Evaluating Formulas on Sparse Graphs

Part 1

Anuj Dawar

University of Cambridge Computer Laboratory

PhDOpen, Warsaw 1 October 2010

1

The study of *Complexity Theory* began in the 1960s and 1970s as an attempt to explain what makes certain computational tasks *inherently intractable*.

The main outcome of the study was the theory of *NP-completeness*.

Thousands of individual problems have been identified as *NP-complete*.

We have a strong informal understanding of what makes problems NP-complete (such as an *exponential, unstructured* search space).

We do not have a theory of what kind of *structure* on the search space allows for tractable solution.

Structure and Specification

Many classical intractable problems (including many on Karp's original list of NP-complete problems) are decision problems on graphs.

Graphs serve as a very general form of *structure*.

The decision problem asks whether they satisfy a *specification*.

Graph Problems

1. Independent Set: Given: a graph G and a positive integer kDecide: does G contain k vertices that are pairwise distinct and non-adjacent?

2. Dominating Set: Given: a graph G and a positive integer kDecide: does G contain k vertices such that every vertex is among them or adjacent to one of them?

3. 3-Colourability: Given: a graph GDecide: is there an assignment of three colours r, b, g to the vertices of G so that the endpoints of every edge are distinctly coloured?

4. Hamiltonicity: Given: a graph G

Decide: does G contain a cycle that visits every vertex exactly once?

Formalising the Specification

To talk of the *complexity of the specification* of the problem, we have to formalise the language in which the problems are specified.

Consider first-order predicate logic.

A collection X of variables, and formulas:

 $E(x,y) \mid \varphi \land \psi \mid \varphi \lor \psi \mid \neg \varphi \mid \exists x \varphi \mid \forall x \varphi$

where $x, y \in X$.

In addition, we may sometimes allow *colours* R(x) and constants E(c, x).

Specifications in First-Order Logic

A formula φ without free variables specifies a property of graphs.

 $\exists x \exists y \exists z (x \neq y \land y \neq z \land x \neq z \land \neg E(x, y) \land \neg E(x, z) \land \neg E(y, z))$

defines the graphs that have an independent set of size 3.

 $\exists x \exists y \exists z \forall w (x = w \lor y = w \lor z = w \lor E(x, w) \lor E(y, w) \lor E(z, w))$

defines the graphs that have a dominating set of size 3.

More generally, we can write, for each k, formulas γ_k , δ_k that define, respectively the graphs with an independent set of size k and those with a dominating set of size k.

Complexity of First-Order Logic

What is the complexity of deciding, for a given graph G and formula φ whether or not $G \models \varphi$?

The straightforward algorithm proceeds recursively on the structure of φ :

- Atomic formulas by direct lookup.
- Boolean connectives are easy.
- If $\varphi \equiv \exists x \psi$ then for each v in G check whether

 $(G, x \mapsto v) \models \psi.$

This shows that the problem can be solved in time $O(ln^m)$ and $O(m \log n)$ space, where l is the *length* of φ and n the *order* of G. m is the nesting depth of quantifiers in φ (or by a more careful accounting, the number of distinct variables occurring in φ)

Complexity of First-Order Logic

The problem of deciding whether $G \models \varphi$ for a first-order φ is in time $O(ln^m)$ and $O(m \log n)$ space.

So, is in PSPACE and for a fixed φ , the problem of deciding membership in the class

 $Mod(\varphi) = \{G \mid G \models \varphi\}$

is in logarithmic space and polynomial time.

QBF—satisfiability of quantified Boolean formulas can be easily reduced to the FO satisfaction problem with G a fixed two-vertex graph.

Thus, the problem is PSPACE-complete, even for fixed G.

Weakness of First-Order Logic

For any fixed φ , the class of graphs G such that $G \models \varphi$ is decidable in *polynomial time* and *logarithmic space*.

There are computationally easy classes that are not defined by any first-order sentence.

- The class of graphs with an even number of vertices.
- The class of graphs (V, E) that are connected.

Both of these are known to be computable in LOGSPACE.

The latter by a celebrated result of Reingold.

