
1

Evaluating Formulas on Sparse Graphs

Part 2

Anuj Dawar

University of Cambridge Computer Laboratory

PhD Open, Warsaw, 2 October 2010

Anuj Dawar October 2010



2

Quick Review

We consider the complexity of the problem of deciding,

Given a graphG and a formula ϕ

whether G |= ϕ

when ϕ is either in FO or MSO.

In general the problem is PSPACE-complete and AW[⋆]-hard.

When we consider words instead of graphs it is FPT.

We now aim to identify classes of sparse graphs where the problem becomes

tractable.

Anuj Dawar October 2010



3

Graph Structure Theory

Graph Structure Theory has developed rapidly since the 1980s through the work

of Robertson, Seymour and their collaborators on graph minors.

One important contribution is the notion of treewidth.

This associates a number tw(G) = k with every graphG which measures how

densely interconnectedG is.

The measure has many equivalent definitions, and has arisen independently in

many contexts.

Anuj Dawar October 2010



4

Treewidth

The treewidth of an undirected graph is a measure of how tree-like the graph is.

A graph has treewidth k if it can be covered by subgraphs of at most k + 1 nodes

in a tree-like fashion.

This gives a tree decomposition of the graph.

Anuj Dawar October 2010



5

Treewidth

Treewidth is a measure of how tree-like a structure is.

For a graphG = (V,E), a tree decomposition of G is a relation D ⊂ V × T

with a tree T such that:

• for each v ∈ V , the set {t | (v, t) ∈ D} forms a connected subtree of T ;

and

• for each edge (u, v) ∈ E, there is a t ∈ T such that (u, t), (v, t) ∈ D.

The treewidth of G is the least k such that there is a tree T and a tree

decompositionD ⊂ V × T such that for each t ∈ T ,

|{v ∈ V | (v, t) ∈ D}| ≤ k + 1.

Anuj Dawar October 2010



6

Treewidth

Looking at the decomposition bottom-up, a graph of treewidth k is obtained from

graphs with at most k + 1 nodes through a finite sequence of applications of the

operation of taking sums over sets of at most k elements.

G1 ⊕X G2

|X | ≤ k

G1 G2

X

We let Tk denote the class of graphsG such that tw(G) ≤ k.

Anuj Dawar October 2010



7

Treewidth

More formally,

Consider graphs with up to k + 1 distinguished vertices c = c0, . . . , ck.

Define a merge operation (G⊕c H) that forms the union of G and H disjointly

apart from c.

Also define erasei(G) that erases the name ci.

Then a graphG is in Tk if it can be formed from graphs with at most k + 1

vertices through a sequence of such operations.

Anuj Dawar October 2010



8

Examples

• Trees have treewidth 1.

• Cycles have treewidth 2.

• The clique Kk has treewidth k − 1.

• The m× n grid has treewidth min(m,n).

Exercise

Anuj Dawar October 2010



9

Graphs of Small Treewidth are Sparse

If tw(G) ≤ k then G has at most k · |V (G)| edges.

This follows from the facts:

• if tw(G) ≤ k then G contains a vertex with at most k neighbours;

• if G ⊂ H then tw(G) ≤ tw(H).

Anuj Dawar October 2010



10

Dynamic Programming

It has long been known that graphs of small treewidth admit efficient dynamic

programming algorithms for intractable problems.

In general, these algorithms proceed bottom-up along a tree decomposition of G.

At any stage, a small set of vertices form the “interface” to the rest of the graph.

This allows a recursive decomposition of the problem.

Anuj Dawar October 2010



11

Computing Treewidth

The problem of deciding, given a graphG and an integer k whether tw(G) ≤ k

is NP-complete.

But, it is fixed-parameter tractable with k as parameter.

This follows from a theorem of Bodlaender that there is an algorithm running in

O(2p(k)n) time that given a graphG ∈ Tk computes a tree decomposition of G

of width k.

