Model-Checking First-Order Logic

Automata and Locality

Anuj Dawar University of Cambridge

GAMES/CSL, Lausanne, 11 September 2007

The Model-Checking Problem

We are interested in the computational complexity of the following decision problem:

```
Given: a first-order formula \varphi and a structure \mathbb{A}
Decide: if \mathbb{A} \models \varphi
```

Or, what is the complexity of the satisfaction relation for first-order logic?

For the rest of the talk,

We assume that A is finite and given explicitly in the input.

We generally write l for the length of φ and n for the size of A.

We assume \mathbb{A} is a *directed, coloured graph*—i.e., a structure interpreting one binary relation E, some unary relations and some constants. We write $G\mathbb{A}$ for the underlying undirected graph.

Naïve Algorithm

The straightforward algorithm proceeds recursively on the structure of φ :

- Atomic formulas by direct lookup.
- Boolean connectives are easy.
- If $\varphi \equiv \exists x \, \psi$ then for each $a \in \mathbb{A}$ check whether

 $(\mathbb{A}, c \mapsto a) \models \psi[c/x],$

where *c* is a new constant symbol.

This shows that the model-checking problem can be solved in time $O(ln^m)$ and $O(m \log n)$ space, where m is the nesting depth of quantifiers in φ (or by a more careful accounting, the number of distinct variables occurring in φ).

Complexity

This shows that the model checking problem is in PSpace and for a fixed sentence φ , the problem of deciding membership in the class

$$\mathrm{Mod}(\varphi) = \{ \mathbb{A} \mid \mathbb{A} \models \varphi \}$$

is in *logarithmic space* and *polynomial time*.

QBF—satisfiability of quantified Boolean formulas can be easily reduced to the model checking problem with A a fixed two-element structure.

Thus, the problem is PSpace-complete, even for fixed A.

Is FO contained in an initial segment of PTime?

Question posed in the title of a paper by **Stolboushkin and Taitslin (CSL 1994)**.

Is there a fixed *c* such that for every first-order φ , $Mod(\varphi)$ is decidable in time $O(n^c)$?

If PTime = PSpace, then the answer is yes, as the satisfaction relation is then itself decidable in time $O(n^c)$ and this bounds the time for all formulas φ .

Thus, though we expect the answer is no, this would be difficult to prove.

A more uniform version of their question is:

Is there a constant *c* and a computable function *f* so that the satisfaction relation for first-order logic is decidable in time $O(f(l)n^c)$?

Fixed Parameter Tractability

If $Mod(\varphi)$ is decidable in time $O(n^c)$ and the constants involved are bounded by some computable function of l, then the model-checking problem is *fixed-parameter tractable* (FPT) with the formula length as parameter.

The parameterised model-checking problem is $AW[\star]$ -complete.

The parameterised model-checking problem restricted to Π_t formulas is hard for the class W[t].

Thus, the whole edifice of parameterized intractability would collapse.

Restricted Classes of Structures

One way to get a handle on the complexity of first-order model checking is to consider restricted classes of structures.

Given: a first-order formula φ and a structure $\mathbb{A} \in \mathcal{C}$ Decide: if $\mathbb{A} \models \varphi$

For many classes C, this problem has been shown to be FPT.

- 1. Every first-order (or even MSO) definable class of strings is a regular language and so decidable in linear time.
- *T_k*—the class of structures of tree-width at most *k*.
 Courcelle (1990) shows that every MSO definable property is decidable in linear time on this class.

Restricted Classes of Structures

- D_k—the class of structures of *degree* bounded by k.
 Seese (1996) shows that every FO definable property is decidable in linear time.
- LTW_t—the class of structures of *local tree-width* bounded by a function t.
 Frick and Grohe (2001) show that every FO definable property is decidable in quadratic time.
- 5. \mathcal{M}_k —the class of structures *excluding* K_k *as a minor*. **Flum and Grohe (2001)** show that every FO definable property is decidable in time $O(n^5)$.
- LEM_t—the class of structures with *locally excluded minors* given by t.
 D., Grohe and Kreutzer (2007) show that every FO definable property is decidable in time O(n⁶).

