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Mathematical Logic

Mathematical logic seeks to formalise the process of mathematical reasoning and
turn this process itself into a subject of mathematical enquiry.

It investigates the relationships among:

• Structure

• Language

• Proof

Proof-theoretic vs. Model-theoretic views of logic.
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Computation as Logic

If logic aims to reduce reasoning to symbol manipulation,

On the one hand, computation theory provides a formalisation of “symbol
manipulation”.

On the other hand, the development of computing machines leads to
“logic engineering”.

The validities of first-order logic are r.e.-complete.
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Proof Theory in Computation

As all programs and data are strings of symbols in a formal system, one view
sees all computation as inference.

For instance, the functional programming view:

• Propositions are types.

• Programs are (constructive) proofs.

• Computation is proof transformation.

Anuj Dawar March 2007



5

Model Theory in Computation

A model-theoretic view of computation aims to distinguish computational
structures and languages used to talk about them.

Data Structure Programming Language

Database Query Language

Program/State Space Specification Language

The structures involved are rather different from those studied in classical model
theory. Finite Model Theory.
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First-Order Logic

terms – c, x, f(t1, . . . , ta)

atomic formulae – R(t1, . . . , ta), t1 = t2

boolean operations – ϕ ∧ ψ, ϕ ∨ ψ, ¬ϕ

first-order quantifiers – ∃xϕ, ∀xϕ

Formulae are interpreted in structures:

A = (A,R1, . . . , Rm, f1, . . . , fn, c1, . . . , cn)
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Success of First-Order Logic

First-order logic is very successful at its intended purpose, the formalisation of
mathematics.

Many natural mathematical theories can be expressed as first-order
theories.

These include set theory, fundamental to the foundations of mathematics.

Gödel’s completeness theorem guarantees that the consequences of
these theories can be effectively obtained.
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Finite Structures

The completeness theorem fails when restricted to finite structures.

The sentences of first-order logic, valid on finite structures are not
recursively enumerable.

(Trakhtenbrot 1950)

On finite structures, first-order logic is both too strong and too weak.

Anuj Dawar March 2007



9

First-Order Logic is too Strong

For every finite structure A, there is a sentence ϕA such that

B |= ϕA if, and only if, B ∼= A

For any isomorphism-closed class of finite structures, there is a first-order theory
that defines it.
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First-Order Logic is too Weak

For any first-order sentence ϕ, its class of finite models

ModF (ϕ) = {A | A finite, and A |= ϕ}

is trivially decidable (in LOGSPACE).

There are computationally easy classes that are not defined by any first-order
sentence.

• The class of sets with an even number of elements.

• The class of graphs (V,E) that are connected.
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Computational Complexity

P—the classes of finite structures for which membership can be decided
in polynomial time.

These are often identified as the feasibly computable problems.

NP—the classes of finite structures for which there are “membership
certificates” that can be verified in polynomial time.

The central problem in computational complexity theory (and one of the more
prominent open problems in all of mathematics) is to determine whether
P = NP.
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Second-Order Logic

Second-order logic is obtained by adding to the defining rules of first-order logic
two further clauses:

atomic formulae – X(t1, . . . , ta), where X is a second-order variable

second-order quantifiers – ∃Xϕ, ∀Xϕ

Second-order logic can express evenness and connectivity as well as properties
that are deemed not to be feasibly computable, such as graph 3-colourability.

Indeed, it can express every NP-complete problem.
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Examples

Evenness.

∃B∃S ∀x∃yB(x, y) ∧ ∀x∀y∀zB(x, y) ∧B(x, z) → y = z

∀x∀y∀zB(x, z) ∧B(y, z) → x = y

∀x∀yS(x) ∧B(x, y) → ¬S(y)

∀x∀y¬S(x) ∧B(x, y) → S(y)

Anuj Dawar March 2007



14

Examples

3-Colourability

∃R∃B∃G ∀x(Rx ∨Bx ∨Gx)∧

∀x( ¬(Rx ∧Bx) ∧ ¬(Bx ∧Gx) ∧ ¬(Rx ∧Gx))∧

∀x∀y(Exy → ( ¬(Rx ∧Ry)∧

¬(Bx ∧By)∧

¬(Gx ∧Gy)))
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Descriptive Complexity

Fagin’s Theorem:
A class of finite structures is definable in existential second-order logic if, and only
if, it is in the class NP.