Anuj Dawar October 2010



12

Courcelle’s Theorem

Theorem (Courcelle)

For any MSO (or MS2) sentence ϕ and any k there is a linear time algorithm that

decides, given G ∈ Tk whetherG |= ϕ.

Given G ∈ Tk and ϕ, compute:

• from G a labelled tree T ; and

• from ϕ a bottom-up tree automaton A

such that A accepts T if, and only if, G |= ϕ.

Anuj Dawar October 2010



13

The Labelled Tree

C = {c0, . . . , ck} a set of k + 1 new constants.

(G, ρ)—expansion of G with ρ : C ⇀ V , a partial map interpreting some of the

constants in C .

Let

• Bk—the collection of (G, ρ) such that G has at most k + 1 vertices.

• erasei—an operation which takes (G, ρ) to (G, ρ′), where ρ′ is as ρ but

without ci.

• a binary operation of union disjoint over C :

(G1, ρ1) ⊕C (G2, ρ2)

Anuj Dawar October 2010



14

Congruence

• Any G ∈ Tk is obtained from Bk by finitely many applications of the

operations erasei and ⊕C .

• If G1, ρ1 ≡MSO
m G2, ρ2, then

erasei(G1, ρ1) ≡
MSO
m erasei(G2, ρ2)

• If G1, ρ1 ≡MSO
m G2, ρ2, andH1, σ1 ≡MSO

m H2, σ2 then

(G1, ρ1) ⊕C (H1, σ1) ≡
MSO
m (G2, ρ2) ⊕C (H2, σ2)

Note: a special case of this is that ≡MSO
m

is a congruence for disjoint union of

graphs.

Anuj Dawar October 2010



15

Satisfaction on Tk

Any G ∈ Tk can be represented as a finite tree, with leaves labelled by elements

of Bk , internal nodes labelled by operations erasei and ⊕C .

We can then compute the TypeMSO(G) bottom-up.

This establishes the following:

The satisfaction problem for MSO is decidable in time f(l, k)n, where

• f is some computable function

• l is the length of the input formula

• k is the treewidth of the input structure

• n is the size of the input structure.

Anuj Dawar October 2010



16

The Method of Decompositions

Suppose C is a class of graphs such that there is a finite class B and a finite

collection Op of operations such that:

• C is contained in the closure of B under the operations in Op;

• there is a polynomial-time algorithm which computes, for any G ∈ C, an

Op-decomposition of G over B; and

• for eachm, the equivalence class ≡
(MSO)
m is an effective congruence with

respect to to all operations o ∈ Op (i.e., the ≡
(MSO)
m -type of o(G1, . . . , Gs)

can be computed from the ≡
(MSO)
m -types of G1, . . . , Gs).

Then, FO (MSO) satisfaction is fixed-parameter tractable on C.

Anuj Dawar October 2010



17

Relaxations of the Method

1. Instead of requiring B be finite, it sufficers to require that satisfaction is in FPT

over B.

2. In place of ≡
(MSO)
m , we can take any sequence of equivalence relations

∼m (m ∈ N) satisfying

• for every ϕ there is an m such that models of ϕ are closed under ∼m;

and

• for all m, ∼m has finite index.

Note: letting G ∼m H if G,H cannot be distinguished by a formula of length m, does

not yield a congruence with respect to disjoint union.

There is no elementary function e such that G1 ∼
e(m) H1 and G2 ∼

e(m) H2 implies

G1 ⊕ G2 ∼m H1 ⊕ H2.

(D.,Grohe, Kreutzer, Schweikardt)

Anuj Dawar October 2010



18

Bounded Degree Graphs

In a graphG = (V,E) the degree of a vertex v ∈ V is the number of

neighbours of v, i.e.

|{u ∈ V | (u, v) ∈ E}|.

We write δ(G) for the smallest degree of any vertex in G.

We write ∆(G) for the largest degree of any vertex in G.

Dk—the class of graphsG with ∆(G) ≤ k.

