(U2), we have x < αn
2`

. We have a contradiction, so no

such interpretation Θ exists.

57

Chapter 5

Conclusion

On the surface, the main takeaway from this thesis is, “Nothing is really dif-

ferent with regard to approximating CSPs when we restrict to FPC-definable

algorithms.” The best known approximation algorithms turn out to be FPC-

definable, and so are the reductions proving that these algorithms are opti-

mal. The status of UniqueGames remains a key missing piece of the puzzle,

yet while the existence of a (1 − ε, δ) inapproximability gap is unknown,

weaker bounds still hold.

However, there are some key respects in which the FPC-definability require-

ment makes reasoning about approximating CSPs quite different. First, the

need for a “rounding” algorithm to run in polynomial time completely dis-

appears. All that matters is the analysis of such an algorithm—specifically,

that it provides an elementary way of computing the optimal value, without

breaking the symmetry of the SDP solution matrix. Second, the method for

proving lower bounds is completely different, as we no longer rely on the as-

sumption that P 6= NP. It is so different that the fundamental problem which

is shown to be inexpressible in FPC, distinguishing G(U1) from G(U2) as de-

fined in Section 4.4, is not even NP-hard1. As such, there is hope that the

1To see this, observe that a given bundle of constraints in either structure is satisfiable
if and only if a certain system of m − ` linear equations over Fm

2 is solvable. In G(U1),
the union of all of these systems is completely satisfiable, while in G(U2), they are not, so
distinguishing G(U1) from G(U2) can be accomplished by Gaussian elimination.

59

technique used to prove Theorem 4.4.7 can be extended to eventually resolve

the FPC-UGC (Conjecture 3.3.2) before the ordinary UGC is resolved.

Besides the FPC-UGC, there are several interesting open FPC-approximability

questions which are not addressed by this work. Not all problems can be

phrased as CSPs in Raghavendra’s framework (for example, VertexCover,

TravelingSalesman), so the optimal FPC-approximabilities of these problems

are yet unknown.

60

Bibliography

[1] Albert Atserias and Anuj Dawar. Definable inapproximability: new
challenges for duplicator. J. Log. Comput., 29(8):1185–1210, 2019.

[2] Prasad Raghavendra. Approximating Np-Hard Problems Efficient Algo-
rithms and Their Limits. PhD thesis, University of Washington, USA,
2009. AAI3377316.

[3] Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound
on the number of variables for graph identification. In 30th Annual Sym-
posium on Foundations of Computer Science, Research Triangle Park,
North Carolina, USA, 30 October - 1 November 1989, pages 612–617,
1989.

[4] Sartaj Sahni and Teofilo F. Gonzalez. P-complete approximation prob-
lems. J. ACM, 23(3):555–565, 1976.

[5] Etienne De Klerk. Aspects of semidefinite programming: interior point
algorithms and selected applications, volume 65. Springer Science &
Business Media, 2006.

[6] Michel X. Goemans and David P. Williamson. Improved approximation
algorithms for maximum cut and satisfiability problems using semidefi-
nite programming. J. ACM, 42(6):1115–1145, 1995.

[7] Yurii E. Nesterov and Arkadii Nemirovskii. Interior-point polynomial
algorithms in convex programming, volume 13 of Siam studies in applied
mathematics. SIAM, 1994.

[8] Gene H. Golub and Charles F. Van Loan. Matrix Computations (3rd
Ed.). Johns Hopkins University Press, USA, 1996.

[9] Sanjeev Mahajan and H. Ramesh. Derandomizing approximation al-
gorithms based on semidefinite programming. SIAM J. Comput.,
28(5):1641–1663, 1999.

61

[10] Subhash Khot. On the unique games conjecture (invited survey). In Pro-
ceedings of the 25th Annual IEEE Conference on Computational Com-
plexity, CCC 2010, Cambridge, Massachusetts, USA, June 9-12, 2010,
pages 99–121, 2010.

[11] Subhash Khot, Dor Minzer, and Muli Safra. Pseudorandom sets in
grassmann graph have near-perfect expansion. In 59th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2018, Paris,
France, October 7-9, 2018, pages 592–601, 2018.

[12] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell.
Optimal inapproximability results for MAX-CUT and other 2-variable
csps? SIAM J. Comput., 37(1):319–357, 2007.

[13] Neil Immerman. Descriptive complexity. Graduate texts in computer
science. Springer, 1999.

[14] Neil Immerman. Relational queries computable in polynomial time. Inf.
Control., 68(1-3):86–104, 1986.

[15] Moshe Y. Vardi. The complexity of relational query languages (extended
abstract). In Proceedings of the 14th Annual ACM Symposium on Theory
of Computing, May 5-7, 1982, San Francisco, California, USA, pages
137–146, 1982.

[16] Albert Atserias, Andrei A. Bulatov, and Anuj Dawar. Affine sys-
tems of equations and counting infinitary logic. Theor. Comput. Sci.,
410(18):1666–1683, 2009.

[17] Matthew Anderson and Anuj Dawar. On symmetric circuits and fixed-
point logics. Theory Comput. Syst., 60(3):521–551, 2017.

[18] Anuj Dawar and Pengming Wang. Definability of semidefinite program-
ming and lasserre lower bounds for csps. In 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Ice-
land, June 20-23, 2017, pages 1–12, 2017.

[19] Martin Otto. Bounded variable logics and counting - a study in finite
models, volume 9 of Lecture Notes in Logic. Springer, 1997.

[20] Lauri Hella. Logical hierarchies in PTIME. Inf. Comput., 129(1):1–19,
1996.

[21] Bjarki Holm. Descriptive complexity of linear algebra. PhD thesis, Uni-
versity of Cambridge, UK, 2011.

62

[22] Subhash Khot and Oded Regev. Vertex cover might be hard to approx-
imate to within 2-epsilon. J. Comput. Syst. Sci., 74(3):335–349, 2008.

[23] Alexandra Kolla. Spectral algorithms for unique games. Comput. Com-
plex., 20(2):177–206, 2011.

[24] Joshua A. Grochow and Jamie Tucker-Foltz. Computational topology
and the unique games conjecture. In 34th International Symposium
on Computational Geometry, SoCG 2018, June 11-14, 2018, Budapest,
Hungary, pages 43:1–43:16, 2018.