Map of Restrictions

Automata and Locality

The methods of proof for the results are combinations of two general techniques:

- Methods of *automata* or *decompositions*; and
- Methods based on the *locality* of first-order logic.

In the rest of this talk, we first review these two methods using the results on

strings;

graphs of *bounded tree-width*; and

graphs of *bounded degree*.

We then show how the methods combine in the other cases.

Strings

Structures A where the binary relation E forms a connected graph, with each node having *in-degree* and *out-degree* at most 1, can be viewed as words over the alphabet $\mathscr{P}(\mathcal{U})$, where \mathcal{U} is the collection of unary relation symbols.

Theorem (Büchi, Elgot, Trakhtenbrot)

For any sentence φ of MSO, the language $L_{\varphi} = \{s \mid s \text{ a string and } s \models \varphi\}$ is regular.

A particularly perspicuous proof of this is obtained by using the *Myhill-Nerode theorem*.

Myhill-Nerode Theorem

Theorem (Myhill-Nerode)

A language L is regular *if, and only if,* there is an equivalence relation \sim on strings such that:

1. \sim has finite index on the set of all strings;

2. \sim is a congruence for string concatenation, i.e.

 $s_1 \sim t_1 \text{ and } s_2 \sim t_2 \quad \Rightarrow \quad s_1 \cdot s_2 \sim t_1 \cdot t_2;$

and

3. L is the union of some number of \sim -equivalence classes.

MSO Languages

 φ —an MSO sentence of quantifier rank m.

 $\mathbb{A} \equiv_{m}^{(MSO)} \mathbb{B}$ if they cannot be distinguished by any first-order (MSO) sentence of quantifier rank m.

- \equiv_m^{MSO} has finite index since there are, up to logical equivalence, only finitely many MSO sentences of quantifier rank at most m.
- \equiv_{m}^{MSO} is a congruence for concatenation by an easy argument using *Ehrenfeucht-Fraïssé games* (a special case of the *Feferman-Vaught theorem*).
- It is immediate that L_{φ} is closed under \equiv_m^{MSO} .

Tree-Width

Tree-width is a measure of how *tree-like* a structure is.

For a graph G = (V, E), a *tree decomposition* of G is a relation $D \subset V \times T$ with a tree T such that:

- for each $v \in V$, the set $\{t \mid (v,t) \in D\}$ forms a connected subtree of T; and
- for each edge $(u, v) \in E$, there is a $t \in T$ such that $(u, t), (v, t) \in D$.

The *tree-width* of *G* is the least *k* such that there is a tree *T* and a tree decomposition $D \subset V \times T$ such that for each $t \in T$,

 $|\{v \in V \mid (v,t) \in D\}| \le k+1.$

Tree-Width

Looking at the decomposition *bottom-up*, a graph of tree-width k is obtained from graphs with at most k + 1 nodes through a finite sequence of applications of the operation of taking *sums over sets* of at most k elements.

We let \mathcal{T}_k denote the class of structures \mathbb{A} such that $\operatorname{tw}(G\mathbb{A}) \leq k$.

Courcelle's Theorem

Theorem (Courcelle)

For any MSO sentence φ and any k there is a linear time algorithm that decides, given $\mathbb{A} \in \mathcal{T}_k$ whether $\mathbb{A} \models \varphi$.

A proof relies on the fact (proved by **Bodlaender**) that there is an algorithm (linear in n, exponential in k) that given a graph $G \in \mathcal{T}_k$ computes a tree decomposition of G of width k.

Given $\mathbb{A} \in \mathcal{T}_k$ and φ , compute:

- from \mathbb{A} a labelled tree T; and
- from φ a bottom-up tree automaton \mathcal{A}

such that \mathcal{A} accepts T if, and only if, $\mathbb{A} \models \varphi$.

The Labelled Tree

 $C = \{c_0, \ldots, c_k\}$ a set of k + 1 new constants.

