Tractable Approximations of Graph Isomorphism.

Anuj Dawar

University of Cambridge Computer Laboratory

joint work with Bjarki Holm

Algebra, Logic and Algorithms Leeds, 12 November 2014

Graph Isomorphism

A graph G = (V, E) is a set of vertices V and a set of edges E (i.e. an *irreflexive, symmetric* relation $E \subseteq V \times V$).

A graph is often represented by its *adjacency matrix*. This is a $V \times V$ matrix of 0-1 entries.

Graph Isomorphism: Given graphs G, H, decide whether $G \cong H$. $G \cong H$ if there is a *bijection* $h : V(G) \to V(H)$ such that $(u, v) \in E(G)$ *if, and only if,* $(h(u), h(v)) \in E(H)$

In other words, can the adjacency matrix of G be *re-ordered* to get that for H?

Complexity of Graph Isomorphism

The graph isomorphism problem has an unusual status in terms of computational complexity

It is:

- not known to be in P;
- in NP:
- not expected to be NP-complete.

In practice and on average, graph isomorphism is efficiently decidable.

Tractable Approximations of Isomorphism

A *tractable approximation* of graph isomorphism is a *polynomial-time decidable* equivalence \equiv on graphs such that:

 $G \cong H \quad \Rightarrow \quad G \equiv H.$

Practical algorithms for testing graph isomorphism typically decide such an approximation.

If this fails to distinguish a pair of graphs G and H, more discriminating tests are deployed.

A complete isomorphism test might consist of a *family* of ever tighter approximations of isomorphism.

Vertex Classification

The following problem, which we call the *vertex classification problem* is easily seen to be computationally equivalent to graph isomorphism:

Given a graph G and a pair of vertices u and v, decide if there is an automorphism of G that takes u to v.

That is to say, there is a *polynomial-time reduction* from the graph isomorphism problem to the vertex classification problem and *vice versa*.

Reducing Classification to Isomorphism

Given a graph G and two vertices $u, v \in V(G)$, we construct a pair of graphs which are isomorphic *if*, and only *if*, some automorphism of G takes u to v.

where p is a simple path longer than any simple path in G.

Reducing Isomorphism to Classification

Conversely, given two graphs G and H, we construct a graph with two distinguished vertices u, v so that there is an automorphism taking u to v iff $G \cong H$.

Equivalence Relations

The algorithms we study decide equivalence relations on *vertices* (or tuples of vertices) that approximate the *orbits* of the automorphism group.

 $(G, u) \cong (G, v) \quad \Rightarrow \quad u \equiv v$

For such an equivalence relation, there is a *corresponding* equivalence relation on graphs that approximates *isomorphism*.

We abuse notation and use the same notation \equiv for the equivalence relation on vertices, on tuples of vertices and on graphs.

Equitable Partitions

An equivalence relation \equiv on the vertices of a graph G = (V, E) induces an *equitable partition* if

for all $u, v \in V$ with $u \equiv v$ and each \equiv -equivalence class S,

 $|\{w \in S \mid (u, w) \in E\}| = |\{w \in S \mid (v, w) \in E\}|.$

The *naive vertex classification* algorithm finds the *coarsest* equitable partition of the vertices of G.

Colour Refinement

Define, on a graph G = (V, E), a series of equivalence relations:

 $\equiv_0 \supseteq \equiv_1 \supseteq \cdots \supseteq \equiv_i \cdots$

where $u \equiv_{i+1} v$ if they have the same number of neighbours in each \equiv_i -equivalence class.

This converges to the coarsest equitable partition of G: $u \sim v$.

Almost All Graphs

Naive vertex classification provides a simple test for isomorphism that works (in a precise sense) on *almost all graphs*:

For graphs G on n vertices with vertices u and v, the probability that $u \sim v$ goes to 0 as $n \rightarrow \infty$.

This also provides an algorithm with good *average case* performance:

Check if the input graphs are distinguished by naive vertex classification. In the small number of cases where it fails, try more sophisticated tests.

But the test fails miserably on *regular graphs* (i.e. graphs where all vertices have the same number of neighbours).

Weisfeiler-Lehman Algorithms

The *k*-dimensional Weisfeiler-Lehman test for isomorphism (as described by **Babai**), generalises naive vertex classification to k-tuples.

We obtain, by successive refinements, an equivalence relation \equiv^k on k-tuples of vertices in a graph G:

$\equiv_0^k \supseteq \equiv_1^k \supseteq \cdots \supseteq \equiv_i^k \cdots$

 $\mathbf{u} \equiv_0^k \mathbf{v}$ if the two tuples induce isomorphic k-vertex graphs.