[25] A. Bonato and R.J. Nowakowski. The Game of Cops and Robbers on
Graphs. Student mathematical library. American Mathematical Society,
2011.

[26] Dénes König. Gráfok és alkalmazásuk a determinánsok és a halmazok
elméletére. Matematikai és Természettudományi rteśıtö, 34:104–119.

[27] Felix Lazebnik, V. Ustimenko, and Andrew Woldar. A new series of
dense graphs of high girth. Bulletin of the American Mathematical So-
ciety, 32, 12 1994.

[28] André Arnold and Damian Niwinski. Rudiments of µ-calculus. Elsevier,
2001.

[29] Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2004.

[30] Henning Makholm. Whats the probability a subset of an f2

vector space is a spanning set? Mathematics Stack Exchange.
URL:https://math.stackexchange.com/q/171995 (version: 2012-07-17).

[31] J. Hefferon. Linear Algebra. Online access: Center for Open Education
Open Textbook Library. Orthogonal Publishing L3c, 2017.

[32] Alexandr V. Kostochka. The number of spanning trees in graphs with
given degree sequence. Random Struct. Algorithms, 6(2/3):269–274,
1995.

[33] Wassily Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58(301):13–
30, 1963.

63

Appendix

The purpose of this appendix is to give complete proofs of some of the more
technical results of Chapter 4 that were omitted due to space constraints.

A Highly unsatisfiable GroupUniqueGames construction

Here we show an explicit (e.g., not randomized) way to construct, for any
δ > 0, a GroupUniqueGames instance U2 such that the underlying graph is
simple and U2 is not δ-satisfiable, as required in the proof of Theorem 4.2.1.
Let n be the least integer greater than max{1, 2

δ
}, and let

m :=

(
n

2

)
=
n(n− 1)

2

We define U2 over the complete graph on n vertices using the additive group
structure on Fm2 , the m-dimensional vector space over the finite field with
2 elements. Let B be a basis of Fm2 . For every pair of distinct elements
u, v ∈ [n], assign a distinct basis element g(u, v) = g(v, u) ∈ B. For every
pair of distinct variables xu and xv, U2 has the equation xu − xv = g(u, v).
Consider a system of equations along any cycle in the underlying graph:

xv1 − xv2 = g(v1, v2)

xv2 − xv3 = g(v1, v2)

. . .

xv`−1
− xv` = g(v`−1, v`)

xv` − xv1 = g(v`, v1)

65

If all of these equations could be simultaneously satisfied by some assignment,
then, adding these equations together, the left-hand sides cancel, so we have

0 = g(v1, v2) + g(v1, v2) + · · ·+ g(v`−1, v`) + g(v`, v1).

This is impossible, since the fact that cycles have length at least 3 with no
repeated vertices implies that each term on the right-hand side is a distinct
basis element, so their sum cannot possibly be zero. Thus, no assignment can
satisfy any cycle of constraints, so at most a spanning tree of n−1 constraints
can be satisfied. Thus, the maximal satisfiability of U2 is

(n− 1)/

(
n

2

)
= (n− 1)/

(
n(n− 1)

2

)
=

2

n
< δ,

as desired.

B Proof of Lemma 4.1.1 (the label-lifted instance has
the same satisfiability)

Here we prove Lemma 4.1.1.

Lemma 4.1.1. For any GroupUniqueGames instance U , the satisfiability of
G(U) is the same as the satisfiability of U .

Proof. We begin by introducing some notation which is not used outside of
this proof. Suppose there are n variables in U , denoted xv1 , xv2 , . . . , xvn . For
every i, j ∈ [n], write c(i, j) for the number of constraints between variables
xvi and xvj , and enumerate them as

{xvi − xvj = zi,j,k | k ∈ [c(i, j)]}.

Let opt(·) denote the optimal value of a UniqueGames instance. In the context
of some fixed assignment of variables, for any constraint equation β let I(β)
be the function that evaluates to 1 if β is satisfied under the assignment and
0 if β is not satisfied.

Suppose there are q group elements. Since G(U) contains a factor of q2 more
constraints than U , to prove that U and G(U) have the same satisfiability,
we must show that

opt(U) =
1

q2
opt(G(U)).

66

For one direction, let xv be an assignment of variables attaining the optimum
satisfiability of U , i.e.,

opt(U) =
∑
i,j∈[n]

∑
k∈[c(i,j)]

I(xvi − xvj = zi,j,k).

From this, define an assignment of variables of G(U) by

xgv := xv + g.

Then the optimal value of G(U) is at least the number of constraints satisfied
by this assignment, i.e.,

opt(G(U)) ≥
∑
i,j∈[n]

∑
gi,gj∈A

∑
k∈[c(i,j)]

I((xgivi − gi)− (xgjvj − gj) = zi,j,k)

=
∑
i,j∈[n]

∑
gi,gj∈A

∑
k∈[c(i,j)]

I(((xvi + gi)− gi)

− ((xvj + gj)− gj) = zi,j,k)

=
∑
i,j∈[n]

∑
gi,gj∈A

∑
k∈[c(i,j)]

I(xvi − xvj = zi,j,k)

=
∑
i,j∈[n]

(q2)
∑

k∈[c(i,j)]

I(xvi − xvj = zi,j,k)

= q2opt(U).

Rearranging, we have

opt(U) ≤ 1

q2
opt(G(U)).

For the other direction, let xgv be an assignment of variables attaining the
optimum satisfiability of G(U). Then

opt(G(U)) =
∑
i,j∈[n]

∑
gi,gj∈A

∑
k∈[c(i,j)]

I((xgivi − gi)− (xgjvj − gj) = zi,j,k)

=
1

qn−2

∑
i,j∈[n]

∑
g1,g2,...,gn∈A

∑
k∈[c(i,j)]

I((xgivi − gi)− (xgjvj − gj) = zi,j,k),

since, for every fixed i, j ∈ [n], the term∑
k∈[c(i,j)]

I((xgivi − gi)− (xgjvj − gj) = zi,j,k)

67

is counted exactly qn−2 times. Rearranging the order of summation, we have

opt(G(U)) =
1

qn−2

∑
g1,g2,...,gn∈A

∑
i,j∈[n]

∑
k∈[c(i,j)]

I((xgivi − gi)− (xgjvj − gj) = zi,j,k)

(1)
Therefore, there must be some fixed g1,g2, . . . ,gn ∈ A such that∑

i,j∈[n]

∑
k∈[c(i,j)]

I((xgivi − gi)− (xgjvj − gj) = zi,j,k) ≥
1

q2
opt(G(U)), (2)

for otherwise, if all of the qn choices of g1,g2, . . . ,gn ∈ A failed to satisfy (2),
we could strictly upper-bound the right-hand side of (1) by

1

qn−2
(qn)

(
1

q2
opt(G(U))

)
= opt(G(U)),

contradicting (1). Using these fixed gi values, we define an assignment of
variables of U by

xvi := xgivi − gi.