 (\mathbb{A}, ρ) —expansion of \mathbb{A} with $\rho : C \rightarrow V$, a partial map interpreting some of the constants in C.

Let

- \mathcal{B}_k —the collection of (\mathbb{A}, ρ) such that \mathbb{A} has at most k + 1 elements.
- erase_{*i*}—an operation which takes (\mathbb{A}, ρ) to (\mathbb{A}, ρ') , where ρ' is as ρ but without c_i .
- a binary operation of union disjoint over C:

 $(\mathbb{A}_1,
ho_1) \oplus_C (\mathbb{A}_1,
ho_2)$

Congruence

- Any $\mathbb{A} \in \mathcal{T}_k$ is obtained from \mathcal{B}_k by finitely many applications of the operations erase_i and \bigoplus_C .
- If $\mathbb{A}_1, \rho_1 \equiv^{\mathrm{MSO}}_m \mathbb{A}_2, \rho_2$, then

 $\mathrm{erase}_i(\mathbb{A}_1,\rho_1)\equiv^{\mathrm{MSO}}_m\mathrm{erase}_i(\mathbb{A}_2,\rho_2)$

• If $\mathbb{A}_1, \rho_1 \equiv_m^{MSO} \mathbb{A}_2, \rho_2$, and $\mathbb{B}_1, \sigma_1 \equiv_m^{MSO} \mathbb{B}_2, \sigma_2$ then $(\mathbb{A}_1, \rho_1) \oplus_C (\mathbb{B}_1, \sigma_1) \equiv_m^{MSO} (\mathbb{A}_2, \rho_2) \oplus_C (\mathbb{B}_2, \sigma_2)$

Model-Checking on \mathcal{T}_k

Any $\mathbb{A} \in \mathcal{T}_k$ can be represented as a finite tree, with leaves labelled by elements of \mathcal{B}_k , internal nodes labelled by operations erase_i and \oplus_C .

We can then compute the \equiv_m^{MSO} type of \mathbb{A} bottom-up.

This establishes the following:

The model-checking problem for MSO is decidable in time f(l, k)n, where

- f is some computable function
- l is the length of the input formula
- k is the tree-width of the input structure
- *n* is the size of the input structure.

19

The Method of Automata

Suppose C is a class of structures such that there is a finite class B and a finite collection Op of operations such that:

- \mathcal{C} is contained in the closure of \mathcal{B} under the operations in Op;
- there is a polynomial-time algorithm which computes, for any $\mathbb{A} \in \mathcal{C}$, an Op-decomposition of \mathbb{A} over \mathcal{B} ; and
- for each m, the equivalence class $\equiv_m^{(MSO)}$ is an *effective* congruence with respect to to all operations $o \in Op$ (i.e., the $\equiv_m^{(MSO)}$ -type of $o(A_1, \ldots, A_s)$ can be computed from the $\equiv_m^{(MSO)}$ -types of A_1, \ldots, A_s).

Then, FO (MSO) model-checking is fixed-parameter tractable on C.

Relaxations of the Method

- 1. Instead of requiring \mathcal{B} be finite, require that model-checking is in FPT over \mathcal{B} .
- 2. In place of $\equiv_m^{(MSO)}$, we can take any sequence of equivalence relations $\sim_m (m \in \mathbb{N})$ satisfying
 - for every φ there is an m such that models of φ are closed under $\sim_m;$ and
 - for all m, \sim_m has finite index.

Note: letting $\mathbb{A} \sim_m \mathbb{B}$ if \mathbb{A}, \mathbb{B} cannot be distinguished by a formula of *length* m, does not yield a congruence with respect to disjoint union.

There is no elementary function e such that $\mathbb{A}_1 \sim_{e(m)} \mathbb{B}_1$ and $\mathbb{A}_2 \sim_{e(m)} \mathbb{B}_2$ implies $\mathbb{A}_1 \oplus \mathbb{A}_2 \sim_m \mathbb{B}_1 \oplus \mathbb{B}_2$.