The refinement is defined by an *easily checked* condition on tuples. The refinement is guaranteed to terminate within n^k iterations.

Induced Partitions

Given an equivalence relation \equiv_i^k , each *k*-tuple **u** induces a *labelled partition* of the vertices *V*, where each vertex *u* is labelled by the *k*-tuple

 α_1,\ldots,α_k

of \equiv_i^k -equivalence classes obtained by substituting u in each of the k positions in \mathbf{u} .

Define \equiv_{i+1}^{k} to be the equivalence relation where $\mathbf{u} \equiv_{i+1}^{k} \mathbf{v}$ if, in the partitions they induce, the corresponding labelled parts *have the same cardinality*.

V

Families of Tractable Approximations

If G, H are *n*-vertex graphs and k < n, we have:

 $G \cong H \quad \Leftrightarrow \quad G \equiv^n H \quad \Rightarrow \quad G \equiv^{k+1} H \quad \Rightarrow \quad G \equiv^k H.$

 $G \equiv^k H$ is decidable in time $n^{O(k)}$.

The equivalence relations \equiv^k form a *family* of tractable approximations of graph isomorphism.

They have many equivalent characterisations arising from *logic*; *algebra* and *combinatorics*.

Restricted Graph Classes

If we restrict the class of graphs we consider, \equiv^k may coincide with isomorphism.

1. On *trees*, isomorphism is the same as \equiv^2 .

(Immerman and Lander 1990).

- 2. There is a k such that on the class of *planar graphs* isomorphism is the same as \equiv^k . (Grohe 1998).
- 3. There is a k' such that on the class of graphs of *treewidth* at most k, isomorphism is the same as $\equiv^{k'}$. (Grohe and Mariño 1999).
- For any proper minor-closed class of graphs, C, there is a k such that isomorphism is the same as ≡^k. (Grohe 2010).

These results emerged in the course of establishing *logical characterizations* of polynomial-time computability.

Infinite Hierarchy

(Cai, Fürer, Immerman, 1992) show that there are polynomial-time decidable properties of graphs that are not definable in *fixed-point logic* with counting.

There is no fixed k for which \equiv^k coincides with isomorphism.

(Cai, Fürer, Immerman 1992).

They give a construction of a sequence of pairs of graphs G_k , $H_k(k \in \omega)$ such that for all k:

- $G_k \ncong H_k$
- $G_k \equiv^k H_k$.

Moreover, G_k , H_k can be chosen to be 3-regular and of colour-class size 4.

Counting Logic

 C^k is the logic obtained from *first-order logic* by allowing:

- counting quantifiers: $\exists^i x \varphi$; and
- only the variables x_1, \ldots, x_k .

Every formula of C^k is equivalent to a formula of first-order logic, albeit one with more variables.

We write $G \equiv^{C^k} H$ to denote that no sentence of C^k distinguishes G from H.

It is not difficult to show that $G \equiv^{C^{k+1}} H$ if, and only if, $G \equiv^k H$.

Counting Tuples of Elements

Consider extending the counting logic with quantifiers that count *tuples* of elements.

This does not add further expressive power.

 $\exists' \overline{x} \overline{y} \varphi$

is equivalent to

$$\bigvee_{f\in F}\bigwedge_{j\in \mathrm{dom}(f)}\exists^{f(j)}x\;\exists^jy\;\varphi$$

where *F* is the set of finite partial functions *f* on \mathbb{N} such that $(\sum_{j \in \text{dom}(f)} jf(j)) = i.$

In other words, in the characterisation of \equiv^k in terms of induced partitions, there is no gain in considering partitions of V^m instead of V.

Induced Partitions of V^2

Can we get a more *refined equivalence* if we use tuples **v** to induce partitions of V^2 instead of V?

No. The *sizes* of these classes are determined by the sizes in the induced partition of V.

Graph Isomorphism Integer Program

Yet another way of approximating the graph isomorphism relation is obtained by considering it as a 0/1 linear program.

If A and B are adjacency matrices of graphs G and H, then $G \cong H$ if, and only if, there is a *permutation matrix* P such that:

 $PAP^{-1} = B$ or, equivalently PA = BP

A *permutation matrix* is a 0-1-matrix which has exactly one 1 in each row and column.