It then follows that the optimal value of U is at least the number of con-
straints satisfied by this assignment, i.e.,

opt(U) ≥
∑
i,j∈[n]

∑
k∈[c(i,j)]

I(xvi − xvj = zi,j,k)

=
∑
i,j∈[n]

∑
k∈[c(i,j)]

I((xgivi − gi)− (xgjvj − gj) = zi,j,k)

≥ 1

q2
opt(G(U)) (by (2)),

as desired.

We remark that, with very slight modification, this argument also shows that
the G operator of Atserias and Dawar [1] preserves the exact satisfiability
of a 3XOR instance. In other words, part (2) of Lemma 3 of [1] can be
strengthened, and as a consequence, the third paragraph in the proof of
Lemma 4 of [1] is unnecessary.

68

C Proof of Proposition 4.3.1 (LFP sentence for UniqueGames
complete satisfiability)

Here we prove Proposition 4.3.1.

Proposition 4.3.1. For any positive integer q, there is a sentence φ of LFP,
where µ(φ) = 3, expressing the property that a UG(q) instance (encoded as a
τUG(q)-structure) is completely satisfiable.

Proof. For each fixed label i ∈ [q], we define q unary relations Ui,1, Ui,2, . . . , Ui,q,
parameterized by a free variable x, by simultaneous induction:

Ui,i(y) ⇐= (x = y)

Ui,j(y) ⇐= ∃x
∨

π:[q]→[q]

(
Pπ(y, x) ∧ Ui,π(j)(x)

)
Note that the “∃x” term creates a new variable x, different from the x in
the first line (this is done purely in an effort to reduce the total number of
variables). The meaning of Ui,j(y) is that, given x has label i, it is implied
by the constraints that y has label j. Thus, Ui,i(x) is defined to be true, and
whenever a constraint Pπ holds on a pair of elements (y, x) and we know
what the label of x must be, we inductively derive what the label of y must
be. We claim that the following sentence expresses the property that a UG(q)
instance is completely satisfiable:

φ ≡ ∀x
∨
i∈[q]

∧
j∈[q]
j 6=i

¬Ui,j(x)

If f is a satisfying assignment, then picking i = f(x) must satisfy the formula.
Conversely, if the formula is satisfied, one can obtain a satisfying assignment
by picking one x from each connected component of the underlying graph and
one satisfying witness i, then assigning labels to every y in that component
by taking the unique j such that Ui,j(y) holds. (It is not too hard to see
that the component being connected implies j exists, and the formula being
satisfied implies that j is unique).

Using the Bekic principle [28, Lemma 1.4.2; 29, Lemma 10.9], the simultane-
ous inductions can be nested within each other in a way that reuses variable
names, resulting in LFP formulas for each of the q relations, still using only
2 variables (x and y). Thus, φ can indeed be written as an LFP sentence of
only 2 variables. This can then be translated into a C3 sentence using [19,

69

Lemmas 1.28 and 1.29], so µ(φ) = 3. (The resulting sentence has one more
variable due to Lemma 1.28. Each unary relation in φ requires one variable
to be locally renamed.)

D Cops and robbers construction

Here we show how to construct a graph H = Hk satisfying the following four
properties stated in Section 4.3:

(1) H is connected.

(2) H is 3-regular.

(3) H is bipartite.

(4) The robber player wins the (k − 1)-cop edge-robber game.

Start with the complete graph on k vertices. Replace every vertex with a
cycle of 2(k − 1) vertices, and replace every edge with two “bridge” edges
joining distinct pairs of adjacent vertices in each cycle, as in Figure D.1.

Figure D.1: An example of the construction of H where k = 4. The bridge
edges are drawn in red.

70

It is easily verified that H is connected, 3-regular, and bipartite. The robber
player’s strategy is to always have the robber occupy one of the k cycles
without one of the k−1 cops in it. After a cop moves into the cycle occupied
by the robber, the robber moves around its cycle to one of the bridges to an
unoccupied cycle and crosses over. Since there is only one cop in the robber’s
cycle, it cannot block both bridges. Thus, the robber player can infinitely
avoid capture.

E Proof of Lemma 4.3.3 (soundness of U2)

Here we prove Lemma 4.3.3.

Lemma 4.3.3. The satisfiability of U2 (and thus of G(U2)) is strictly less
than 1

2
.

Proof. Suppose we have some assignment of variables and we change the
value of one of these variables, xv, by adding some group element g ∈ A to
it. Let u1, u2, u3 ∈ V (H) be the three neighbours of v in H. If v /∈ {v∗1, v∗2},
then the list of constraints involving xv (up to a relabeling of u1, u2 and u3)
is

xv + xu1 = e

xv + xu1 = a

xv + xu2 = e

xv + xu2 = b

xv + xu3 = e

xv + xu3 = c,

If g = e then nothing changes. Otherwise, without loss of generality, assume
g = a. After adding a to xv, if the value of xv + xu2 was in the set {e, a}, it
will still be in {e, a}, and if the value was not in {e, a}, then it will still not
be. Thus, after adding a to xv, the satisfiability of the first pair of equations
will remain the same. For the second pair of equations, if the value of xv+xu2

was in the set {e, b}, then after adding a the value will be in the set {a, c},
and vice versa. Thus, either one of these two equations will become satisfied
or one of these two equations will become unsatisfied; in other words, the
satisfiability will change by one. Similarly, for the second pair of equations,
if the value of xv+xu3 was in the set {e, c}, then after adding a the value will
be in the set {a, b}, and vice versa, so again, the satisfiability will change by

71

one. Thus, the total satisfiability of the 6 equations involving the variable
xv will either remain the same or change by 2.

On the other hand, in the special case where v ∈ {v∗1, v∗2}, the list of con-
straints involving xv (up to a relabeling of u1, u2 and u3) is

xv + xu1 = b

xv + xu1 = c

xv + xu2 = e

xv + xu2 = b

xv + xu3 = e

xv + xu3 = c.

