Adjunct Elimination through Games in Static Ambient Logic

Anuj Dawar
University of Cambridge

joint work with Philippa Gardner and Giorgio Ghelli

FSTTCS, 16 December 2004

Spatial Logic

• Separation Logic (O'Hearn, Reynolds, Yang, Calcagno)

Properties of Heaps

$$A * B$$
;

Ambient Logic (Cardelli, Gordon)

Properties of mobile ambients

$$\Diamond(\nu n)n[A]$$

• Spatial (Static) Ambient Logic (Cardelli, Gordon, Gardner, Ghelli)

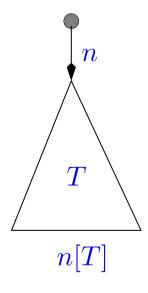
Properties of trees (and graphs)

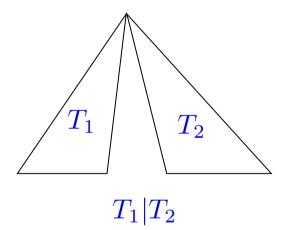
$$A|B$$
;

Trees

An algebra for edge-labelled trees where names may be public or private.

$$T ::= 0 \mid n[T] \mid T|T \mid (\nu n)T$$





There is a notion of congruence

$$(T|U\equiv U|T).$$

We have *unordered trees*.

Logic

$$A ::= 0 \mid \neg A \mid A \land A \mid \mathsf{T} \mid$$
$$\eta[A] \mid A \mid A \mid A \mid \mathsf{H}x.A \mid \odot \eta$$

$$T \models n[A] \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \exists U. \ T \equiv n[U] \land U \models A$$

$$T \models A \mid B \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \exists T_1, T_2. \ T \equiv T_1 \mid T_2 \land T_1 \models A \land T_2 \models B$$

$$T \models \mathsf{H} x. A \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \exists n \not \in \mathsf{fn}(A), U. \ T \equiv (\nu n)U \land U \models A\{x \leftarrow n\}$$

$$T \models \odot n \quad \stackrel{\mathsf{def}}{\Leftrightarrow} n \in \mathsf{fn}(T)$$

Quantification

Contrast the *Hiding quantifier* $\exists x.A$ with the existential quantifier $\exists x.A$.

$$\exists x \exists y. \ x = y$$
 is valid.

HxHy. x = y is always false.

 $\exists x \mathsf{H} y. \ x = y$ is always false.

 $\exists y. \ x = y$ is true in any tree that contains a private name.

Adjuncts

$$A \triangleright B$$
 an adjunct for

$$A@\eta$$
 an adjunct for $\eta[\cdot]$

$$T \models A \triangleright B \quad \text{if } \forall U. \ U \models A \Rightarrow T | U \models B.$$
 $T \models A@n \quad \text{if } n[T] \models A.$

Power of Adjuncts

Without adjuncts

• *validity* is undecidable

Given A, is it the case that for all T, $T \models A$?

• model-checking is in PSPACE

Given A and T, is it the case that $T \models A$?

With adjuncts, validity reduces to model-checking:

 $0 \models \mathsf{T} \triangleright A$ if, and only if, A is valid.

So, model-checking is undecidable.

Adjunct Elimination

Lozes (2003) showed that (a logic essentially equivalent to) static ambient logic admits *adjunct elimination*.

For every formula with adjuncts, there is a logically equivalent formula without adjuncts.

Since model-checking is undecidable with adjuncts and decidable without, the translation must be uncomputable!

Is it because the logic with adjuncts is more succinct?

We show it's not!

Alternative Operators

Lozes result was shown for a logic which, in place of H and c had operators

$$Nx.A$$
 and $\eta \bigcirc A$.

We show that these are interdefinable with H and ©.

$$\mathsf{H}x.A = \mathsf{N}x.x\mathsf{R}A$$

$$\begin{array}{lll} \operatorname{H}\!x.A & = & \operatorname{N}\!x.x \\ \operatorname{N}\!x.A & = & \operatorname{H}\!x.A \wedge \neg \\ \odot x \end{array}$$

FSTTCS 2004 Anuj Dawar

Alternative Proof

We provide an alternative proof of Lozes' result based on Ehrenfeucht-Fraïssé-style games.