Integer Program

Introducing a variable x_{ij} for each entry of P, the equation PA = BP becomes a system of *linear equations*

$$\sum_k x_{ik} a_{kj} = \sum_k b_{ik} x_{kj}$$

Adding the constraints:

$$\sum_{i} x_{ij} = 1$$
 and $\sum_{j} x_{ij} = 1$

we get a system of equations that has a 0-1 solution if, and only if, G and H are isomorphic.

Fractional Isomorphism

To the system of equations:

$$PA = BP; \quad \sum_{i} x_{ij} = 1 \quad \text{and} \quad \sum_{j} x_{ij} = 1$$

add the inequalities

 $0 \leq x_{ij} \leq 1.$

Say that G and H are fractionally isomorphic ($G \cong^{f} H$) if the resulting system has any real solution.

 $G \cong^{f} H$ if, and only if, $G \sim H$.

(Ramana, Scheiermann, Ullman 1994)

Sherali-Adams Hierarchy

If we have any *linear program* for which we seek a *0-1 solution*, we can relax the constraint and admit *fractional solutions*.

The resulting linear program can be solved in *polynomial time*, but admits solutions which are not solutions to the original problem.

Sherali and Adams (1990) define a way of *tightening* the linear program by adding a number of *lift and project* constraints. Say that $G \cong^{f,k} H$ if the *k*th lift-and-project of the *isomorphism program*

on G and H admits a solution.

Sherali-Adams Isomorphism

For each k

$$G \equiv^k H \Rightarrow G \cong^{f,k} H \Rightarrow G \equiv^{k-1} H$$

(Atserias, Maneva 2012)

For k > 2, the reverse implications fail.

(Grohe, Otto 2012)

Rank Logics

The Cai-Fürer-Immerman construction can be reduced to the *solvability of systems of equations* over a 2-element field.

This motivates an extension of first-order logic with operators for the the *rank* of a matrix over a *finite field*.

(D., Grohe, Holm, Laubner, 2009)

For each prime p and each arity m, we have an operator $\operatorname{rk}_{m}^{p}$ which binds 2m variables and defines the rank (over $\mathbb{GF}(p)$) of the $V^{m} \times V^{m}$ matrix defined by a formula $\varphi(\mathbf{x}, \mathbf{y})$.

Equivalences and Rank Logic

The definition of rank logics yields a *family* of approximations of isomorphism.

 $G \equiv_{k,\Omega,m}^{R} H$ if G and H are not distinguished by any formula of FOrk with at most k variables using operators $\operatorname{rk}_{m}^{p}$ for p in the finite set of primes Ω .

We do not know if these relations are *tractable*. But, we can *refine* them further to obtain a tractable family: $\equiv_{k,\Omega,m}^{\text{IM}}$. (D., Holm 2012)

Induced Partitions

For simplicity, consider the case when m = 1 and $\Omega = \{p\}$.

Given an equivalence relation \equiv on V^k , each k-tuple **u** induces a *labelled* partition of $V \times V$.

Induced Partitions

Let $P_1^{\mathbf{u}}, \ldots, P_s^{\mathbf{u}}$ be the parts of this partition (seen as 0-1 $V \times V$ matrices) and $P_1^{\mathbf{v}}, \ldots, P_s^{\mathbf{v}}$ be the corresponding parts for a tuple \mathbf{v} .

Let $\mathbf{u} \equiv_{i+1} \mathbf{v}$ if, $\mathbf{u} \equiv_i \mathbf{v}$ and for any tuple $\mu \in \{0, \dots, p-1\}^{[s]}$, we have

$$\operatorname{rk}\left(\sum_{j}\mu_{i}P_{j}^{\mathbf{u}}\right)=\operatorname{rk}\left(\sum_{j}\mu_{j}P_{j}^{\mathbf{v}}\right).$$

where the rank is in the field $\mathbb{GF}(p)$.

 $\equiv_{k,\{p\},1}^{R}$ is the relation obtained by starting with \equiv_{0}^{k} and iteratively repeating this refinement.

For general *m* and Ω , we need to consider partitions of $V^m \times V^m$ and *rank* and *linear combinations* (mod *p*) for all $p \in \Omega$.

Complexity of Refinement

We do not know if the relations $\equiv_{k,\Omega,m}^{R}$ are *tractable* To check $\mathbf{u} \equiv_{i+1} \mathbf{v}$, we have to check the rank of a *potentially exponential* number of linear combinations.