If g = e then nothing changes. If g = a then the satisfiability of the first pair
of equations will remain the same (since adding a takes b to c and c to b),
and in the second and third pairs of equations the satisfiabilities will each
change by one, for a total change of 0 or 2, as in the previous case. If g = b
or g = c, one can analogously check that the satisfiability of the 6 equations
again changes by 0 or 2.

Thus, in all cases, changing xv by adding any group element g preserves the
parity of the number of constraints of U2 that are satisfied. There are a total
of 2 |E(H)| constraints between variables of U2, coming in inconsistent pairs.
Since the assignment xv := e satisfies exactly |E(H)|− 1 of these constraints
(one from every pair, except none from the pair between xv∗1 and xv∗2), and
every time a variable assignment is changed, the parity stays the same, no
assignment can satisfy exactly |E(H)| constraints. Thus, no assignment can
satisfy at least |E(H)| constraints, since that is the maximum number that
can possibly be satisfied.

F Proof of Lemma 4.3.5 (Duplicator’s invariant)

Here we prove Lemma 4.3.5. We begin by recording some easy but important
observations about these two instances.

Lemma F.1. The variable set of both G(U1) and G(U2) is

{xgv | v ∈ V (H), g ∈ A}.

In both instances, for every v1, v2 ∈ V (H), there exist distinct y1, y2 ∈ A such

72

that, for all g1, g2 ∈ A, the constraints between the pair of variables xg1
v1

and
xg2
v2

are of the form

xg1
v1

+ xg2
v2

= g1 + g2 + y1 and xg1
v1

+ xg2
v2

= g1 + g2 + y2,

where y1 + y2 = m({v1, v2}).

Proof. This follows from inspection of the definitions of U1 and U2 from
Section 4.3.

Now we can prove Lemma 4.3.5.

Lemma 4.3.5. For all i ≥ 0, for all g ∈ A, for all variables xg1
v1

and xg2
v2

:

(1) If {v1, v2} 6= ri, there is a constraint xg1
v1

+ xg2
v2

= g in G(U1) if and only
if there is a constraint fi(x

g1
v1

) + fi(x
g2
v2

) = g in G(U2).

(2) If {v1, v2} = ri, there is a constraint xg1
v1

+ xg2
v2

= g in G(U1) if and only
if there is not a constraint fi(x

g1
v1

) + fi(x
g2
v2

) = g in G(U2).

Proof. We proceed by induction on i. For the base case (i = 0), recall
that f0 is the identity map and r0 = {v∗1, v∗2}. Since G(U1) and G(U2) agree
everywhere except on the relations between variables involving the vertices of
r0, condition (1) holds. Between a pair of vertices xg1

v∗1
and xg2

v∗2
for g1, g2 ∈ A,

the constraints in G(U1) are

xg1

v∗1
+ xg2

v∗2
= g1 + g2 and xg1

v∗1
+ xg2

v∗2
= g1 + g2 + a,

while the corresponding constraints in G(U2) are

xg1

v∗1
+ xg2

v∗2
= g1 + g2 + b and xg1

v∗1
+ xg2

v∗2
= g1 + g2 + c.

Since g1 + g2, g1 + g2 +a, g1 + g2 + b and g1 + g2 + c are all distinct, condition
(2) holds as well.

Now fix some i ≥ 1 and suppose that (1) and (2) hold for i−1. If the robber
does not move, then fi = fi−1, so there is nothing to prove. So suppose that
the robber does move, i.e., ri 6= ri−1. To prove that fi satisfies (1) for an
arbitrary pair of vertices {v1, v2} 6= ri, there are three cases to consider. It
may be helpful for the reader to refer back to Figure 4.2 from Section 4.3.

Case 1: {v1, v2} = {p0, p1} = ri−1. Say that v1 = p0 and v2 = p1. Let
y1, y2, y2, y4 ∈ A be as in Lemma F.1, so that for each g1, g2 ∈ A, the two

73

constraints in G(U1) between xg1
v1

and xg2
v2

are

xg1
v1

+ xg2
v2

= g1 + g2 + y1 and xg1
v1

+ xg2
v2

= g1 + g2 + y2,

and the constraints in G(U2) between fi−1(xg1
v1

) and fi−1(xg2
v2

) are

fi−1(xg1
v1

) + fi−1(xg2
v2

) = g1 + g2 + y3

and fi−1(xg1
v1

) + fi−1(xg2
v2

) = g1 + g2 + y4.

Since (2) held for fi−1, it follows that the right-hand sides of all four equations
are all distinct, so A = {y1, y2, y3, y4}. From the group addition law in the
Klein four-group, it follows that y1 + y2 + y3 = y4. Since fi(x

g1
v1

) = fi−1(xg1
v1

)

and fi(x
g2
v2

) = fi−1(x
g2+m(e1)
v2), the two constraints in G(U2) between fi(x

g1
v1

)
and fi(x

g2
v2

) are

fi(x
g1
v1

) + fi(x
g2
v2

) = g1 + g2 +m(e1) + y3

and fi(x
g1
v1

) + fi(x
g2
v2

) = g1 + g2 +m(e1) + y4.

To show that these constraints are the same as those in G(U1), we must argue
that m(e1)+y3 and m(e1)+y4 are both in the set {y1, y2}. We give the proof
for m(e1) + y3; the proof for m(e1) + y4 is completely analogous. Suppose
first that m(e1) + y3 = y3. This is a contradiction because m never takes on
the value of the identity e ∈ A. Suppose instead that m(e1) + y3 = y4. This
implies that

m(e1) = y1 + y2 = m({v1, v2}),

where the second equality follows from Lemma F.1. This is a contradiction
since e1 and {v1, v2} are different edges incident to the same vertex p1, so they
must have different values under m. Thus, the only remaining possibilities
are that m(e1) + y3 = y1 or m(e1) + y3 = y2, as desired.

Case 2: {v1, v2} = {pi, pi+1} for 1 ≤ i < `. Say that v1 = pi and v2 = pi+1.
Let y1, y2, y2, y4 ∈ A be as in Lemma F.1, so that for each g1, g2 ∈ A, the two
constraints in G(U1) between xg1

v1
and xg2

v2
are

xg1
v1

+ xg2
v2

= g1 + g2 + y1 and xg1
v1

+ xg2
v2

= g1 + g2 + y2,

and the constraints in G(U2) between fi−1(xg1
v1

) and fi−1(xg2
v2

) are

fi−1(xg1
v1

) + fi−1(xg2
v2

) = g1 + g2 + y3

and fi−1(xg1
v1

) + fi−1(xg2
v2

) = g1 + g2 + y4.