- Gives a more transparent proof of the result.
- Provides a standardised methodology easily adapted to other combinations of operators.
- Refines Lozes' result by showing that there is a *rank-preserving* adjunct elimination.
- Shows that the logic with adjuncts is no more succinct than the one without.

Games

Ehrenfeucht games are played between two players Spoiler and Duplicator on a pair of structures T and U (in our case trees).

Spoiler is attempting to demonstrate that the structures are different.

Duplicator is trying to maintain that the two are the same.

The game is played for a number of rounds fixed in advance.

Game moves correspond to operators in the logic.

First-Order Logic

In the game for first-order logic, the moves correspond to first-order quantification.

At each round i, Spoiler chooses one of the two structures (say U) and selects an element u_i of it. Duplicator must respond with an element t_i of the other structure.

If, at any stage, the partial map $u_i \mapsto t_i$ defined is not a *partial isomorphism*, Spoiler wins.

If Duplicator has a strategy for surviving r rounds, then the two structures are not distinguished by any first-order formula with *quantifier rank* r.

A formula φ that is true in T and false in U describes a strategy for Spoiler to win.

Game Position

For spatial logic, we define a more refined notion of *rank*, that is a tuple of numbers, one for each type of operator.

At any stage, the game position consists of

- two tree T, U;
- f—a partial valuation for the variables; and
- a current rank *r*.

If, for any operator Op , $r(\operatorname{Op}) > 0$, Spoiler can play an Op -move.

Game Moves

_ [·] move:

Spoiler chooses a tree T and an η such that $T\equiv f(\eta)[T']$. If $U\equiv f(\eta)[U']$, the game continues with (T',U'); otherwise, Spoiler wins.

move:

Spoiler chooses, say, T, and two trees T' and T'' such that $T \equiv T'|T''$. Duplicator chooses U' and U'' such that $U \equiv U'|U''$. Spoiler decides whether the game will continue with (T', U'), or with (T'', U'').

Game Moves (contd.)

H move:

Spoiler chooses, say, T and a name $n \not\in \operatorname{fn}(T) \cup \operatorname{fn}(U) \cup \operatorname{ran}(f)$, a variable $x \not\in \operatorname{dom}(f)$, and a tree T' such that $(\nu n)(T') \equiv T$. Duplicator chooses a tree U' such that $(\nu n)(U') \equiv U$. The game continues with $(T', U', (f; x \mapsto n))$.

Adjunct Moves

> move

Spoiler chooses, say, T and a new tree T'; Duplicator chooses a new tree U'. Spoiler decides whether the game will continue with (T|T',U|U') or (T',U').

@ move

Spoiler chooses a η , and replaces T with $f(\eta)[T]$ and U with $f(\eta)[U]$.

Spoiler Strategy

Why would Spoiler *ever* play an adjunct move?

Spoiler adds a context around the tree T and Duplicator can respond with the identical context around U. This takes Spoiler no closer to winning the game.

If Spoiler has a winning strategy that uses adjunct moves, he also has one without adjunct moves.

There are technical details, but this, in a nutshell, is the game based proof of adjunct elimination.

Quantifiers Revisited

If, instead of the hiding quantifier Hx. A, we have existential quantification $(\exists x. A)$ in the language, *adjuncts cannot be eliminated*.

Example (due to Yang) in the paper.

Consider, in general, Spoiler's strategy on the formulas:

$$\exists x. (A \triangleright B)$$

$$\mathsf{H}x.\ (A \triangleright B)$$

Composition Lemma

If Duplicator has a winning strategy on the pair (T_1,U_1) and on the pair (T_2,U_2) , then she also has a winning strategy on the pair

$$(T_1|T_2, U_1|U_2).$$

This is not true in the presence of \exists .

Rank

Our proof actually shows that if Spoiler has a winning strategy *with* adjunct moves, than he has a winning strategy *of the same rank* without adjunct moves.

A formula with adjuncts is equivalent to a formula *of the same rank* without adjuncts.

Though the translation is uncomputable, there isn't an uncomputable blow-up in the size of the formula.

There are only finitely many formulas of a given rank.

Summary

- Adapted Ehrenfeucht-style games to static ambient logic.
- Obtained a transparent proof of Lozes' adjunct elimination result.
- Refined it to a *rank-preserving* adjunct elimination.
- Contrasted H with ∃.
- Studied other combinations of operators for adjunct (or equality elimination.