But, we can *refine* the relations further to obtain a tractable family: $\equiv_{k,\Omega,m}^{\text{IM}}$

(D., Holm 2012)

Invertible Map Equivalence

The relation $\equiv_{k,\{p\},1}^{IM}$ is obtained as the limit of the sequence of equivalence relations where:

 $\mathbf{u} \equiv_{i+1} \mathbf{v}$ if $\mathbf{u} \equiv_i \mathbf{v}$ and there is an invertible matrix S (modulo p) such that we have for all j

 $SP_j^{\mathbf{u}}S^{-1}=P_j^{\mathbf{v}}.$

This implies, in particular, that all linear combinations have the same rank.

A result of (Chistov, Karpinsky, Ivanyov 1997) guarantees that simultaneous similarity of a collection of matrices is decidable in polynomial time. So we get a family of polynomial-time equivalence relations $\equiv_{k,\Omega,m}^{IM}$.

Could there be a fixed k, m, Ω for which $\equiv_{k,\Omega,m}^{\text{IM}}$ is the same as isomorphism?

Coherent Algebras

Weisfeiler and Lehman presented their algorithm in terms of *cellular* algebras.

These are algebras of matrices on the *complex numbers* defined in terms of *Schur multiplication*:

 $(A \circ B)(i,j) = A(i,j)B(i,j)$

They are also called *coherent configurations* in the work of Higman.

Definition:

A *coherent algebra* with index set V is an algebra \mathcal{A} of $V \times V$ matrices over \mathbb{C} that is:

closed under Hermitian adjoints; closed under Schur multiplication; contains the identity I and the all 1's matrix J.

Coherent Algebras

One can show that a coherent algebra has a *unique basis* A_1, \ldots, A_m of *0-1* matrices which is closed under *adjoints* and such that

$$\sum_i A_i = J.$$

One can also derive structure constants p_{ii}^k such that

$$A_i A_j = \sum_k p_{ij}^k A_k.$$

Associate with any graph G, its *coherent invariant*, defined as the smallest coherent algebra \mathcal{A}_G containing the adjacency matrix of G.

Weisfeiler-Lehman method

Say that two graphs G_1 and G_2 are *WL*-equivalent if there is an isomorphism between their *coherent invariants* \mathcal{A}_{G_1} and \mathcal{A}_{G_2} . G_1 and G_2 are *WL*-equivalent if, and only if, $G_1 \equiv^2 G_2$.

Friedland (1989) has shown that two coherent algebras with standard bases A_1, \ldots, A_m and B_1, \ldots, B_m are isomorphic if, and only if, there is an invertible matrix S such that

 $SA_jS^{-1} = B_i$ for all $1 \le j \le m$.

Complex Invertible Map Equivalence

Define $\equiv_{\mathbb{C},k}^{\mathbb{IM}}$ as the limit of the sequence of equivalence relations \equiv_i where:

 $\mathbf{u} \equiv_{i+1} \mathbf{v}$ if there is an invertible linear map S on the vector space \mathbb{C}^{V} such that we have for all i

 $SP_j^{\mathbf{u}}S^{-1}=P_j^{\mathbf{v}}.$

We can show $\equiv_{\mathbb{C},k+1}^{\mathrm{IM}} \subseteq \equiv^k \subseteq \equiv_{\mathbb{C},k-1}^{\mathrm{IM}}$.

Research Directions

We can show that $\equiv_{4,\{2\},1}^{\rm IM}$ is the same as isomorphism on graphs of colour class size 4.

- For all t, are there fixed k, Ω and m such that ≡^{IM}_{k,Ω,m} is isomorphism on graphs of colour class size t?
- What about graphs of degree at most 3? or t?

Is the *arity hierarchy* really strict on graphs? Could it be that $\equiv_{k,\Omega,m}^{\text{IM}}$ is subsumed by $\equiv_{k',\Omega,1}^{\text{IM}}$ for sufficiently large k'?

Show that no fixed $\equiv_{k,\Omega,m}^{IM}$ is the same as isomorphism on graphs.

Note: we can show that $\equiv_{k,\Omega,1}^{IM}$ is not the same as isomorphism for any fixed k and Ω .

Summary

The *Weisfeiler-Lehman* family of approximations of graph isomorphism have a number of equivalent characterisations in terms of:

complex algebras; combinatorics; counting logics; bijection games; linear programming relaxations of isomorphism.

We have introduced a new and stronger family of approximations of graph isomorphism based on algebras over *finite fields*, and these capture isomorphism on some interesting classes.

There remain many questions about the strength of these approximations and their relations to logical definability.