(D., Grohe, Kreutzer, Schweikardt 2007)

Bounded Degree

 \mathcal{D}_k —the class of structures \mathbb{A} in which every element has degree (in-degree + out-degree) at most k.

Theorem (Seese)

For every sentence φ of FO and every k there is a linear time algorithm which, given a structure $\mathbb{A} \in \mathcal{D}_k$ determines whether $\mathbb{A} \models \varphi$.

Note: this is not true for MSO unless P = NP.

The proof is based on *locality* of first-order logic. Specifically, *Hanf's theorem*.

Hanf Types

For an element a in a structure A, define

 $N_r^{\mathbb{A}}(a)$ —the substructure of \mathbb{A} generated by the elements whose distance from a (in $G\mathbb{A}$) is at most r.

We say \mathbb{A} and \mathbb{B} are *Hanf equivalent* with radius r and threshold q ($\mathbb{A} \simeq_{r,q} \mathbb{B}$) if, for every $a \in A$ the two sets

 $\{a' \in a \mid N_r^{\mathbb{A}}(a) \cong N_r^{\mathbb{A}}(a')\} \quad \text{and} \quad \{b \in B \mid N_r^{\mathbb{A}}(a) \cong N_r^{\mathbb{B}}(b)\}$

either have the same size or both have size greater than q;

and, similarly for every $b \in B$.

Hanf Locality Theorem

Theorem (Hanf)

For every vocabulary σ and every m there are $r \leq 3^m$ and $q \leq m$ such that for any σ -structures \mathbb{A} and \mathbb{B} : if $\mathbb{A} \simeq_{r,q} \mathbb{B}$ then $\mathbb{A} \equiv_m \mathbb{B}$.

In other words, if $r \geq 3^m$, the equivalence relation $\simeq_{r,m}$ is a refinement of \equiv_m .

For $\mathbb{A} \in \mathcal{D}_k$: $N_r^{\mathbb{A}}(a)$ has at most k^r+1 elements

each $\simeq_{r,m}$ has finite index.

Each $\simeq_{r,m}$ -class t can be characterised by a finite table, I_t , giving isomorphism types of neighbourhoods and numbers of their occurrences up to threshold m.

Model-Checking on \mathcal{D}_k

For a sentence φ of FO, we can compute a set of tables $\{I_1, \ldots, I_s\}$ describing $\simeq_{r,m}$ -classes consistent with it.

This computation is independent of any structure A.

Given a structure $\mathbb{A} \in \mathcal{D}_k$,

for each a, determine the isomorphism type of $N_r^{\mathbb{A}}(a)$

construct the table describing the $\simeq_{r,m}$ -class of \mathbb{A} .

compare against $\{I_1, \ldots, I_s\}$ to determine whether $\mathbb{A} \models \varphi$.

For fixed k, r, m, this requires time *linear* in the size of A.

Note: model-checking for FO is in O(f(l, k)n).

25

Local Tree-Width

Let $t : \mathbb{N} \to \mathbb{N}$ be a non-decreasing function.

LTW_t—the class of structures A such that for every $a \in A$:

 $GN_r^{\mathbb{A}}(a)$ has tree-width at most t(r). (Eppstein; Frick-Grohe).

We say that C has *bounded local tree-width* if there is some function t such that $C \subseteq LTW_t$.

Examples:

- 1. T_k has local tree-width bounded by the constant function t(r) = k.
- 2. \mathcal{D}_k has local tree-width bounded by $t(r) = k^r + 1$.
- 3. Planar graphs have local tree-width bounded by t(r) = 3r.

26

Bounded Local Tree-Width

Theorem (Frick-Grohe)

For any class \mathcal{C} of bounded local tree-width and any $\varphi \in FO$, there is a *quadratic* time algorithm that decides, given $\mathbb{A} \in \mathcal{C}$, whether $\mathbb{A} \models \varphi$.

The idea:

For each a, the structure $N_r^{\mathbb{A}}(a)$ has tree-width bounded by t(r). Use the linear time algorithm on $T_{t(r)}$ to determine \equiv_m -type of $N_r^{\mathbb{A}}(a)$.

