Evaluating Formulas on Sparse Graphs

Part 2

Anuj Dawar

University of Cambridge Computer Laboratory

PhD Open, Warsaw, 2 October 2010

1

Quick Review

We consider the complexity of the problem of deciding,

```
Given a graph G and a formula \varphi
whether G \models \varphi
```

when φ is either in FO or MSO.

In general the problem is PSPACE-complete and $AW[\star]$ -hard.

When we consider words instead of graphs it is FPT.

We now aim to identify classes of *sparse* graphs where the problem becomes tractable.

Graph Structure Theory

Graph Structure Theory has developed rapidly since the 1980s through the work of **Robertson**, **Seymour** and their collaborators on *graph minors*.

One important contribution is the notion of *treewidth*.

This associates a number tw(G) = k with every graph G which measures how densely interconnected G is.

The measure has many equivalent definitions, and has arisen independently in many contexts.

The *treewidth* of an undirected graph is a measure of how tree-like the graph is.

A graph has treewidth k if it can be covered by subgraphs of at most k + 1 nodes in a tree-like fashion.

This gives a *tree decomposition* of the graph.

Treewidth is a measure of how tree-like a structure is.

For a graph G = (V, E), a *tree decomposition* of G is a relation $D \subset V \times T$ with a tree T such that:

- for each $v \in V$, the set $\{t \mid (v,t) \in D\}$ forms a connected subtree of T; and
- for each edge $(u, v) \in E$, there is a $t \in T$ such that $(u, t), (v, t) \in D$.

The *treewidth* of *G* is the least *k* such that there is a tree *T* and a tree decomposition $D \subset V \times T$ such that for each $t \in T$,

 $|\{v \in V \mid (v,t) \in D\}| \le k+1.$

Looking at the decomposition *bottom-up*, a graph of treewidth k is obtained from graphs with at most k + 1 nodes through a finite sequence of applications of the operation of taking *sums over sets* of at most k elements.

We let \mathcal{T}_k denote the class of graphs G such that $tw(G) \leq k$.

More formally,

Consider graphs with up to k + 1 distinguished vertices $\mathbf{c} = c_0, \ldots, c_k$.

Define a merge operation $(G \oplus_{\mathbf{c}} H)$ that forms the union of G and H disjointly apart from \mathbf{c} .

Also define $erase_i(G)$ that erases the name c_i .

Then a graph G is in \mathcal{T}_k if it can be formed from graphs with at most k + 1 vertices through a sequence of such operations.

Examples

- Trees have treewidth 1.
- Cycles have treewidth 2.
- The clique K_k has treewidth k-1.
- The $m \times n$ grid has treewidth $\min(m, n)$.

Exercise

Graphs of Small Treewidth are Sparse

If $tw(G) \leq k$ then G has at most $k \cdot |V(G)|$ edges.

This follows from the facts:

- if $tw(G) \le k$ then G contains a vertex with at most k neighbours;
- if $G \subset H$ then $\operatorname{tw}(G) \leq \operatorname{tw}(H)$.

Dynamic Programming

It has long been known that graphs of small treewidth admit efficient *dynamic programming* algorithms for intractable problems.

In general, these algorithms proceed bottom-up along a tree decomposition of G. At any stage, a small set of vertices form the "*interface*" to the rest of the graph.

This allows a recursive decomposition of the problem.

Computing Treewidth

The problem of deciding, given a graph G and an integer k whether $tw(G) \le k$ is NP-complete.

But, it is fixed-parameter tractable with k as parameter.

This follows from a theorem of **Bodlaender** that there is an algorithm running in $O(2^{p(k)}n)$ time that given a graph $G \in \mathcal{T}_k$ computes a tree decomposition of G of width k.

Courcelle's Theorem

Theorem (Courcelle)

For any MSO (or MS₂) sentence φ and any k there is a linear time algorithm that decides, given $G \in \mathcal{T}_k$ whether $G \models \varphi$.

Given $G \in \mathcal{T}_k$ and φ , compute:

- from G a labelled tree T; and
- from φ a bottom-up tree automaton \mathcal{A}

such that \mathcal{A} accepts T if, and only if, $G \models \varphi$.