Second-Order Logic

Second-order logic is obtained by adding to the defining rules of first-order logic two further clauses:

atomic formulae – $X(t_1, \ldots, t_a)$, where X is a second-order variable second-order quantifiers – $\exists X \varphi, \forall X \varphi$

Second-order logic can express evenness and connectivity as well as properties that are deemed not to be feasibly computable, such as *graph 3-colourability*.

Indeed, it can express every *NP-complete* problem.

10

Examples

Evenness.

 $\begin{array}{ll} \exists B \exists S & \forall x \exists y B(x,y) \land \forall x \forall y \forall z B(x,y) \land B(x,z) \rightarrow y = z \\ & \forall x \forall y \forall z B(x,z) \land B(y,z) \rightarrow x = y \\ & \forall x \forall y S(x) \land B(x,y) \rightarrow \neg S(y) \\ & \forall x \forall y \neg S(x) \land B(x,y) \rightarrow S(y) \end{array}$

Examples

Connectivity

$$\forall S(\exists x \, Sx \land (\forall x \forall y \, (Sx \land Exy) \to Sy)) \to \forall x \, Sx$$

 $\begin{aligned} \forall a \forall b \exists P \quad \forall x \forall y \ P(x, y) &\to E(x, y) \\ & \exists x P(a, x) \land \exists x P(x, b) \land \neg \exists x P(x, a) \land \neg \exists x P(b, x) \\ & \forall x \forall y (P(x, y) \to \forall z (P(x, z) \to y = z)) \\ & \forall x \forall y (P(x, y) \to \forall z (P(z, x) \to y = z)) \\ & \forall x ((x \neq a \land \exists y P(x, y)) \to \exists z P(z, x)) \\ & \forall x ((x \neq b \land \exists y P(y, x)) \to \exists z P(x, z)) \end{aligned}$

12

Examples

3-Colourability

 $\exists R \exists B \exists G \quad \forall x (Rx \lor Bx \lor Gx) \land \\ \forall x (\neg (Rx \land Bx) \land \neg (Bx \land Gx) \land \neg (Rx \land Gx)) \land \\ \forall x \forall y (Exy \rightarrow (\neg (Rx \land Ry) \land \\ \neg (Bx \land By) \land \\ \neg (Gx \land Gy)))$

13

Descriptive Complexity

Theorem (Fagin)

A class of graphs is definable in *existential second-order logic* if, and only if, it is in the class NP.

A major open problem in the field of *Descriptive Complexity* has been to establish whether there is a similar descriptive characterisation of P—the class of computational problems decidable in polynomial time.

Is there any extension of first-order logic in which one can express all and only the feasibly computable problems?

Can the class P be "built up from below" by finitely many operations?

Monadic Second-Order Logic

Monadic Second-Order Logic (MSO) is the restriction of second-order logic where the second-order quantifiers are only over *sets* of vertices—not arbitrary relations. 3-colourability is MSO but not Hamiltonicity.

Guarded Second-Order Logic (or MS_2) is the restriction of second-order logic where the second-order quantifiers range over sets of vertices or sets of edges. Hamiltonicity is MS_2 .

Exercise: Show this

These restricted languages are well-behaved in many situations.

Complexity of MSO

A naïve algorithm along the lines we saw for first-order logic for evaluating MSO formulas would add the rule:

• If $\varphi \equiv \exists X \psi$ then for each $A \subseteq V(G)$ check whether

 $(G, X \mapsto A) \models \psi.$

The problem of deciding whether $G \models \varphi$ for φ in MSO is in time $O(l2^{nm})$ and O(mn) space.

So, the problem is in PSPACE (and therefore PSPACE-complete) but, *even for fixed* φ it can take exponential time.

We have seen that some NP-complete problems can be expressed by a fixed MSO formula φ .

Is FO contained in an initial segment of P?

Question posed in the title of a paper by Stolboushkin and Taitslin.

Is there a fixed *c* such that for every first-order φ , $Mod(\varphi)$ is decidable in time $O(n^c)$?