A major open problem in the field of Descriptive Complexity has been to establish
whether there is a descriptive characterisation of P—the class of computational
problems decidable in polynomial time.

Is there any extension of first-order logic in which one can express all and only the
feasibly computable problems?

Can the class P be “build up from below” by finitely many operations?
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Inductive Definitions

In computing (and logic), many classes of structures are naturally defined
inductively.

viz. The definition of the terms and formulae of first-order logic.

Includes definitions of syntax and semantics of most languages, of data
structures (trees, lists, etc.), of arithmetic functions.
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Definition by Fixed Point

The collection of first-order terms can be defined as the least set containing all
constants, all variables and such that f(t1, . . . , ta) is a term whenever
t1, . . . , ta are terms and f is a function symbol of arity a.

The addition function is defined as the least function satisfying:

x+ 0 = x

x+ s(y) = s(x+ y).

In each case, the set defined is the least fixed point of a monotone operator on
sets.
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From Metalanguage to Language

The logic LFP is formed by closing first-order logic under the rule:

If ϕ is a formula, positive in the relational variable R, then so is

[lfpR,xϕ](t).

The formula is read as:

the tuple t is in the least fixed point of the operator that maps R to
ϕ(R,x).
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Connectivity

The formula

∀u∀v[lfpT,xy(x = y ∨ ∃z(E(x, z) ∧ T (z, y)))](u, v)

is satisfied in a graph (V,E) if, and only if, it is connected.

The expressive power of LFP properly extends that of first-order logic.

On structures which come equipped with a linear order LFP expresses exactly the
properties that are in P.

(Immerman; Vardi)
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Fixed-point Logic with Counting

LFP + C is a logic formulated to add the ability to count to LFP.

If ϕ(x) is a formula with free variable x, then #xϕ is a term denoting the
number of elements satisfying ϕ.

Formulae of LFP + C:

• all atomic formulae as in LFP;

• τ1 < τ2; τ1 = τ2 where τi is a term of numeric sort;

• ∃xϕ; ∃ν ϕ; where ν is a variable ranging over numbers up to the size of the
domain;

• [lfpX,x,νϕ](t); and

• ϕ ∧ ψ; ¬ϕ.
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Evenness

There are an even number of elements satisfying ϕ(x).

∃ν1∃ν2(ν1 = [#xϕ] ∧ (ν2 + ν2 = ν1))
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Further Operations

Cai, Fürer and Immerman (1992) showed that LFP + C is not powerful enough to
express all properties in P.

The proof involved a contrived construction of a class of graphs on which the
graph isomorphism problems is solvable in polynomial time but not definable in
LFP + C.

More recently, we have exhibited natural feasibly computable problems that are
not definable in LFP + C, such as computing the rank of a 0-1 matrix.

(Atserias, Bulatov, D.)
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Extensions of LFP + C

A number of extensions of LFP + C have been proposed:

• choice operators—involves a delicate trade-off to preserve symmetry and
feasibility.

• higher-order sets—a model of “choiceless polynomial time” machines
proposed by Blass, Gurevich and Shelah.

• algebraic operators—based on matrix computations.

It remains a challenge to show that these do not suffice to capture all of P.
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In Summary

• Model-theoretic methods concerned with studying the expressive power of
logical languages.

• First-order logic does not occupy a central place in finite model theory.

• A variety of fixed-extensions of first-order logic used to study computational
complexity.

• A particularly significant question is whether there is such an extension
exactly capturing P.

• Leads to the consideration of unusual logical operators whose expressive
power is being studied.
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