The Labelled Tree

 $C = \{c_0, \ldots, c_k\}$ a set of k + 1 new constants.

 (G, ρ) —expansion of G with $\rho : C \rightarrow V$, a partial map interpreting some of the constants in C.

Let

- \mathcal{B}_k —the collection of (G, ρ) such that G has at most k + 1 vertices.
- erase_i—an operation which takes (G, ρ) to (G, ρ') , where ρ' is as ρ but without c_i .
- a binary operation of union disjoint over C:

 $(G_1, \rho_1) \oplus_C (G_2, \rho_2)$

Congruence

- Any $G \in \mathcal{T}_k$ is obtained from \mathcal{B}_k by finitely many applications of the operations erase_i and \bigoplus_C .
- If $G_1, \rho_1 \equiv^{\mathrm{MSO}}_m G_2, \rho_2$, then

$$erase_i(G_1, \rho_1) \equiv_m^{MSO} erase_i(G_2, \rho_2)$$

• If
$$G_1, \rho_1 \equiv_m^{MSO} G_2, \rho_2$$
, and $H_1, \sigma_1 \equiv_m^{MSO} H_2, \sigma_2$ then
 $(G_1, \rho_1) \oplus_C (H_1, \sigma_1) \equiv_m^{MSO} (G_2, \rho_2) \oplus_C (H_2, \sigma_2)$

Note: a special case of this is that \equiv_m^{MSO} is a congruence for *disjoint union* of graphs.

Satisfaction on \mathcal{T}_k

Any $G \in \mathcal{T}_k$ can be represented as a finite tree, with leaves labelled by elements of \mathcal{B}_k , internal nodes labelled by operations erase_i and \oplus_C . We can then compute the Type^{MSO}(G) bottom-up.

This establishes the following:

The satisfaction problem for MSO is decidable in time f(l, k)n, where

- f is some computable function
- l is the length of the input formula
- k is the treewidth of the input structure
- *n* is the size of the input structure.

The Method of Decompositions

Suppose C is a class of graphs such that there is a finite class B and a finite collection Op of operations such that:

- \mathcal{C} is contained in the closure of \mathcal{B} under the operations in Op;
- there is a polynomial-time algorithm which computes, for any $G \in C$, an Op-decomposition of G over \mathcal{B} ; and
- for each m, the equivalence class $\equiv_m^{(MSO)}$ is an *effective* congruence with respect to to all operations $o \in Op$ (i.e., the $\equiv_m^{(MSO)}$ -type of $o(G_1, \ldots, G_s)$ can be computed from the $\equiv_m^{(MSO)}$ -types of G_1, \ldots, G_s).

Then, FO (MSO) satisfaction is fixed-parameter tractable on C.

Relaxations of the Method

- 1. Instead of requiring \mathcal{B} be finite, it sufficers to require that satisfaction is in FPT over \mathcal{B} .
- 2. In place of $\equiv_m^{(MSO)}$, we can take any sequence of equivalence relations $\sim_m (m \in \mathbb{N})$ satisfying
 - for every φ there is an m such that models of φ are closed under $\sim_m;$ and
 - for all m, \sim_m has finite index.

Note: letting $G \sim_m H$ if G, H cannot be distinguished by a formula of *length* m, does not yield a congruence with respect to disjoint union.

There is no elementary function e such that $G_1 \sim_{e(m)} H_1$ and $G_2 \sim_{e(m)} H_2$ implies $G_1 \oplus G_2 \sim_m H_1 \oplus H_2$.

(D., Grohe, Kreutzer, Schweikardt)

Bounded Degree Graphs

In a graph G = (V, E) the *degree* of a vertex $v \in V$ is the number of neighbours of v, i.e.

 $|\{u \in V \mid (u, v) \in E\}|.$

We write $\delta(G)$ for the *smallest* degree of any vertex in G.

We write $\Delta(G)$ for the *largest* degree of any vertex in G.

 \mathcal{D}_k —the class of graphs G with $\Delta(G) \leq k$.