If P = PSPACE, then the answer is yes, as the satisfaction relation is then itself decidable in time $O(n^c)$ and this bounds the time for all formulas φ .

Thus, though we expect the answer is no, this would be difficult to prove.

A more uniform version of their question is:

Is there a constant *c* and a computable function *f* so that the satisfaction relation for first-order logic is decidable in time $O(f(l)n^c)$?

In this case we say that the satisfaction problem is *fixed-parameter tractable* (FPT) with the formula length as parameter.

Parameterized Problems

Independent Set: Given: a graph G and a positive integer kDecide: does G contain k vertices that are pairwise distinct and non-adjacent?

Dominating Set: Given: a graph G and a positive integer kDecide: does G contain k vertices such that every vertex is among them or adjacent to one of them?

Here the input consists of a graph and an *integer parameter*.

For each fixed value of k, there is a first-order sentence φ_k such that $G \models \varphi_k$ if, and only if, G contains an independent set of k vertices.

Similarly for dominating set.

Parameterized Complexity

FPT—the class of problems of input size n and parameter l which can be solved in time $O(f(l)n^c)$ for some computable function f and constant c.

There is a hierarchy of *intractable* classes.

 $\mathsf{FPT} \subseteq W[1] \subseteq W[2] \subseteq \cdots \subseteq \mathsf{AW}[\star]$

Independent Set is W[1]-complete.

Dominating Set is W[2]-complete.

Parameterized Complexity of First-Order Satisfaction

Writing Π_t for those formulas which, in prenex normal form have t alternating blocks of quantifiers starting with a universal block:

The satisfaction problem restricted to Π_t formulas (parameterized by the length of the formula) is hard for the class W[t].

The satisfaction relation for first-order logic ($G \models \varphi$), parameterized by the length of φ is AW[\star]-complete.

Thus, a positive answer to the question of Stolboushkin and Taitslin would collapse the edifice of parameterized complexity theory.

Restricted Classes

One way to get a handle on the complexity of first-order satisfaction is to consider restricted graph classes.

Given: a first-order formula φ and a graph $G \in \mathcal{C}$ Decide: if $G \models \varphi$

For many interesting classes C, this problem has been shown to be FPT, even for formulas of MSO.

We say that satisfaction of FO (or MSO) is *fixed-paramter tractable on* C.

Finding Structure in Graph Classes

This course of lectures is about when we can find sufficient structure in the class C to make FO (MSO) satisfaction fixed-parameter tractable.

We will concentrate classes C of *sparse graphs* (i.e. graphs where the number of edges is much smaller than n).

We will look at proofs showing FO satisfaction is FPT on *graphs of bounded treewidth*, *planar graphs*, *classes of graphs that exclude a minor* and conclude with some conjectures that generalize all of these.

We start with a digression from graphs to look at words.

Logic on Words

Fix a finite alphabet Σ .

We consider formulas (of FO or SO) with atomic formulas

a(x)(for each $a \in \Sigma$) and $x \leq y$.

Then each formula defines a *language* in Σ^* .

Any language in NP can be defined in existential second-order logic.

Theorem (Büchi-Elgot-Trakhtenbrot)

A language L is defined by a formula of MSO if, and only if, L is regular.

Games

There are several different ways of proving this theorem.

Here we look at a proof of one direction (every MSO definable language is regular) and express it in terms of *Ehrenfeucht-style games*.

We first define these for first-order logic.

We drop, for the moment, the language of graphs, and consider any structures in a *relational* vocabulary.

A and \mathbb{B} are structures over the same vocabulary, and A and B are their universes.

Quantifier Rank

The *quantifier rank* of a first-order formula φ , written $qr(\varphi)$ is defined inductively as follows:

- 1. if φ is atomic then $\operatorname{qr}(\varphi) = 0$,
- 2. if $\varphi = \neg \psi$ then $\operatorname{qr}(\varphi) = \operatorname{qr}(\psi)$,
- 3. if $\varphi = \psi_1 \lor \psi_2$ or $\varphi = \psi_1 \land \psi_2$ then $qr(\varphi) = max(qr(\psi_1), qr(\psi_2)).$
- 4. if $\varphi = \exists x \psi$ or $\varphi = \forall x \psi$ then $\operatorname{qr}(\varphi) = \operatorname{qr}(\psi) + 1$

More informally, $qr(\varphi)$ is the *maximum depth of nesting of quantifiers* inside φ .

