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Complexity Theory

The study of Complexity Theory began in the 1960s and 1970s as an attempt to

explain what makes certain computational tasks inherently intractable.

The main outcome of the study was the theory of NP-completeness.

Thousands of individual problems have been identified as NP-complete.

We have a strong informal understanding of what makes problems NP-complete

(such as an exponential, unstructured search space).

We do not have a theory of what kind of structure on the search space

allows for tractable solution.
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Structure and Specification

Many classical intractable problems (including many on Karp’s original list of

NP-complete problems) are decision problems on graphs.

Graphs serve as a very general form of structure.

The decision problem asks whether they satisfy a specification.
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Graph Problems

1. Independent Set: Given: a graphG and a positive integer k

Decide: does G contain k vertices that are pairwise distinct and non-adjacent?

2. Dominating Set: Given: a graphG and a positive integer k

Decide: does G contain k vertices such that every vertex is among them or

adjacent to one of them?

3. 3-Colourability: Given: a graphG

Decide: is there an assignment of three colours r, b, g to the vertices of G so that

the endpoints of every edge are distinctly coloured?

4. Hamiltonicity: Given: a graphG

Decide: does G contain a cycle that visits every vertex exactly once?
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Formalising the Specification

To talk of the complexity of the specification of the problem, we have to formalise

the language in which the problems are specified.

Consider first-order predicate logic.

A collectionX of variables, and formulas:

E(x, y) | ϕ ∧ ψ | ϕ ∨ ψ | ¬ϕ | ∃xϕ | ∀xϕ

where x, y ∈ X .

In addition, we may sometimes allow coloursR(x) and constantsE(c, x).
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Specifications in First-Order Logic

A formula ϕ without free variables specifies a property of graphs.

∃x∃y∃z(x 6= y ∧ y 6= z ∧ x 6= z ∧ ¬E(x, y) ∧ ¬E(x, z) ∧ ¬E(y, z))

defines the graphs that have an independent set of size 3.

∃x∃y∃z∀w(x = w ∨ y = w ∨ z = w ∨ E(x,w) ∨ E(y, w) ∨ E(z, w))

defines the graphs that have a dominating set of size 3.

More generally, we can write, for each k, formulas γk, δk that define, respectively

the graphs with an independent set of size k and those with a dominating set of

size k.
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Complexity of First-Order Logic

What is the complexity of deciding, for a given graphG and formula ϕ whether or

not G |= ϕ?

The straightforward algorithm proceeds recursively on the structure of ϕ:

• Atomic formulas by direct lookup.

• Boolean connectives are easy.

• If ϕ ≡ ∃xψ then for each v in G check whether

(G, x 7→ v) |= ψ.

This shows that the problem can be solved in time O(lnm) and O(m logn)

space, where l is the length of ϕ and n the order of G.

m is the nesting depth of quantifiers in ϕ (or by a more careful accounting, the

number of distinct variables occurring in ϕ)

Anuj Dawar October 2010



8

Complexity of First-Order Logic

The problem of deciding whetherG |= ϕ for a first-order ϕ is in time O(lnm)

and O(m logn) space.

So, is in PSPACE and for a fixed ϕ, the problem of deciding membership in the

class

Mod(ϕ) = {G | G |= ϕ}

is in logarithmic space and polynomial time.

QBF—satisfiability of quantified Boolean formulas can be easily reduced to the

FO satisfaction problem with G a fixed two-vertex graph.

Thus, the problem is PSPACE-complete, even for fixedG.
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Weakness of First-Order Logic

For any fixed ϕ, the class of graphsG such that G |= ϕ is decidable in

polynomial time and logarithmic space.

There are computationally easy classes that are not defined by any first-order

sentence.

• The class of graphs with an even number of vertices.

• The class of graphs (V,E) that are connected.

Both of these are known to be computable in LOGSPACE.