Hanf's theorem uses *isomorphism types* of $N_r^{\mathbb{A}}(a)$. We use *Gaifman's locality theorem* instead.

Gaifman's Theorem

We write $\delta(x, y) > d$ for the formula of FO that says that the distance between x and y is greater than d.

We write $\psi^N(x)$ to denote the formula obtained from $\psi(x)$ by relativising all quantifiers to the set N.

A basic local sentence is a sentence of the form

$$\exists x_1 \cdots \exists x_s \left(\bigwedge_{i \neq j} \delta(x_i, x_j) > 2r \land \bigwedge_i \psi^{N_r(x_i)}(x_i) \right)$$

Theorem (Gaifman)

Every first-order sentence is equivalent to a Boolean combination of basic local sentences.

Using Gaifman's Theorem

How do we evaluate a basic local sentence $\exists x_1 \cdots \exists x_s \left(\bigwedge_{i \neq j} \delta(x_i, x_j) > 2r \land \bigwedge_i \psi^{N_r(x_i)}(x_i) \right) \text{ in a structure } \mathbb{A}?$

For each $a \in A$, determine whether

 $N_r^{\mathbb{A}}(a) \models \psi[a]$

using the linear time model-checking algorithm on $T_{t(r)}$.

Label *a* red if so.

We now want to know whether there exists a 2r-scattered set of red vertices of size s.

Finding a Scattered Set

Choose red vertices from A in some order, removing the 2r-neighbourhood of each chosen vertex.

 $a_{1} \in \mathbb{A},$ $a_{2} \in \mathbb{A} \setminus N_{2r}^{\mathbb{A}}(a_{1}),$ $a_{3} \in \mathbb{A} \setminus (N_{2r}^{\mathbb{A}}(a_{1}) \cup N_{2r}^{\mathbb{A}}(a_{2})), \dots$

If the process continues for *s* steps, we have found a 2r-scattered set of size *s*. Otherwise, for some u < s we have found a_1, \ldots, a_u such that all red vertices are contained in

 $N_{2r}^{\mathbb{A}}(a_1,\ldots,a_u)$

This is a structure of tree-width at most t(2rs) and the property of containing a 2r-scattered set of *red* vertices of size *s* can be stated in FO.

Method of Locality

- Suppose we have a function, associating a parameter $k_{\mathbb{A}} \in \mathbb{N}$ with each structure \mathbb{A} .
- Suppose we have an algorithm which, given A and φ decides A $\models \varphi$ in time

$g(l,k_{\mathbb{A}})n^{c}$

for some computable function g and some constant c.

• Let \mathcal{C} be a class of structures of *bounded local* k, i.e.

there is a computable function $t : \mathbb{N} \to \mathbb{N}$ such that for every $\mathbb{A} \in \mathcal{C}$ and $a \in \mathbb{A}$, $k_{N_r^{\mathbb{A}}(a)} < t(r)$.

Then, there is an algorithm which, given $\mathbb{A} \in \mathcal{C}$ and φ decides whether $\mathbb{A} \models \varphi$ in time

 $f(l)n^{c+1}$

for some computable function f.

Graph Minors

We say that a graph *G* is a minor of graph *H* (written $G \prec H$) if *G* can be obtained from *H* by repeated applications of the operations:

 \Rightarrow

- delete an edge;
- delete a vertex (and all incident edges); and
- contract an edge

Graph Minors

Alternatively, G = (V, E) is a minor of H = (U, F), if there is a graph H' = (U', F') with $U' \subseteq U$ and $F' \subseteq F$ and a surjective map $M : U' \to V$ such that

- for each $v \in V$, $M^{-1}(v)$ is a connected subgraph of H'; and
- for each edge $(u, v) \in E$, there is an edge in F' between some $x \in M^{-1}(u)$ and some $y \in M^{-1}(v)$.

