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Review

We consider the complexity of the problem of deciding,

Given a graphG and a formula ϕ

whether G |= ϕ

when ϕ is either in FO or MSO.

In general the problem is PSPACE-complete and AW[⋆]-hard.

We now to identify classes of sparse graphs where the problem becomes

tractable.

Tractable here means fixed-parameter tractable with the formula length as

parameter.
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Results So Far

Tk—the class of graphs of tree-width at most k.

Dk—the class of graphs with maximal degree k.

Theorem (Courcelle)

For any MSO (or MS2) sentence ϕ and any k there is a linear time algorithm that

decides, given G ∈ Tk whetherG |= ϕ.

Theorem (Seese)

For every sentence ϕ of FO and every k there is a linear time algorithm which,

given a graphG ∈ Dk determines whetherG |= ϕ.

The proofs are based on two general methods:

• the method of decompositions; and

• the method of locality.
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Treewidth

The treewidth of an undirected graph is a measure of how tree-like the graph is.

A graph has treewidth k if it can be covered by subgraphs of at most k + 1 nodes

in a tree-like fashion.

This gives a tree decomposition of the graph.
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Treewidth

For a graphG = (V,E), a tree decomposition of G is a relation D ⊂ V × T

with a tree T such that:

• for each v ∈ V , the set {t | (v, t) ∈ D} forms a connected subtree of T ;

and

• for each edge (u, v) ∈ E, there is a t ∈ T such that (u, t), (v, t) ∈ D.

The treewidth of G is the least k such that there is a tree T and a tree

decompositionD ⊂ V × T such that for each t ∈ T ,

|{v ∈ V | (v, t) ∈ D}| ≤ k + 1.
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Courcelle’s Theorem

Theorem (Courcelle)

For any MSO (or MS2) sentence ϕ and any k there is a linear time algorithm that

decides, given G ∈ Tk whetherG |= ϕ.

Given G ∈ Tk and ϕ, compute:

• from G a labelled tree T ; and

• from ϕ a bottom-up tree automaton A

such that A accepts T if, and only if, G |= ϕ.
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The Method of Decompositions

Suppose C is a class of graphs such that there is a finite class B and a finite

collection Op of operations such that:

• C is contained in the closure of B under the operations in Op;

• there is a polynomial-time algorithm which computes, for any G ∈ C, an

Op-decomposition of G over B; and

• for eachm, the equivalence class ≡
(MSO)
m is an effective congruence with

respect to to all operations o ∈ Op (i.e., the ≡
(MSO)
m -type of o(G1, . . . , Gs)

can be computed from the ≡
(MSO)
m -types of G1, . . . , Gs).

Then, FO (MSO) satisfaction is fixed-parameter tractable on C.

Anuj Dawar November 2010



8

Relaxations of the Method

1. Instead of requiring B be finite, it sufficers to require that satisfaction is in FPT

over B.

2. In place of ≡
(MSO)
m , we can take any sequence of equivalence relations

∼m (m ∈ N) satisfying

• for every ϕ there is an m such that models of ϕ are closed under ∼m;

and

• for all m, ∼m has finite index.
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Bounded Degree Graphs

Theorem (Seese)

For every sentence ϕ of FO and every k there is a linear time algorithm which,

given a graphG ∈ Dk determines whetherG |= ϕ.

A proof is based on locality of first-order logic.

Note: this is not true for MSO unless P = NP.
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Gaifman’s Locality Theorem

We write δ(x, y) > d for the formula of FO that says that the distance between x

and y is greater than d.

We write ψr(x) to denote the formula obtained from ψ(x) by relativising all

quantifiers to the set Nr = {y | δ(x, y) < r}, i.e.