The latter by a celebrated result of Reingold.
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Second-Order Logic

Second-order logic is obtained by adding to the defining rules of first-order logic

two further clauses:

atomic formulae – X(t1, . . . , ta), where X is a second-order variable

second-order quantifiers – ∃Xϕ, ∀Xϕ

Second-order logic can express evenness and connectivity as well as properties

that are deemed not to be feasibly computable, such as graph 3-colourability.

Indeed, it can express every NP-complete problem.
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Examples

Evenness.

∃B∃S ∀x∃yB(x, y) ∧ ∀x∀y∀zB(x, y) ∧B(x, z) → y = z

∀x∀y∀zB(x, z) ∧B(y, z) → x = y

∀x∀yS(x) ∧B(x, y) → ¬S(y)

∀x∀y¬S(x) ∧B(x, y) → S(y)
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Examples

Connectivity

∀S(∃xSx ∧ (∀x∀y (Sx ∧ Exy) → Sy)) → ∀xSx

∀a∀b∃P ∀x∀y P (x, y) → E(x, y)

∃xP (a, x) ∧ ∃xP (x, b) ∧ ¬∃xP (x, a) ∧ ¬∃xP (b, x)

∀x∀y(P (x, y) → ∀z(P (x, z) → y = z))

∀x∀y(P (x, y) → ∀z(P (z, x) → y = z))

∀x((x 6= a ∧ ∃yP (x, y)) → ∃zP (z, x))

∀x((x 6= b ∧ ∃yP (y, x)) → ∃zP (x, z))
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Examples

3-Colourability

∃R∃B∃G ∀x(Rx ∨Bx ∨Gx)∧

∀x( ¬(Rx ∧Bx) ∧ ¬(Bx ∧Gx) ∧ ¬(Rx ∧Gx))∧

∀x∀y(Exy → ( ¬(Rx ∧Ry)∧

¬(Bx ∧By)∧

¬(Gx ∧Gy)))
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Descriptive Complexity

Theorem (Fagin)

A class of graphs is definable in existential second-order logic if, and only if, it is in

the class NP.

A major open problem in the field of Descriptive Complexity has been to establish

whether there is a similar descriptive characterisation of P—the class of

computational problems decidable in polynomial time.

Is there any extension of first-order logic in which one can express all and only the

feasibly computable problems?

Can the class P be “built up from below” by finitely many operations?
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Monadic Second-Order Logic

Monadic Second-Order Logic (MSO) is the restriction of second-order logic where

the second-order quantifiers are only over sets of vertices—not arbitrary relations.

3-colourability is MSO but not Hamiltonicity.

Guarded Second-Order Logic (or MS2) is the restriction of second-order logic

where the second-order quantifiers range over sets of vertices or sets of edges.

Hamiltonicity is MS2.

Exercise: Show this

These restricted languages are well-behaved in many situations.
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Complexity of MSO

A naı̈ve algorithm along the lines we saw for first-order logic for evaluating MSO

formulas would add the rule:

• If ϕ ≡ ∃X ψ then for eachA ⊆ V (G) check whether

(G,X 7→ A) |= ψ.

The problem of deciding whetherG |= ϕ for ϕ in MSO is in time O(l2nm) and

O(mn) space.

So, the problem is in PSPACE (and therefore PSPACE-complete) but, even for

fixed ϕ it can take exponential time.

We have seen that some NP-complete problems can be expressed by a fixed

MSO formula ϕ.
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Is FO contained in an initial segment of P?

Question posed in the title of a paper by Stolboushkin and Taitslin .

Is there a fixed c such that for every first-order ϕ, Mod(ϕ) is decidable

in time O(nc)?

If P = PSPACE, then the answer is yes, as the satisfaction relation is then itself

decidable in time O(nc) and this bounds the time for all formulas ϕ.

Thus, though we expect the answer is no, this would be difficult to prove.

A more uniform version of their question is:

Is there a constant c and a computable function f so that the satisfaction

relation for first-order logic is decidable in time O(f(l)nc)?

In this case we say that the satisfaction problem is fixed-parameter tractable

(FPT) with the formula length as parameter.
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Parameterized Problems

Independent Set: Given: a graphG and a positive integer k

Decide: does G contain k vertices that are pairwise distinct and non-adjacent?