74

Since (1) held for fi−1, it follows that {y1, y2} = {y3, y4}. As fi(x
g1
v1

) =

fi−1(x
g1+m(ei)
v1) and fi(x

g2
v2

) = fi−1(x
g2+m(ei+1)
v2), the two constraints in G(U2)

between fi(x
g1
v1

) and fi(x
g2
v2

) are

fi(x
g1
v1

) + fi(x
g2
v2

) = g1 + g2 +m(ei) +m(ei+1) + y3

and fi(x
g1
v1

) + fi(x
g2
v2

) = g1 + g2 +m(ei) +m(ei+1) + y4.

As in the previous case, we must show that m(ei)+m(ei+1)+y3 and m(ei)+
m(ei+1) + y4 are both in the set {y1, y2}. If m(ei) = m(ei+1), then they
cancel, and the result then follows from the fact that {y3, y4} = {y1, y2}.
Otherwise, they are distinct nontrivial elements of A, and since they both
share common vertices with the edge {v1, v2}, they are also distinct from the
nontrivial element m({v1, v2}). This means that

m(ei) +m(ei+1) = m({v1, v2}) = y3 + y4,

where the second equality follows from Lemma F.1. Therefore,

m(ei) +m(ei+1) + y3 = y3 + y3 + y4 = y4 ∈ {y3, y4} = {y1, y2},

and analogously,

m(ei) +m(ei+1) + y4 = y3 + y4 + y4 = y3 ∈ {y3, y4} = {y1, y2},

as desired.

Case 3: {v1, v2} is not on the path from ri−1 to ri (this is the case discussed
in the example from Section 4.3). The only other edges of H we have to
worry about are those which are incident to a vertex in H over which fi−1

and fi differ. These are precisely the edges ei, for i ∈ [r], so assume that
{v1, v2} = ei where v1 = pi. Again, let y1, y2, y2, y4 ∈ A be as in Lemma F.1,
so that for each g1, g2 ∈ A, the two constraints in G(U1) between xg1

v1
and xg2

v2

are

xg1
v1

+ xg2
v2

= g1 + g2 + y1 and xg1
v1

+ xg2
v2

= g1 + g2 + y2,

and the constraints in G(U2) between fi−1(xg1
v1

) and fi−1(xg2
v2

) are

fi−1(xg1
v1

) + fi−1(xg2
v2

) = g1 + g2 + y3

and fi−1(xg1
v1

) + fi−1(xg2
v2

) = g1 + g2 + y4.

Since (1) held for fi−1, it follows that {y1, y2} = {y3, y4}. Since fi(x
g1
v1

) =

75

fi−1(x
g1+m(ei)
v1) and fi(x

g2
v2

) = fi−1(xg2
v2

), the two constraints in G(U2) between
fi(x

g1
v1

) and fi(x
g2
v2

) are

fi(x
g1
v1

) + fi(x
g2
v2

) = g1 + g2 +m(ei) + y3

and fi(x
g1
v1

) + fi(x
g2
v2

) = g1 + g2 +m(ei) + y4.

As in the previous cases, we must show that m(ei) + y3 and m(ei) + y4 are
both in the set {y1, y2}. This follows from the fact that m(ei) = y3 + y4 by
Lemma F.1, so

{m(ei) + y3,m(ei) + y4} = {y3 + y4 + y3, y3 + y4 + y4} = {y4, y3} = {y1, y2}

as desired.

That concludes the proof of (1). To prove (2), let {v1, v2} = ri, where v1 = p`
and v2 = p`+1, and again let y1, y2, y2, y4 ∈ A be as in Lemma F.1, so that
for each g1, g2 ∈ G, the two constraints in G(U1) between xg1

v1
and xg2

v2
are

xg1
v1

+ xg2
v2

= g1 + g2 + y1 and xg1
v1

+ xg2
v2

= g1 + g2 + y2,

and the constraints in G(U2) between fi−1(xg1
v1

) and fi−1(xg2
v2

) are

fi−1(xg1
v1

) + fi−1(xg2
v2

) = g1 + g2 + y3

and fi−1(xg1
v1

) + fi−1(xg2
v2

) = g1 + g2 + y4.

Since (1) held for fi−1, it follows that {y1, y2} = {y3, y4}. Since fi(x
g1
v1

) =

fi−1(x
g1+m(e`)
v1) and fi(x

g2
v2

) = fi−1(xg2
v2

), the two constraints in G(U2) between
fi(x

g1
v1

) and fi(x
g2
v2

) are

fi(x
g1
v1

) + fi(x
g2
v2

) = g1 + g2 +m(e`) + y3

and fi(x
g1
v1

) + fi(x
g2
v2

) = g1 + g2 +m(e`) + y4.

Now we must show that m(e`) + y3 and m(e`) + y4 are both not in the set
{y1, y2}. The proof is analogous to Case 1 from above, and we only show the
first part, that m(e`) + y3 is not in {y1, y2} = {y3, y4}. Suppose first that
m(e`) + y3 = y3. This is a contradiction because m never takes on the value
of the identity e ∈ A. Suppose instead that m(e`) + y3 = y4. This implies
that

m(e`) = y3 + y4 = m({v1, v2}),

where the second equality follows from Lemma F.1. This is a contradiction
since e` and {v1, v2} are different edges incident to the same vertex p`, so they

76

must have different values under m. Thus, m(e`) + y3 /∈ {y3, y4} = {y1, y2};
the proof that m(e`) + y4 /∈ {y1, y2} is similar.

G Proof of Lemma 4.4.1 (most edges are good edges)

Here we prove Lemma 4.4.1. First, we need the following two sub-lemmas.
The proof of the first one is inspired by [30].

Lemma G.1. For any two positive integers m and n, the probability that n
vectors in Fm2 , chosen independently and uniformly at random, fail to span
Fm2 is at most 2m−n.

Proof. It is well known [31, Sec. III.4] that every d-dimensional subspace of a
vector space of dimension m has a unique complement subspace of dimension
m− d. Therefore, since there are exactly 2m − 1 one-dimensional subspaces
of Fm2 , there are exactly 2m − 1 subspaces of dimension m− 1.