Each subformula ∃yθ is replaced by ∃y(δ(x, y) < r) ∧ θr

Each subformula ∀yθ is replaced by ∀y(δ(x, y) < r) → θr
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Gaifman’s Locality Theorem

A basic local sentence is a sentence of the form

∃x1 · · · ∃xs





∧

i 6=j

δ(xi, xj) > 2r ∧
∧

i

ψr(xi)





Theorem (Gaifman)

Every first-order sentence is equivalent to a Boolean combination of basic local

sentences.
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Seese’s Theorem

How do we evaluate a basic local sentence

∃x1 · · · ∃xs

(

∧

i 6=j δ(xi, xj) > 2r ∧
∧

i ψ
r(xi)

)

in a graphG ∈ Dk?

For each v ∈ G, determine whether

Nr(a) |= ψ[a].

Since the size of Nr(a) is bounded, this takes linear time.

Label a red if so. We now want to know whether there exists a 2r-scattered set of

red vertices of size s.
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Finding a Scattered Set

(Frick and Grohe) describe a method to do this efficiently.

Choose red vertices from G in some order, removing the 2r-neighbourhood of

each chosen vertex.

a1 ∈ G,

a2 ∈ G \N2r(a1),

a3 ∈ G \ (N2r(a1) ∪N2r(a2)), . . .

If the process continues for s steps, we have found a 2r-scattered set of size s.

Otherwise, for some u < s we have found a1, . . . , au such that all red vertices

are contained in

N2r(a1, . . . , au)

This is a graph of bounded size and the property of containing a 2r-scattered set

of red vertices of size s can be stated in FO.
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Method of Locality

• Suppose we have a computable function, associating a parameter kG ∈ N

with each graphG.

• Suppose we have an algorithm which, givenG and ϕ decidesG |= ϕ in time

g(l, kG)n
c

for some computable function g and some constant c.

• Let C be a class of graphs of bounded local k, i.e.

there is a computable function t : N → N such that for every G ∈ C

and v ∈ G, kNr(a) < t(r).

Then, there is an algorithm which, given G ∈ C and ϕ decides whetherG |= ϕ

in time

f(l)nc+1

for some computable function f .
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Planar Graphs

We now aim to combine the two methods to show the following

Theorem (Frick-Grohe)

For any ϕ ∈ FO, there is a quadratic time algorithm that decides, given a planar

graphG whether G |= ϕ.

The proof combines the methods of decompositions and locality.
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Bounded Diameter Planar Graphs

The diameter of a graphG is the least d such that between any two vertices of G

there is a path of length at most d.

The tractability of FO on planar graphs follows from the the following.

Theorem (Robertson-Seymour)

For every d there is a k such that any planar graph of diameter d has tree-width

at most k.

Taking k = 3d suffices. We sketch a proof of this.
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Series Parallel Graphs

The class of series-parallel graphs consists of those graphs that can be obtained

from a single edge: s—t

by operations of

• series composition

This takes graphs (G1, s1, t1) and (G2, s2, t2) and gives the graph

(G, s1, t2) that is formed by taking their disjoint union while identifying

t1 with s2.

• parallel composition

This takes graphs (G1, s1, t1) and (G2, s2, t2) and gives the graph

(G, s, t) that is formed by taking their disjoint union while identifying

s1 with s2 and t1 with t2..

This is exactly the class of graphs of tree-width 2.
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Outerplanar Graphs

G is said to be outerplanar if it is planar and has a planar embedding in which all

vertices are on the outer face.

Any outerplanar graph is a series parallel graph and therefore has treewidth at

most 2.
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Decomposing Planar Graphs

SupposeG is a 2-connected planar graph of diameter d.

For graphs that are not 2-connected, we decompose the 2-connected

components separately, as they are joined together in a tree-like fashion.

If G is outerplanar, we are done.

Otherwise, pick a planar embedding of G, an interior vertex v and two paths A

and B to vertices u and w on the outer face.

A ∪B is a set of at most 2d+ 1 vertices which separates the graph into G1 and

G2.

Our aim is to show that each ofG1 ∪A∪B andG2 ∪A∪B has a tree

decomposition of width 3d in which A ∪B appears inside a single bag.
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Decomposing Planar Graphs

In G1 (the situation for G2 is symmetric), we choose another path C from v to a

vertex between u and w on the outer face.