Dominating Set: Given: a graphG and a positive integer k

Decide: does G contain k vertices such that every vertex is among them or

adjacent to one of them?

Here the input consists of a graph and an integer parameter.

For each fixed value of k, there is a first-order sentence ϕk such thatG |= ϕk if,

and only if, G contains an independent set of k vertices.

Similarly for dominating set.
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Parameterized Complexity

FPT—the class of problems of input size n and parameter l which can be solved

in time O(f(l)nc) for some computable function f and constant c.

There is a hierarchy of intractable classes.

FPT ⊆W [1] ⊆W [2] ⊆ · · · ⊆ AW[⋆]

Independent Set is W [1]-complete.

Dominating Set is W [2]-complete.

Anuj Dawar October 2010



20

Parameterized Complexity of First-Order Satisfaction

Writing Πt for those formulas which, in prenex normal form have t alternating

blocks of quantifiers starting with a universal block:

The satisfaction problem restricted to Πt formulas (parameterized by the

length of the formula) is hard for the class W [t].

The satisfaction relation for first-order logic (G |= ϕ), parameterized by the length

of ϕ is AW[⋆]-complete.

Thus, a positive answer to the question of Stolboushkin and Taitslin would

collapse the edifice of parameterized complexity theory.
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Restricted Classes

One way to get a handle on the complexity of first-order satisfaction is to consider

restricted graph classes.

Given: a first-order formula ϕ and a graphG ∈ C

Decide: if G |= ϕ

For many interesting classes C, this problem has been shown to be FPT, even for

formulas of MSO.

We say that satisfaction of FO (or MSO) is fixed-paramter tractable on C.
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Finding Structure in Graph Classes

This course of lectures is about when we can find sufficient structure in the class

C to make FO (MSO) satisfaction fixed-parameter tractable.

We will concentrate classes C of sparse graphs (i.e. graphs where the number of

edges is much smaller than n).

We will look at proofs showing FO satisfaction is FPT on graphs of bounded

treewidth, planar graphs, classes of graphs that exclude a minor and conclude

with some conjectures that generalize all of these.

We start with a digression from graphs to look at words.
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Logic on Words

Fix a finite alphabet Σ.

We consider formulas (of FO or SO) with atomic formulas

a(x)(for each a ∈ Σ) and x ≤ y.

Then each formula defines a language in Σ∗.

Any language in NP can be defined in existential second-order logic.

Theorem (Büchi-Elgot-Trakhtenbrot)

A language L is defined by a formula of MSO if, and only if, L is regular.
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Games

There are several different ways of proving this theorem.

Here we look at a proof of one direction (every MSO definable language is

regular) and express it in terms of Ehrenfeucht-style games.

We first define these for first-order logic.

We drop, for the moment, the language of graphs, and consider any structures in

a relational vocabulary.

A and B are structures over the same vocabulary, and A and B are their

universes.
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Quantifier Rank

The quantifier rank of a first-order formula ϕ, written qr(ϕ) is defined inductively

as follows:

1. if ϕ is atomic then qr(ϕ) = 0,

2. if ϕ = ¬ψ then qr(ϕ) = qr(ψ),

3. if ϕ = ψ1 ∨ ψ2 or ϕ = ψ1 ∧ ψ2 then

qr(ϕ) = max(qr(ψ1), qr(ψ2)).

4. if ϕ = ∃xψ or ϕ = ∀xψ then qr(ϕ) = qr(ψ) + 1

More informally, qr(ϕ) is the maximum depth of nesting of quantifiers inside ϕ.
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Formulas of Bounded Quantifier Rank

Note: We assume that our signature consists only of relation and constant

symbols. That is, there are no function symbols of non-zero arity.

With this proviso, it is easily proved that in a finite vocabulary, for each q, there are

(up to logical equivalence) only finitely many sentences ϕ with qr(ϕ) ≤ q.