The probability that a randomly chosen vector lies within a given (m − 1)-
dimensional subspace is 1

2
. As the vectors are chosen independently, the prob-

ability that all n vectors lie within any given (m− 1)-dimensional subspace
is 2−n. Since there are at most 2m different (m − 1)-dimensional subspaces
of Fm2 , by the union bound, the probability that all n vectors lie within some
(m − 1)-dimensional subspace is at most 2m · 2−n = 2m−n. Therefore, the
probability that the n vectors fail to span Fm2 is bounded by 2m−n, since
the only way this can happen is if they lie within some (m− 1)-dimensional
subspace of Fm2 .

Lemma G.2. For any positive integers d and r, in a d-regular graph of girth
greater than r there are exactly r(d− 1)r−1 distinct paths of length r passing
through any given edge.

Proof. Fix an edge e0 = {u1, u2}. To enumerate all of the ways in which we
can choose a path p = v0, v1,v2, . . . ,vr passing through e0, we first orient p
so that u2 occurs at a greater index in p than u1, ensuring that we do not
double-count a path and its reverse. The first choice we make is the position
in the path where e0 lies, i.e., the index of u1 in p. There are r such choices of
index, since it is impossible to have u1 = vr. We choose each of the remaining
r − 1 edges by growing the path out from e0. Since the girth is greater than
r, there are no constraints about repeating vertices to worry about, so at

77

each step, there are exactly d− 1 neighbors to choose from. Thus, the total
number of paths is r(d− 1)r−1.

We can now prove Lemma 4.4.1.

Lemma 4.4.1. With probability at least 1
2
, at most a γ fraction of the edges

of H̃ are bad edges.

Proof. By Lemma G.1, the probability that the vectors in the Z-subspaces
along a given path of length r fail to span Fm2 is at most 2m−r`. Since, by
Lemma G.2, there are r(d− 1)r−1 ≤ rdr paths of length r through any given
edge e0, it follows from the union bound that the probability that e0 is a bad
edge is at most

rdr · 2m−r` = exp(ln(rdr · 2m−r`)) (where exp(x) ≡ ex)

= exp(ln(r) + r ln(d) + (m− r`) ln(2))

≤ exp(r + r ln(d) + (m− r`) ln(2))

= exp(r((ln(d) + 1)− ` ln(2)) +m ln(2))

≤ exp (r((ln(d) + 1)− (log2(d) + 2 log2(e)) ln(2)) +m ln(2))

(from (4.4))

= exp

(
r((ln(d) + 1)−

(
ln(d) + 2

ln(2)

)
ln(2)) +m ln(2)

)
= exp(m ln(2)− r)
≤ exp(m ln(2)− (m ln(2)− ln(γ))) (from (4.6))

= exp(ln(γ))

= γ.

Therefore, the expected fraction of bad edges of H̃ is at most γ. With
probability at least 1

2
, the fraction of bad edges in H̃ is less than or equal to

this expectation.

H Proof of Lemma 4.4.3 (soundness of Ũ2 and thus U2)

Here we prove Lemma 4.4.3. We begin by showing that, with high probability,
Ũ2 is highly unsatisfiable. The central proof technique used here, applying
Hoeffding’s inequality and the union bound, is used by Atserias and Dawar
[1, Lemma 4] to argue that a random 3XOR instance is probably only slightly
more than 1

2
-satisfiable. The main challenge in adapting this technique is that

78

our domain has size 2m instead of 2, so there are far too many assignments
to consider. To circumvent this obstacle, we only consider those assignments
which satisfy a spanning tree of constraints.

Lemma H.1. With probability at least 1 − ε, the satisfiability of Ũ2 is less
than (1− γ)

(
α
2`

)
.

Proof. Say that a bundle of constraints in Ũ2 is satisfied by a given as-
signment of variables if one of the 2` constraints in the bundle is satisfied.
Consider the following nondeterministic algorithm for satisfying a maximal
number of constraints in Ũ2, where v0 is an arbitrarily chosen vertex of H̃:

(1) Nondeterministically choose a spanning tree T ⊆ E(H̃).

(2) For each {v1, v2} ∈ T , nondeterministically choose a vector z∗(v1, v2) ∈
Z(v1, v2).

(3) Assign xv0 := 0, then assign all of the other variables so that, for all
{v1, v2} ∈ T , xv1 + xv2 = z∗(v1, v2) (this assignment is unique after
fixing xv0 , and can be defined inductively through the edges of T).

Note that it is without loss of generality to assume xv0 = 0 under any optimal
assignment of variables, for if it was not, we could subtract xv0 from all of the
variables and the exact same set of constraints would be satisfied. By similar
reasoning, the set of edges of H̃ whose bundles are satisfied under a given
optimal assignment must contain a spanning tree of H̃, for if it contained two
connected components separated by an edge e0, we could add some group
element to all of the variables in one component so that all previously satisfied
edges are still satisfied, and the bundle of e0 is satisfied as well. Therefore,
any optimal assignment must be one of the possible assignments output by
this algorithm.

Suppose H̃ has n vertices. Since there are at most dn spanning trees of H̃
[32] that could be chosen in step (1), and (2`)n−1 ≤ 2`n functions z∗ that
could be chosen in step (2), this algorithm has at most dn2`n computation
paths.

As H̃ has nd
2

edges, the expected number of bundles satisfied by any given
assignment xv output by this algorithm is

n− 1 +

(
nd

2
− (n− 1)

)
2`−m,

since the n − 1 bundles within T are all satisfied, and each of the other

79

(nd
2
− (n − 1)) bundles are satisfied with probability 2`−m, independently2.

Applying Hoeffding’s inequality [33], the probability that xv satisfies more
than

n− 1 +

(
nd

2
− (n− 1)

)(
2`−m +

α

2

)
bundles is at most

exp

(
−2
(α

2

)2
(
nd

2
− (n− 1)

))
.

By the union bound, the probability that there is some computation path

2This is the probability that a given m-dimensional vector over F2 lies in a randomly
chosen affine subspace of dimension `. All that is necessary for this to be true is that the
b(v1, v2) vectors are chosen randomly; the Z(v1, v2) subspaces and the choices made by
the algorithm can be arbitrary (as long as they do not depend on b).