Formulas of Bounded Quantifier Rank

Note: We assume that our signature consists only of relation and constant symbols. That is, there are *no function symbols of non-zero arity*.

With this proviso, it is easily proved that in a finite vocabulary, for each q, there are (up to logical equivalence) only finitely many sentences φ with $qr(\varphi) \leq q$.

To be precise, we prove by induction on q that for all m, there are only finitely many formulas of quantifier rank q with at most m free variables.

Anuj Dawar

Formulas of Bounded Quantifier Rank

If $qr(\varphi) = 0$ then φ is a Boolean combination of atomic formulas. If it is has m variables, it is equivalent to a formula using the variables x_1, \ldots, x_m . There are finitely many formulas, *up to logical equivalence*.

Suppose $qr(\varphi) = q + 1$ and the *free variables* of φ are among x_1, \ldots, x_m . Then φ is a Boolean combination of formulas of the form

 $\exists x_{m+1}\psi$

where ψ is a formula with $qr(\psi) = q$ and free variables $x_1, \ldots, x_m, x_{m+1}$.

By induction hypothesis, there are only finitely many such formulas, and therefore finitely many Boolean combinations.

Equivalence Relation

For two structures \mathbb{A} and \mathbb{B} , we say $\mathbb{A} \equiv_q \mathbb{B}$ if for any sentence φ with $qr(\varphi) \leq q$, $\mathbb{A} \models \varphi$ if, and only if, $\mathbb{B} \models \varphi$.

More generally, if **a** and **b** are *m*-tuples of elements from \mathbb{A} and \mathbb{B} respectively, then we write $(\mathbb{A}, \mathbf{a}) \equiv_q (\mathbb{B}, \mathbf{b})$ if for any formula φ with *m* free variables $qr(\varphi) \leq q$,

 $\mathbb{A} \models \varphi[\mathbf{a}] \text{ if, and only if, } \mathbb{B} \models \varphi[\mathbf{b}].$

Types

We write $\text{Type}_q(\mathbb{A}, \mathbf{a})$ for the set of all formulas φ with $qr(\varphi) \leq q$ such that $\mathbb{A} \models \varphi[\mathbf{a}]$.

 $(\mathbb{A}, \mathbf{a}) \equiv_q (\mathbb{B}, \mathbf{b})$ is equivalent to $\mathsf{Type}_q(\mathbb{A}, \mathbf{a}) = \mathsf{Type}_q(\mathbb{B}, \mathbf{b})$.

There is a formula $\theta_{\mathbb{A},\mathbf{a}} \in \mathsf{Type}_q(\mathbb{A},\mathbf{a})$ such that:

if $\mathbb{B} \models \theta_{\mathbb{A},\mathbf{a}}[\mathbf{b}]$ then $(\mathbb{A},\mathbf{a}) \equiv_q (\mathbb{B},\mathbf{b})$. *Exercise:* Why?

We sometimes identify $\theta_{\mathbb{A},\mathbf{a}}$ with $\mathsf{Type}_q(\mathbb{A},\mathbf{a})$.

Partial Isomorphisms

A map f is a partial isomorphism between structures \mathbb{A} and \mathbb{B} , if

- the domain of $f = \{a_1, \ldots, a_l\} \subseteq A$, including the interpretation of all constants;
- the range of $f = \{b_1, \dots, b_l\} \subseteq B$, including the interpretation of all constants; and
- f is an isomorphism between its domain and range.

Note that if f is a partial isomorphism taking a tuple **a** to a tuple **b**, then for any *quantifier-free* formula θ

 $\mathbb{A} \models \theta[\mathbf{a}]$ if, and only if, $\mathbb{B} \models \theta[\mathbf{b}]$.