To be precise, we prove by induction on q that for all m, there are only finitely

many formulas of quantifier rank q with at mostm free variables.
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Formulas of Bounded Quantifier Rank

If qr(ϕ) = 0 then ϕ is a Boolean combination of atomic formulas. If it is has m

variables, it is equivalent to a formula using the variables x1, . . . , xm. There are

finitely many formulas, up to logical equivalence.

Suppose qr(ϕ) = q + 1 and the free variables of ϕ are among x1, . . . , xm.

Then ϕ is a Boolean combination of formulas of the form

∃xm+1ψ

where ψ is a formula with qr(ψ) = q and free variables x1, . . . , xm, xm+1.

By induction hypothesis, there are only finitely many such formulas, and therefore

finitely many Boolean combinations.
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Equivalence Relation

For two structures A and B, we say A ≡q B if for any sentence ϕ with

qr(ϕ) ≤ q,

A |= ϕ if, and only if, B |= ϕ.

More generally, if a and b are m-tuples of elements from A and B respectively,

then we write (A, a) ≡q (B,b) if for any formula ϕ with m free variables

qr(ϕ) ≤ q,

A |= ϕ[a] if, and only if, B |= ϕ[b].
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Types

We write Typeq(A, a) for the set of all formulas ϕ with qr(ϕ) ≤ q such that

A |= ϕ[a].

(A, a) ≡q (B,b) is equivalent to Typeq(A, a) = Typeq(B,b).

There is a formula θA,a ∈ Typeq(A, a) such that:

if B |= θA,a[b] then (A, a) ≡q (B,b). Exercise: Why?

We sometimes identify θA,a with Typeq(A, a).
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Partial Isomorphisms

A map f is a partial isomorphism between structures A and B, if

• the domain of f = {a1, . . . , al} ⊆ A, including the interpretation of all

constants;

• the range of f = {b1, . . . , bl} ⊆ B, including the interpretation of all

constants; and

• f is an isomorphism between its domain and range.

Note that if f is a partial isomorphism taking a tuple a to a tuple b, then for any

quantifier-free formula θ

A |= θ[a] if, and only if, B |= θ[b].
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Ehrenfeucht-Fraı̈ss é Games

The q-round Ehrenfeucht game on structures A and B proceeds as follows:

• There are two players called Spoiler and Duplicator.

• At the ith round, Spoiler chooses one of the structures (say B) and one of the

elements of that structure (say bi).

• Duplicator must respond with an element of the other structure (say ai).

• If, after q rounds, the map

{ai 7→ bi | 1 ≤ i ≤ q} ∪ {cA 7→ cB | c a constant.}

is a partial isomorphism, then Duplicator has won the game, otherwise

Spoiler has won.
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Equivalence and Games

Write A ∼q B to denote the fact that Duplicator has a winning strategy in the

q-round Ehrenfeucht game on A and B.

The relation ∼q is, in fact, an equivalence relation. Exercise: prove it.

Theorem (Fraı̈ss é; Ehrenfeucht)

A ∼q B if, and only if, A ≡q B

We give a proof for one direction A ∼q B ⇒ A ≡q B in some detail.
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Proof

To prove A ∼q B ⇒ A ≡q B, it suffices to show that if there is a sentence ϕ

with qr(ϕ) ≤ q such that

A |= ϕ and B 6|= ϕ

then Spoiler has a winning strategy in the q-round Ehrenfeucht game on A and

B.

Assume that ϕ is in negation normal form, i.e. all negations are in front of atomic formulas.

Note that this does not involve an increase in quantifier rank.
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Proof

We prove by induction on q the stronger statement that if ϕ is a formula with

qr(ϕ) ≤ q and a = (a1, . . . , am) and b = (b1, . . . , bm) are tuples of

elements from A and B respectively such that

A |= ϕ[a] and B 6|= ϕ[b]

then Spoiler has a winning strategy in the q-round Ehrenfeucht game which

starts from a position in which a1, . . . , am and b1, . . . , bm have already been

selected.
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Proof

When q = 0, ϕ is a quantifier-free formula. Thus, if

A |= ϕ[a] and B 6|= ϕ[b]

there is an atomic formula θ that distinguishes the two tuples and therefore the

map taking a to b is not a partial isomorphism.