The decomposition of G1 now consists of a bag containingA ∪B ∪ C and a

decomposition (obtained recursively) of the two parts bounded by A ∪B and

A ∪ C . see picture.

The base cases are when the graph is outerplanar, or there is no vertex between

u and w.

In the latter case, we recursively decompose the graph obtained by removing the

edge (u,w).
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Local Tree-Width

Let t : N → N be a non-decreasing function.

LTWt—the class of graphsG such that for every v ∈ V (G):

NG
r (v) has tree-width at most t(r). (Eppstein; Frick-Grohe).

We say that C has bounded local tree-width if there is some function t such that

C ⊆ LTWt.

Examples:

1. Tk has local tree-width bounded by the constant function t(r) = k.

2. Dk has local tree-width bounded by t(r) = kr + 1.

3. Planar graphs have local tree-width bounded by t(r) = 3r.
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Bounded Local Tree-Width

Theorem (Frick-Grohe)

For any class C of bounded local tree-width and any ϕ ∈ FO, there is a quadratic

time algorithm that decides, given G ∈ C, whetherG |= ϕ.

The proof is a direct application of the method of locality.

In place of planar graphs, we can take graphs embeddable in any fixed surface

and obtain that FO satisfaction is fixed-parameter tractable as a consequence of

the above.
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Graph Minors

We say that a graphG is a minor of graphH (written G � H) if G can be

obtained from H by repeated applications of the operations:

• delete an edge;

• delete a vertex (and all incident edges); and

• contract an edge

⇒
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Graph Minors

Alternatively,G = (V,E) is a minor of H = (U, F ), if there is a graph

H ′ = (U ′, F ′) with U ′ ⊆ U and F ′ ⊆ F and a surjective map M : U ′ → V

such that

• for each v ∈ V , M−1(v) is a connected subgraph of H ′; and

• for each edge (u, v) ∈ E, there is an edge in F ′ between some

x ∈M−1(u) and some y ∈M−1(v).

G H ′
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Facts about Graph Minors

• G is planar if, and only if, K5 6� G and K3,3 6� G.

• If G ⊂ H then G � H .

• The relation � is transitive.

• If G � H , then tw(G) ≤ tw(H).

• If tw(G) < k − 1, then Kk 6� G.

Say that a class of graphs C excludesH as a minor if H 6� G for all G ∈ C.

C has excluded minors if it excludes someH as a minor (equivalently, it excludes

someKk as a minor).

• Tk excludesKk+2 as a minor.
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More Facts about Graph Minors

Theorem (Robertson-Seymour)

In any infinite collection {Gi | i ∈ ω} of graphs, there are i, j with Gi � Gj .

Corollary

For any class C closed under minors, there is a finite collection F of graphs such

that G ∈ C if, and only if, F 6� G for all F ∈ F .

Theorem (Robertson-Seymour)

For any G there is an O(n3) algorithm for deciding, given H , whether G � H .

Corollary

Any class C closed under minors is decidable in cubic time.
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Excluded Minor Classes

Write Mk for the class of graphsG such that Kk 6≺ G.

Theorem (Flum-Grohe)

For G ∈ Mk, G |= ϕ is decidable in time f(ϕ)n5.

We sketch some of the ideas behind the proof.
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Decomposing Graphs with Excluded Minors

Robertson and Seymour show how to obtain a decomposition of graphs in Mk.

Grohe shows that this can be done over graphs of almost bounded local

tree-width.

Let

Lλ = {G | ∀H ≺ G : ltwr(H) ≤ λr}

Lλ,µ = {G | ∃v1, . . . , vµ : G \ {v1, . . . , vµ} ∈ Lλ}
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Almost Bounded Local Tree-width

Classes Lλ and Lλ,µ are minor-closed and so decidable in cubic time.

Given G ∈ Lλ,µ, we can find v1, . . . , vµ witnessing this in time O(n4).