Bounded Degree Graphs

Theorem (Seese)

For every sentence φ of FO and every k there is a linear time algorithm which, given a graph $G \in \mathcal{D}_k$ determines whether $G \models \varphi$.

A proof is based on *locality* of first-order logic, which we look at next.

Note: this is not true for MSO unless P = NP.

Construct, for any graph G, a graph G' such that $\Delta(G') \leq 5$ and G' is 3-colourable iff G is, and the map $G \mapsto G'$ is polynomial-time computable.

Gaifman's Locality Theorem

We write $\delta(x, y) > d$ for the formula of FO that says that the distance between x and y is greater than d.

We write $\psi^r(x)$ to denote the formula obtained from $\psi(x)$ by relativising all quantifiers to the set $N_r = \{y \mid \delta(x, y) < r\}$, i.e.

Each subformula $\exists y \theta$ is replaced by $\exists y (\delta(x, y) < r) \land \theta^r$ Each subformula $\forall y \theta$ is replaced by $\forall y (\delta(x, y) < r) \rightarrow \theta^r$

Gaifman's Locality Theorem

A basic local sentence is a sentence of the form

$$\exists x_1 \cdots \exists x_s \left(\bigwedge_{i \neq j} \delta(x_i, x_j) > 2r \land \bigwedge_i \psi^r(x_i) \right)$$

Theorem (Gaifman)

Every first-order sentence is equivalent to a Boolean combination of basic local sentences.

Uses of Gaifman's Locality Theorem

Gaifman's theorem is often used to give simple proofs that some problems are *not expressible* in first-order logic.

To illustrate the undefinability of *connectivity* consider (for any r, q) the following two graphs chosen big enough so that any basic local sentence of *radius* r and *quantifier rank* q cannot distinguish them.

22

Planarity

A figure illustrating that *planarity* is not first-order definable.

Exercise: use locality to show that 2-colourability and 3-colourability are not first-order definable.

Write $G \sim_q^r H$ to indicate that G and H agree on all *basic, local* sentences with *radius* r and *quantifier rank* q.

It suffices to show that there are functions r and q such that

 $G\sim_{q(p)}^{r(p)}H$ implies $G\equiv_p H$

 $r = 7^p$ suffices. The value of q will emerge from the proof.

The aim is to prove that if $G \sim_q^r H$, then in the *p*-round Ehrenfeucht game on G and H, *Duplicator* can inductively maintain the following condition with m = p - l rounds left to play:

$$\bigcup_{i \le l} N^G_{r(m)}(a_i) \equiv_{q(m)} \bigcup_{i \le k} N^H_{r(m)}(b_i)$$

where $N_r^G(a)$ denotes the *subgraph* of G induced by the vertices whose distance from a is at most r.

Suppose *w.l.o.g.* that *Spoiler*, in round l + 1 plays on a in G.

We describe the response of *Duplicator*.

We distinguish three cases:

- 1. for some $i \leq k$, $dist(a, a_i) \leq 2r(m-1)$;
- 2. for all i, $dist(a, a_i) > 2r(m 1)$ and for some i, $dist(a, a_i) \le 6r(m - 1)$; and
- 3. for all *i*, $dist(a, a_i) > 6r(m 1)$.

Case 1: q(m) is bigger than the quantifier rank of the sentence:

 $\exists x (\delta(x, a_i) \le 2r(m-1) \land \theta(\mathbf{x}, x))$

where $\theta(\mathbf{x},x)$ is the formula that characterises $\mathsf{Type}_{q(m-1)}(N,\mathbf{a}a)$ for N the graph

$$N = N_{r(m-1)}^{G}(a) \cup \bigcup_{i \le l} N_{r(m-1)}^{G}(a_i)$$

Case 2:

q(m) is bigger than the quantifier rank of the sentence:

$$\exists x (\bigwedge_{i} (\delta(x, a_{i}) > 2r(m-1)) \land \bigvee_{i} (\delta(x, a_{i}) \le 6r(m-1)) \land \theta(x))$$

where $\theta(x)$ is the formula that characterises $\mathrm{Type}_{q(m-1)}(N,a)$ where

 $N = N_{r(m-1)}^G(a)$

Case 3

Let *s* be maximal such that $\bigcup_{i \leq l} N_{2r(m-1)}^G(a_i)$ contains *s* elements, pairwise distance 4r(m-1) apart, each satisfying $\theta(x)$.