80

giving an assignment satisfying more than this many bundles is at most

dn2`n · exp

(
−2
(α

2

)2
(
nd

2
− (n− 1)

))
= exp(n ln(d) + `n ln(2)) · exp

(
−
(
α2

2

)(
n(d− 2)

2
+ 1

))
= exp

(
n(ln(d) + ` ln(2))−

(
α2

2

)(
n(d− 2)

2
+ 1

))
≤ exp

(
n(ln(d) + ` ln(2))−

(
α2

2

)(
n(d− 2)

2

))
= exp

(
n

(
ln(d) + ` ln(2)− α2(d− 2)

4

))
≤ exp

(
n

(
ln(d) + ` ln(2)− α2d

8

))
(since (4.3) =⇒ d ≥ 4)

≤ exp

(
n

(
α2d

16
+ ` ln(2)− α2d

8

))
(from (4.2) and the fact that ln(ε) ≤ 0)

= exp

(
n

(
` ln(2)− α2d

16

))
≤ exp (n (` ln(2)− (ln(d) + 2 + ln(2)− ln(ε)))) (from (4.2))

≤ exp (n ((log2(d) + 2 log2(e) + 1) ln(2)− (ln(d) + 2 + ln(2)− ln(ε))))

(from (4.4))

= exp

(
n

((
ln(d) + 2

ln(2)
+ 1

)
ln(2)− (ln(d) + 2 + ln(2)− ln(ε))

))
= exp (n ln(ε))

=εn

≤ε (because n ≥ 1, ε ≤ 1).

Since all optimal assignments arise from one of these computation paths, it
follows that, with probability at least 1− ε, the optimal fraction of bundles

81

which can be satisfied in Ũ2 is at most

n− 1 +
(
nd
2
− (n− 1)

) (
2`−m + α

2

)
nd
2

<
n+

(
nd
2

) (
2`−m + α

2

)
nd
2

=
2

d
+ 2`−m +

α

2

≤2

d
+ 2`−(`−log2((1

2
−γ)α− 2

d)) +
α

2
(from (4.5))

=
2

d
+

((
1

2
− γ
)
α− 2

d

)
+
α

2

=(1− γ)α.

Since each bundle contains 2` contradictory constraints, this is a (1− γ)
(
α
2`

)
fraction of the constraints of Ũ2.

We can now prove Lemma 4.4.3.

Lemma 4.4.3. With probability at least 1
2
− ε, the satisfiability of U2 (and

thus of G(U2)) is less than α
2`

.

Proof. By Lemma 4.4.1, the probability that less than a (1 − γ) fraction of

edges of H̃ are good edges is at most 1
2
. By Lemma H.1, the probability that

Ũ2 is (1−γ)
(
α
2`

)
-satisfiable is at most ε. By the union bound, the probability

that either of these two events occurs is at most 1
2

+ε, so the probability that
neither event occurs is at least 1

2
− ε. So it suffices to prove that, whenever

at least a (1 − γ) fraction of the edges of H̃ are good edges, if Ũ2 is not
(1− γ)

(
α
2`

)
-satisfiable, then U2 is not

(
α
2`

)
-satisfiable.

We instead prove the contrapositive, that if at least a
(
α
2`

)
fraction of con-

straints are satisfiable in U2, then at least a (1−γ)
(
α
2`

)
fraction of constraints

are satisfiable in Ũ2. Suppose that Ũ2 has a total of c constraints. Then U2

has at least (1− γ)c constraints. So if at least a
(
α
2`

)
fraction of constraints

are satisfiable in U2, it means that at least
(
α
2`

)
(1 − γ)c constraints of U2

are satisfied by some assignment xv. Since U2 and Ũ2 have the same variable
set, and all of the constraints of U2 are also constraints of Ũ2, it follows that
xv must satisfy

(
α
2`

)
(1 − γ)c constraints of Ũ2 as well, that is, at least a(

α
2`

)
(1− γ) fraction of constraints.

82

I Proof of Lemma 4.4.4 (paths of length r can be made
consistent)

Here we prove Lemma 4.4.4.

Lemma 4.4.4. Let p = v0, v1,v2, . . . ,vn be a path in H of length n ≥ r. Given
any values in Fm2 for g∗(v0) and g∗(vn), it is possible to extend g∗ to all of

the intermediate vertices of p so that the map f(xgv) := x
g+g∗(v)
v is a partial

isomorphism between G(U1) and G(U2) over the set {xgv | v ∈ p, g ∈ Fm2 }.

Proof. Since H contains only good edges and p has length at least r, there
exists a set of vectors

B ⊆
⋃
i∈[n]

Z(vi−1, vi)

forming a basis of Fm2 . Write h(i) for the number of basis vectors in Z(vi−1, vi),
and denote these vectors by

B =
⋃
i∈n

{zi,j | j ∈ [h(i)]},

where each zi,j ∈ Z(vi−1, vi). Since B is a basis, there exist coefficients ci,j
such that

g∗(v0)− g∗(vn)−
∑
i∈[n]

b(vi−1, vi) =
∑
i∈[n]

∑
j∈[h(i)]

ci,jzi,j. (3)

For each i in order from 1 to n, inductively define

g∗(vi) := g∗(vi−1)−
∑

j∈[h(i)]

ci,jzi,j − b(vi−1, vi).

83

Note that, by expanding the inductive definition for g∗(vn), we have

g∗(vn) = g∗(vn−1)−
∑

j∈[h(n)]

cn,jzn,j − b(vn−1, vn)

= g∗(vn−2)−
∑

j∈[h(n−1)]

cn−1,jzn−1,j − b(vn−2, vn−1)

−
∑

j∈[h(n)]

cn,jzn,j − b(vn−1, vn)

= g∗(vn−3)−
∑

j∈[h(n−2)]

cn−2,jzn−2,j − b(vn−3, vn−2)

−
∑

j∈[h(n−1)]

cn−1,jzn−1,j − b(vn−2, vn−1)

−
∑

j∈[h(n)]

cn,jzn,j − b(vn−1, vn)

= . . .