Anuj Dawar October 2010



19

Bounded Degree Graphs

Theorem (Seese)

For every sentence ϕ of FO and every k there is a linear time algorithm which,

given a graphG ∈ Dk determines whetherG |= ϕ.

A proof is based on locality of first-order logic, which we look at next.

Note: this is not true for MSO unless P = NP.

Construct, for any graphG, a graphG′ such that ∆(G′) ≤ 5 and G′ is

3-colourable iff G is, and the map G 7→ G′ is polynomial-time

computable.

Anuj Dawar October 2010



20

Gaifman’s Locality Theorem

We write δ(x, y) > d for the formula of FO that says that the distance between x

and y is greater than d.

We write ψr(x) to denote the formula obtained from ψ(x) by relativising all

quantifiers to the set Nr = {y | δ(x, y) < r}, i.e.

Each subformula ∃yθ is replaced by ∃y(δ(x, y) < r) ∧ θr

Each subformula ∀yθ is replaced by ∀y(δ(x, y) < r) → θr

Anuj Dawar October 2010



21

Gaifman’s Locality Theorem

A basic local sentence is a sentence of the form

∃x1 · · · ∃xs





∧

i 6=j

δ(xi, xj) > 2r ∧
∧

i

ψr(xi)





Theorem (Gaifman)

Every first-order sentence is equivalent to a Boolean combination of basic local

sentences.

Anuj Dawar October 2010



22

Uses of Gaifman’s Locality Theorem

Gaifman’s theorem is often used to give simple proofs that some problems are not

expressible in first-order logic.

To illustrate the undefinability of connectivity consider (for any r, q) the following

two graphs chosen big enough so that any basic local sentence of radius r and

quantifier rank q cannot distinguish them.

Anuj Dawar October 2010



23

Planarity

A figure illustrating that planarity is not first-order definable.

Exercise: use locality to show that 2-colourability and 3-colourability are not first-order

definable.

Anuj Dawar October 2010



24

Proof of Gaifman’s Theorem

Write G ∼r
q H to indicate that G andH agree on all basic, local sentences with

radius r and quantifier rank q.

It suffices to show that there are functions r and q such that

G ∼
r(p)
q(p) H implies G ≡p H

r = 7p suffices. The value of q will emerge from the proof.

Anuj Dawar October 2010



25

Proof of Gaifman’s Theorem

The aim is to prove that if G ∼r
q H , then in the p-round Ehrenfeucht game on G

and H , Duplicator can inductively maintain the following condition with

m = p− l rounds left to play:

⋃

i≤l

NG
r(m)(ai) ≡q(m)

⋃

i≤k

NH
r(m)(bi)

where NG
r (a) denotes the subgraph of G induced by the vertices whose

distance from a is at most r.

Anuj Dawar October 2010



26

Proof of Gaifman’s Theorem

Suppose w.l.o.g. that Spoiler, in round l + 1 plays on a in G.

We describe the response of Duplicator.

We distinguish three cases:

1. for some i ≤ k, dist(a, ai) ≤ 2r(m− 1);

2. for all i, dist(a, ai) > 2r(m− 1) and for some i,

dist(a, ai) ≤ 6r(m− 1); and

3. for all i, dist(a, ai) > 6r(m− 1).

Anuj Dawar October 2010



27

Proof of Gaifman’s Theorem

Case 1:

q(m) is bigger than the quantifier rank of the sentence:

∃x(δ(x, ai) ≤ 2r(m− 1) ∧ θ(x, x))

where θ(x, x) is the formula that characterises Typeq(m−1)(N, aa) for N the

graph

N = NG
r(m−1)(a) ∪

⋃

i≤l

NG
r(m−1)(ai)

Anuj Dawar October 2010



28

Proof of Gaifman’s Theorem

Case 2:

q(m) is bigger than the quantifier rank of the sentence:

∃x(
∧

i

(δ(x, ai) > 2r(m− 1)) ∧
∨

i

(δ(x, ai) ≤ 6r(m− 1)) ∧ θ(x))

where θ(x) is the formula that characterises Typeq(m−1)(N, a) where

N = NG
r(m−1)(a)

Anuj Dawar October 2010



29

Proof of Gaifman’s Theorem

Case 3

Let s be maximal such that
⋃

i≤lN
G
2r(m−1)(ai) contains s elements, pairwise

distance 4r(m− 1) apart, each satisfying θ(x).