For each v, check if G− v is in Lλ,µ−1.

If so, add v to the list and proceed with G− v and Lλ,µ−1.

Question: Is this algorithm in time O(f(λ, µ)n4) for a computable function f?

There is a polynomial-time computable map taking a G ∈ Lλ,µ to a coloured

graphG′ ∈ Lλ so that the FO-type of G is determined by that of G′.

G′ is obtained from G \ {v1, . . . , vµ} by adding new relations

S1, . . . , Sµ interpreted by the neighbours of v1, . . . , vµ.
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Decomposition Theorem

∀k∃λ∃µ

Any G ∈ Mk can be obtained from graphs in Lλ,µ by a finite sequence

of clique sum operations.

And the decomposition can be computed in time O(n4)

Clique Sum: G1, G2 graphs with X ⊆ G1 ∩G2 a set of vertices that induces a

clique in each of G1 and G2.

G1 ⊕X,GX
G2

Take the disjoint sum of G1 and G2,

identifying the two copies of X and re-

placing the clique by the graphGX .

G1 G2

X/GX
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Congruences

For graphsG ∈ Lλ,µ, if X is a clique in G,

|X | < λ+ µ+ 1

Thus, there are only finitely many operations of the form ⊕X,GX
.

We have nearly satisfied the requirements for an application of the

automata-theoretic method, but . . . .

If X = x1, . . . , xs, the ≡m-type of (G, x1, . . . , xs), where

G = G1 ⊕X,GX
G2,

is given by the ≡m-types of (G1, x1, . . . , xs) and (G2, x1, . . . , xs).

However, different clique-sum operations may apply to different cliquesX .
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Bounding decompositions

While in a bounded-width tree-

decomposition of G, the size of

the individual bags is bounded, here

we only have a bound on the size of the

intersections between bags.

What we do have is a bound on

the local tree-width of the bags G1

(by replacing graphs in Lλ,µ by their

coloured companions in Lλ).

G1

G2

X1 = G1 ∩G2

X2

Idea: the type of X2 in G1 ⊕X G2 is determined by the type of (G1, x̄2), the

type of (G2, x̄1) and the local neighbourhood of the clique X1 in G1.
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Typing the Sum

The tree-decomposition of NG1

r (X)

determines a function θ that takes the

≡m-type of (G2, x̄2) to the ≡m-type

of NG1

r (X)⊕X (G2, x̄2)

There are only finitely many such func-

tions θ.

Define the asymmetric clique-sum of

type θ:

G1

G2

X

Nr(X)

(G1, ȳ)⊕
θ
X,GX

(G2, x̄)

of taking the clique-sum of the two graphs, joining x̄ to a clique in G1 whose

neighbourhood has type θ.
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Automata on Mk

Given a first-order sentence ϕ, it determines a radius of locality r and quantifier

rankm.

• We have a finite collection of operations ⊕θ
X,GX

(depending on r and m).

• We have structures (G, x̄), where the length of x is bounded by s

(depending only on k).

Thus, there are only finitely many ≡m classes.

• ≡m is a congruence for each operation ⊕θ
X,GX

.

Thus, satisfaction for first-order logic is fixed-parameter tractable on Mk .

(Flum-Grohe)
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Results So Far

1. Tk—the class of structures of tree-width at most k.

Courcelle (1990) shows that every MSO definable property is decidable in

linear time on this class.

2. Dk—the class of structures of degree bounded by k.

Seese (1996) shows that every FO definable property is decidable in linear

time.

3. LTWt—the class of structures of local tree-width bounded by a function t.

Frick and Grohe (2001) show that every FO definable property is decidable

in quadratic time.

4. Mk—the class of structures excludingKk as a minor.

Flum and Grohe (2001) show that every FO definable property is decidable

in time O(n5).
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Map of Classes

excluded minors bounded local treewidth

planar graphs bounded degree

acyclic graphs

bounded genus

bounded treewidth
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