= g∗(v0)−
∑
i∈[n]

b(vi−1, vi) +
∑

j∈[h(i)]

ci,jzi,j



so our inductive definition agrees with the original definition by (3). For any

84

i ∈ [n] and any arbitrary elements gi−1, gi, z ∈ Fm2 ,

xgivi − x
gi−1
vi−1

= z is an equation in G(U1)

⇐⇒ (xgivi + gi)− (xgi−1
vi−1

+ gi−1) = z is an equation in U1

⇐⇒ (xgivi + gi + g∗(vi−1))

− (xgi−1
vi−1

+ gi−1 + g∗(vi−1)) = z is an equation in U1

⇐⇒ (xgivi + gi + g∗(vi−1))

− (xgi−1
vi−1

+ gi−1 + g∗(vi−1))

= z +
∑

j∈[h(i)]

ci,jzi,j is an equation in U1

(since
∑

j∈[h(i)]

ci,jzi,j ∈ Z(vi−1, vi))

⇐⇒ (xgivi + gi + g∗(vi−1))

− (xgi−1
vi−1

+ gi−1 + g∗(vi−1))

= z +
∑

j∈[h(i)]

ci,jzi,j + b(vi−1, vi) is an equation in U2

⇐⇒ (xvi + gi + g∗(vi−1)−
∑

j∈[h(i)]

ci,jzi,j

− b(vi−1, vi))− (xvi−1
+ gi−1 + g∗(vi−1)) = z is an equation in U2

⇐⇒ x
gi+g

∗(vi−1)−
∑

j∈[h(i)] ci,jzi,j−b(vi−1,vi)
vi

− xgi−1+g∗(vi−1)
vi−1

= z is an equation in G(U2)

⇐⇒ xgi+g
∗(vi)

vi
− xgi−1+g∗(vi−1)

vi−1
= z is an equation in G(U2)

⇐⇒ f(xgivi)− f(xgi−1
vi−1

) = z is an equation in G(U2),

so f is a partial isomorphism.

J Proof of Lemma 4.4.6 (no paths in Fi(u) with end-
points in Ti−1)

Here we prove Lemma 4.4.6. First, we need the following result about Ti(u).

Lemma J.1. On any round i, for any vertex u ∈ V (H), any path in Ti(u)
passes through at most k vertices in Pi(u).

Proof. Let p = v0, v1,v2, . . . ,vn be a path in Ti(u). Consider the following

85

map h : p ∩ Pi(u)→ V (Ti(u)):

h(vi) :=


vi if deg(vi) < 3

some pebbled vertex (or u) reachable

from vi in Ti(u) \ {vi−1, vi+1} if deg(vi) ≥ 3

Note that such a vertex always exists when vi has degree at least 3, and is
necessarily different from all other vertices in the image of h. Thus, h is
injective. Also, since vertices in Pi(u) of degree less than 3 must be pebbled,
the output of h(vi) must always be a pebbled vertex. Thus, we have an
injection from p∩Pi(u) to a set of pebbled vertices (plus u), of which there are
at most k (since one pebble pair has been picked up), so |p ∩ Pi(u)| ≤ k.

Now we can prove Lemma 4.4.6.

Lemma 4.4.6. On any round i, for any vertex u ∈ V (H), there does not
exist any path contained in Fi(u) with both endpoints in Ti−1.

Proof. Suppose toward a contradiction that there was such a path p1, joining
v1, v3 ∈ Ti−1. Let v2 be the first vertex along the path p1 which is contained
Ti−1, excluding v1 (it could just be v3 if there are no earlier places where p
crosses Ti−1). Since Ti−1 is connected, there must be some path p2 joining
v1 and v2 in Ti−1. Since p1 is contained in Fi(u), which shares no edges with
Ti−1, p1 and p2 share no edges. Aside from v1 and v2, they do not share any
common vertices either, from the way that v2 was chosen. So together, p1

and p2 form a cycle. Since p1 is contained within Ti(u), by Lemma J.1 it
intersects at most k vertices in Pi(u). Since, additionally, p1 is contained in
Fi(u), the length of each of the ≤ (k+ 1) segments between vertices in Pi(u)
and the endpoints is strictly less than r. Thus, p1 has length strictly less
than (k+ 1)r. Since p2 is contained within Ti−1, which is minimal, p2 cannot
contain any subpaths of length (k + 1)r which do not intersect Pi−1, for
otherwise, swapping out such a subpath for p1 would yield a strictly smaller
tree. Applying Lemma J.1 to round i − 1 and vertex u∗i−1, we have that at
most k vertices of p2 intersect Pi−1, so p2 has length at most k(k+1)r. Thus,
concatenating p1 and p2 yields a cycle of size strictly less than

(k + 1)r + k(k + 1)r = (k + 1)2r

in H. This contradicts the fact that H was chosen to have girth at least
(k + 1)2r. Hence, no such path p1 can exist.

86

K Derivation of bound on the growth of q

Here we explicitly derive the bound q = O(1
α2 log(1

α
)) from Theorem 4.4.7.

First, we need the following lemma.

Lemma K.1. For any function f : Z≥1 → Z≥1,

f(n) = O(n2 log(f(n))) =⇒ f(n) = O(n2 log(n)).

Proof. Suppose that there exist c0, n0 such that, for all n ≥ n0,

f(n) ≤ c0n
2 log2(f(n)).

Since log2(m) ≤ 2
√
m for all positive integers m, it follows that, when n ≥ n0,

f(n) ≤ c0n
2 log2(f(n)) ≤ c0n

2
(

2
√
f(n)

)
=⇒

√
f(n) ≤ 2c0n

2

=⇒ f(n) ≤ 4c0n
4.

Let c1 := 5c0 and let n1 := max{n0, 4c0}. Then, for all n ≥ n1,

f(n) ≤ c0n
2 log2(f(n))

≤ c0n
2 log2(4c0n

4)

= c0n
2 (log2(4c0) + 4 log2(n))

≤ c0n
2 (log2(n) + 4 log2(n)) (since n ≥ n1 ≥ 4c0)

= c1n
2 log2(n),

so f(n) = O(n2 log(n)).

Let f(n) denote the smallest integer d satisfying (4.2) for α = 1
n

(note that
we don’t have to worry about (4.3) since γ = 1

4
). By (4.2),

f(n) = O

((
1

α

)2

log(f(n))

)
= O(n2 log(f(n))),

so by Lemma K.1, f(n) = O(n2 log(n)). In other words, we can take d =
O(1

α2 log(1
α

)) to satisfy (4.2). Then it is not hard to see that (4.4) and (4.5)
imply q = 2m = O(1

α2 log(1
α

)) as well.

87