Note s ≤ l.

q(m) is big enough so that the value of s is the same in
⋃

i≤lN
H
2r(m−1)(bi)

Since dist(a, ai) > 6r(m− 1) for all i,

G |= ∃x1 · · · ∃xs+1





∧

i 6=j

δ(xi, xj) > 4r(m− 1) ∧
∧

i

θ(xi)





Anuj Dawar October 2010



30

Using Gaifman’s Theorem

We now want to use Gaifman’s theorem to establish Seese’s theorem:

Theorem (Seese)

For every sentence ϕ of FO and every k there is a linear time algorithm which,

given a graphG ∈ Dk determines whetherG |= ϕ.

By Gaifman’s theorem, it suffices to prove the above for basic local sentences.

Anuj Dawar October 2010



31

Seese’s Theorem

How do we evaluate a basic local sentence

∃x1 · · · ∃xs

(

∧

i 6=j δ(xi, xj) > 2r ∧
∧

i ψ
r(xi)

)

in a graphG ∈ Dk?

For each v ∈ G, determine whether

Nr(a) |= ψ[a].

Since the size of Nr(a) is bounded, this takes linear time.

Label a red if so. We now want to know whether there exists a 2r-scattered set of

red vertices of size s.

Anuj Dawar October 2010



32

Finding a Scattered Set

(Frick and Grohe) describe a method to do this efficiently.

Choose red vertices from G in some order, removing the 2r-neighbourhood of

each chosen vertex.

a1 ∈ G,

a2 ∈ G \N2r(a1),

a3 ∈ G \ (N2r(a1) ∪N2r(a2)), . . .

If the process continues for s steps, we have found a 2r-scattered set of size s.

Otherwise, for some u < s we have found a1, . . . , au such that all red vertices

are contained in

N2r(a1, . . . , au)

This is a graph of bounded size and the property of containing a 2r-scattered set

of red vertices of size s can be stated in FO.

Anuj Dawar October 2010



33

Method of Locality

• Suppose we have a function, associating a parameter kG ∈ N with each

graphG.

• Suppose we have an algorithm which, givenG and ϕ decidesG |= ϕ in time

g(l, kG)nc

for some computable function g and some constant c.

• Let C be a class of graphs of bounded local k, i.e.

there is a computable function t : N → N such that for every G ∈ C

and v ∈ G, kNr(a) < t(r).

Then, there is an algorithm which, given G ∈ C and ϕ decides whetherG |= ϕ

in time

f(l)nc+1

for some computable function f .

Anuj Dawar October 2010



34

Local Tree-Width

Let t : N → N be a non-decreasing function.

LTWt—the class of graphsG such that for every v ∈ V (G):

NG
r (v) has tree-width at most t(r). (Eppstein; Frick-Grohe).

We say that C has bounded local tree-width if there is some function t such that

C ⊆ LTWt.

Examples:

1. Tk has local tree-width bounded by the constant function t(r) = k.

2. Dk has local tree-width bounded by t(r) = kr + 1.

3. Planar graphs have local tree-width bounded by t(r) = 3r.

Anuj Dawar October 2010



35

Bounded Local Tree-Width

Theorem (Frick-Grohe)

For any class C of bounded local tree-width and any ϕ ∈ FO, there is a quadratic

time algorithm that decides, given A ∈ C, whether A |= ϕ.

The proof is a direct application of the method of locality.

Anuj Dawar October 2010