Note $s \leq l$.

q(m) is big enough so that the value of s is the same in $\bigcup_{i \leq l} N^H_{2r(m-1)}(b_i)$ Since $dist(a, a_i) > 6r(m-1)$ for all i,

$$G \models \exists x_1 \cdots \exists x_{s+1} \left(\bigwedge_{i \neq j} \delta(x_i, x_j) > 4r(m-1) \land \bigwedge_i \theta(x_i) \right)$$

Using Gaifman's Theorem

We now want to use Gaifman's theorem to establish Seese's theorem:

Theorem (Seese)

For every sentence φ of FO and every k there is a linear time algorithm which, given a graph $G \in \mathcal{D}_k$ determines whether $G \models \varphi$.

By Gaifman's theorem, it suffices to prove the above for *basic local sentences*.

Seese's Theorem

How do we evaluate a basic local sentence

 $\exists x_1 \cdots \exists x_s \left(\bigwedge_{i \neq j} \delta(x_i, x_j) > 2r \land \bigwedge_i \psi^r(x_i) \right) \text{ in a graph } G \in \mathcal{D}_k?$

For each $v \in G$, determine whether

 $N_r(a) \models \psi[a].$

Since the size of $N_r(a)$ is bounded, this takes linear time.

Label a red if so. We now want to know whether there exists a 2r-scattered set of red vertices of size s.

Finding a Scattered Set

(Frick and Grohe) describe a method to do this efficiently.

Choose red vertices from G in some order, removing the 2r-neighbourhood of each chosen vertex.

```
a_1 \in G,

a_2 \in G \setminus N_{2r}(a_1),

a_3 \in G \setminus (N_{2r}(a_1) \cup N_{2r}(a_2)), \dots
```

If the process continues for s steps, we have found a 2r-scattered set of size s.

Otherwise, for some u < s we have found a_1, \ldots, a_u such that all red vertices are contained in

$$N_{2r}(a_1,\ldots,a_u)$$

This is a graph of bounded size and the property of containing a 2r-scattered set of *red* vertices of size *s* can be stated in FO.

Method of Locality

- Suppose we have a function, associating a parameter $k_G \in \mathbb{N}$ with each graph G.
- Suppose we have an algorithm which, given G and φ decides $G \models \varphi$ in time

$g(l,k_G)n^c$

for some computable function g and some constant c.

• Let \mathcal{C} be a class of graphs of *bounded local* k, i.e.

```
there is a computable function t : \mathbb{N} \to \mathbb{N} such that for every G \in C
and v \in G, k_{N_r(a)} < t(r).
```

Then, there is an algorithm which, given $G \in \mathcal{C}$ and φ decides whether $G \models \varphi$ in time

$$f(l)n^{c+1}$$

for some computable function f.

33

Local Tree-Width

Let $t : \mathbb{N} \to \mathbb{N}$ be a non-decreasing function.

LTW_t—the class of graphs G such that for every $v \in V(G)$:

 $N_r^G(v)$ has tree-width at most t(r). (Eppstein; Frick-Grohe).

We say that C has *bounded local tree-width* if there is some function t such that $C \subseteq LTW_t$.

Examples:

- 1. T_k has local tree-width bounded by the constant function t(r) = k.
- 2. \mathcal{D}_k has local tree-width bounded by $t(r) = k^r + 1$.
- 3. Planar graphs have local tree-width bounded by t(r) = 3r.

Bounded Local Tree-Width

Theorem (Frick-Grohe)

For any class C of bounded local tree-width and any $\varphi \in FO$, there is a *quadratic* time algorithm that decides, given $\mathbb{A} \in C$, whether $\mathbb{A} \models \varphi$.

The proof is a direct application of the method of locality.