Ehrenfeucht-Fraïssé Games

The *q*-round Ehrenfeucht game on structures \mathbb{A} and \mathbb{B} proceeds as follows:

- There are two players called Spoiler and Duplicator.
- At the *i*th round, Spoiler chooses one of the structures (say \mathbb{B}) and one of the elements of that structure (say b_i).
- Duplicator must respond with an element of the other structure (say a_i).
- If, after *q* rounds, the map

 $\{a_i \mapsto b_i \mid 1 \le i \le q\} \cup \{c^{\mathbb{A}} \mapsto c^{\mathbb{B}} \mid c \text{ a constant.}\}$

is a partial isomorphism, then Duplicator has won the game, otherwise Spoiler has won. Write $\mathbb{A} \sim_q \mathbb{B}$ to denote the fact that *Duplicator* has a *winning strategy* in the *q*-round Ehrenfeucht game on \mathbb{A} and \mathbb{B} .

The relation \sim_q is, in fact, an *equivalence relation*.

Exercise: prove it.

Theorem (Fraïssé; Ehrenfeucht)

 $\mathbb{A}\sim_q\mathbb{B}$ if, and only if, $\mathbb{A}\equiv_q\mathbb{B}$

We give a proof for one direction $\mathbb{A} \sim_q \mathbb{B} \Rightarrow \mathbb{A} \equiv_q \mathbb{B}$ in some detail.

Proof

To prove $\mathbb{A} \sim_q \mathbb{B} \Rightarrow \mathbb{A} \equiv_q \mathbb{B}$, it suffices to show that if there is a sentence φ with $\operatorname{qr}(\varphi) \leq q$ such that

$$\mathbb{A} \models \varphi$$
 and $\mathbb{B} \not\models \varphi$

then Spoiler has a winning strategy in the q-round Ehrenfeucht game on \mathbb{A} and \mathbb{B} .

Assume that φ is in *negation normal form*, i.e. all negations are in front of atomic formulas.

Note that this does not involve an increase in quantifier rank.

Proof

We prove by induction on q the stronger statement that if φ is a formula with $qr(\varphi) \leq q$ and $\mathbf{a} = (a_1, \ldots, a_m)$ and $\mathbf{b} = (b_1, \ldots, b_m)$ are tuples of elements from \mathbb{A} and \mathbb{B} respectively such that

 $\mathbb{A} \models \varphi[\mathbf{a}] \text{ and } \mathbb{B} \not\models \varphi[\mathbf{b}]$

then *Spoiler* has a winning strategy in the *q*-round Ehrenfeucht game which starts from a position in which a_1, \ldots, a_m and b_1, \ldots, b_m have *already been selected*.

Anuj Dawar

Proof

When q = 0, φ is a quantifier-free formula. Thus, if

```
\mathbb{A}\models \varphi[\mathbf{a}] \quad \text{and} \quad \mathbb{B}\not\models \varphi[\mathbf{b}]
```

there is an *atomic* formula θ that distinguishes the two tuples and therefore the map taking **a** to **b** is not a *partial isomorphism*.

When q = p + 1, φ is a Boolean combination for atomic formulas and formulas of the form $\exists x\psi$ or $\forall x\psi$ such that $qr(\psi) \leq p$. Suppose there is such a subformula θ with

 $\mathbb{A} \models \theta[\mathbf{a}]$ and $\mathbb{B} \not\models \theta[\mathbf{b}]$

If $\theta = \exists x \psi$, Spoiler chooses a witness for x in A.

If $\theta = \forall x \psi$, $\mathbb{B} \models \exists x \neg \psi$ and *Spoiler* chooses a witness for x in \mathbb{B} .

Proof (sketch of converse)

The proof of the converse (A $\equiv_k \mathbb{B} \Rightarrow \mathbb{A} \sim_q \mathbb{B}$ again proceed by induction on q.

If $(\mathbb{A}, \mathbf{a}) \not\sim_q (\mathbb{B}, \mathbf{b})$ and this is witnessed by *Spoiler* choosing $a \in A$, then take the formula

 $\exists x \theta_{\mathbb{A},\mathbf{a}a}$

MSO Game

The *m*-round monadic Ehrenfeucht game on structures \mathbb{A} and \mathbb{B} proceeds as follows:

• At the *i*th round, *Spoiler* chooses one of the structures (say \mathbb{B}) and plays either a point move or a set move.