When q = p+ 1, ϕ is a Boolean combination for atomic formulas and formulas

of the form ∃xψ or ∀xψ such that qr(ψ) ≤ p. Suppose there is such a

subformula θ with

A |= θ[a] and B 6|= θ[b]

If θ = ∃xψ, Spoiler chooses a witness for x in A.

If θ = ∀xψ, B |= ∃x¬ψ and Spoiler chooses a witness for x in B.
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Proof ( sketch of converse)

The proof of the converse (A ≡k B ⇒ A ∼q B again proceed by induction on

q.

If (A, a) 6∼q (B,b) and this is witnessed by Spoiler choosing a ∈ A, then take

the formula

∃xθA,aa

.
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MSO Game

The m-round monadic Ehrenfeucht game on structures A and B proceeds as

follows:

• At the ith round, Spoiler chooses one of the structures (say B) and plays

either a point move or a set move.

In a point move, it chooses one of the elements of the chosen structure

(say bi) – Duplicator must respond with an element of the other

structure (say ai).

In a set move, it chooses a subset of the universe of the chosen

structure (say Si) – Duplicator must respond with a subset of the other

structure (say Ri).
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MSO Game

• If, after m rounds, the map

ai 7→ bi

is a partial isomorphism between

(A, R1, . . . , Rq) and (B, S1, . . . , Sq)

then Duplicator has won the game, otherwise Spoiler has won.
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MSO Game

If we define the quantifier rank of an MSO formula by adding the following

inductive rule to those for a formula of FO:

if ϕ = ∃Sψ or ϕ = ∀Sψ then qr(ϕ) = qr(ψ) + 1

then, we have

Duplicator has a winning strategy in the m-round monadic Ehrenfeucht

game on structures A and B if, and only if, for every sentence ϕ of MSO

with qr(ϕ) ≤ m

A |= ϕ if, and only if, B |= ϕ
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MSO Types

We write TypeMSO
m (A, a) to denote the set of all MSO formulas of quantifier rank

at mostm satisfied by (A, a).

We write (A, a) ≡MSO
m (B,b) to denote

TypeMSO
m (A, a) = TypeMSO

m (B,b)

Just as for FO, there are only finitely many formulas of MSO with quantifier rank

m and s free variables.

There is a single formula θA,a that characterizes TypeMSO
m (A, a).
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MSO on Words

Theorem (Büchi-Elgot-Trakhtenbrot)

For any sentence ϕ of MSO, the language Lϕ = {w | s a word and w |= ϕ} is

regular.

Suppose u1, u2, v1, v2 are words over an alphabet Σ such that

u1 ≡MSO
m u2 and v1 ≡MSO

m v2

then u1 · v1 ≡MSO
m u2 · v2.

Dulpicator has a winning strategy on the game played on the pair of words

u1 · v1, u2 · v2 that is obtained as a composition of its strategies in the games on

u1, u2 and v1, v2.
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Myhill-Nerode Theorem

Theorem (Myhill-Nerode)

A language L is regular if, and only if, there is an equivalence relation ∼ on

strings such that:

1. ∼ has finite index on the set of all strings;

2. ∼ is a congruence for string concatenation, i.e.

s1 ∼ t1 and s2 ∼ t2 ⇒ s1 · s2 ∼ t1 · t2;

and

3. L is the union of some number of ∼-equivalence classes.
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MSO Languages

ϕ—an MSO sentence of quantifier rank m.

• ≡MSO
m has finite index since there are, up to logical equivalence, only finitely

many MSO sentences of quantifier rank at mostm.

• ≡MSO
m is a congruence for concatenation by an easy argument using

Ehrenfeucht-Fraı̈ssé games (a special case of the Feferman-Vaught theorem).

• It is immediate that Lϕ is closed under ≡MSO
m .
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