In a point move, it chooses one of the elements of the chosen structure $(ay b_i) - Duplicator$ must respond with an element of the other structure $(ay a_i)$.

In a set move, it chooses a subset of the universe of the chosen structure (say S_i) – *Duplicator* must respond with a subset of the other structure (say R_i).

MSO Game

• If, after *m* rounds, the map

 $a_i \mapsto b_i$

is a partial isomorphism between

 $(\mathbb{A}, R_1, \ldots, R_q)$ and $(\mathbb{B}, S_1, \ldots, S_q)$

then *Duplicator* has won the game, otherwise Spoiler has won.

MSO Game

If we define the *quantifier rank* of an MSO formula by adding the following inductive rule to those for a formula of FO:

if $\varphi = \exists S \psi$ or $\varphi = \forall S \psi$ then $\operatorname{qr}(\varphi) = \operatorname{qr}(\psi) + 1$

then, we have

Duplicator has a winning strategy in the *m*-round monadic Ehrenfeucht game on structures A and B if, and only if, for every sentence φ of MSO with $qr(\varphi) \leq m$

$$\mathbb{A}\models arphi$$
 if, and only if, $\mathbb{B}\models arphi$

MSO Types

We write $Type_m^{MSO}(\mathbb{A}, \mathbf{a})$ to denote the set of all MSO formulas of quantifier rank at most m satisfied by (\mathbb{A}, \mathbf{a}) .

We write $(\mathbb{A}, \mathbf{a}) \equiv_m^{MSO} (\mathbb{B}, \mathbf{b})$ to denote

$$\mathrm{Type}_m^{\mathrm{MSO}}(\mathbb{A},\mathbf{a})=\mathrm{Type}_m^{\mathrm{MSO}}(\mathbb{B},\mathbf{b})$$

Just as for FO, there are only finitely many formulas of MSO with quantifier rank m and s free variables.

There is a single formula $\theta_{\mathbb{A},\mathbf{a}}$ that characterizes $\mathsf{Type}_m^{\mathsf{MSO}}(\mathbb{A},\mathbf{a})$.

MSO on Words

Theorem (Büchi-Elgot-Trakhtenbrot)

For any sentence φ of MSO, the language $L_{\varphi} = \{w \mid s \text{ a word and } w \models \varphi\}$ is regular.

Suppose u_1, u_2, v_1, v_2 are words over an alphabet Σ such that

$$u_1 \equiv^{ extsf{MSO}}_{m} u_2$$
 and $v_1 \equiv^{ extsf{MSO}}_{m} v_2$

then $u_1 \cdot v_1 \equiv_m^{MSO} u_2 \cdot v_2$.

Dulpicator has a winning strategy on the game played on the pair of words $u_1 \cdot v_1, u_2 \cdot v_2$ that is obtained as a composition of its strategies in the games on u_1, u_2 and v_1, v_2 .

Myhill-Nerode Theorem

Theorem (Myhill-Nerode)

A language L is regular *if, and only if,* there is an equivalence relation \sim on strings such that:

- 1. \sim has finite index on the set of all strings;
- 2. \sim is a congruence for string concatenation, i.e.

 $s_1 \sim t_1 \text{ and } s_2 \sim t_2 \quad \Rightarrow \quad s_1 \cdot s_2 \sim t_1 \cdot t_2;$

and

3. L is the union of some number of \sim -equivalence classes.

MSO Languages

 φ —an MSO sentence of quantifier rank m.

- \equiv_m^{MSO} has finite index since there are, up to logical equivalence, only finitely many MSO sentences of quantifier rank at most m.
- \equiv_{m}^{MSO} is a congruence for concatenation by an easy argument using *Ehrenfeucht-Fraïssé games* (a special case of the *Feferman-Vaught theorem*).
- It is immediate that L_{φ} is closed under \equiv_m^{MSO} .