Facts about Graph Minors

- G is planar if, and only if, $K_5 \not\prec G$ and $K_{3,3} \not\prec G$.
- If $G \subset H$ then $G \prec H$.
- The relation \prec is transitive.
- If $G \prec H$, then $\operatorname{tw}(G) \leq \operatorname{tw}(H)$.
- If $\operatorname{tw}(G) < k 1$, then $K_k \not\prec G$.

Say that a class of structures C excludes H as a minor if $H \not\prec GA$ for all $A \in C$.

C has excluded minors if it excludes some H as a minor (equivalently, it excludes some K_k as a minor).

• T_k excludes K_{k+2} as a minor.

More Facts about Graph Minors

Theorem (Robertson-Seymour)

In any infinite collection $\{G_i \mid i \in \omega\}$ of graphs, there are i, j with $G_i \prec G_j$.

Corollary

For any class C closed under minors, there is a finite collection \mathcal{F} of graphs such that $G \in C$ if, and only if, $F \not\prec G$ for all $F \in \mathcal{F}$.

Theorem (Robertson-Seymour)

For any G there is an $O(n^3)$ algorithm for deciding, given H, whether $G \prec H$.

Corollary

Any class C closed under minors is decidable in *cubic time*.

Decomposing Graphs with Excluded Minors

Write \mathcal{M}_k for the class of graphs G such that $K_k \not\prec G$.

from now on, we elide the distinction between restrictions on A and GA.

Robertson and Seymour show how to obtain a decomposition of graphs in \mathcal{M}_k .

Grohe shows that this can be done over graphs of *almost bounded local tree-width*.

Let

$$\mathcal{L}_{\lambda} = \{ G \mid \forall H \prec G : \ \operatorname{ltw}_{r}(H) \leq \lambda r \}$$

$$\mathcal{L}_{\lambda,\mu} = \{ G \mid \exists v_1, \dots, v_\mu : G \setminus \{v_1, \dots, v_\mu\} \in \mathcal{L}_\lambda \}$$

Almost Bounded Local Tree-width

Classes \mathcal{L}_{λ} and $\mathcal{L}_{\lambda,\mu}$ are *minor-closed* and so decidable in cubic time.

Given $G \in \mathcal{L}_{\lambda,\mu}$, we can find v_1, \ldots, v_{μ} witnessing this in time $O(n^4)$.

For each v, check if G - v is in $\mathcal{L}_{\lambda,\mu-1}$.

If so, add v to the list and proceed with G - v and $\mathcal{L}_{\lambda,\mu-1}$.

Question: Is this algorithm in time $O(f(\lambda, \mu)n^4)$ for a *computable* function f?

There is a polynomial-time computable map taking a structure $\mathbb{A} \in \mathcal{L}_{\lambda,\mu}$ to $\mathbb{A}' \in \mathcal{L}_{\lambda}$ so that the FO-type of \mathbb{A} is determined by that of \mathbb{A}' .

A' is obtained from $\mathbb{A} \setminus \{v_1, \ldots, v_\mu\}$ by adding new relations S_1, \ldots, S_μ interpreted by the neighbours of v_1, \ldots, v_μ .

September 2007

Decomposition Theorem

$\forall k \exists \lambda \exists \mu$

Any $G \in \mathcal{M}_k$ can be obtained from graphs in $\mathcal{L}_{\lambda,\mu}$ by a finite sequence of *clique sum* operations.

And the decomposition can be computed in time $O(n^4)$

Clique Sum: G_1, G_2 graphs with $X \subseteq G_1 \cap G_2$ a set of vertices that induces a clique in each of G_1 and G_2 .

$G_1 \oplus_{X,G_X} G_2$

Take the disjoint sum of G_1 and G_2 , identifying the two copies of X and replacing the clique by the graph G_X .

Congruences

For graphs $G \in \mathcal{L}_{\lambda,\mu}$, if X is a clique in G,

```
|X| < \lambda + \mu + 1
```

Thus, there are only finitely many operations of the form \bigoplus_{X,G_X} .

We have nearly satisfied the requirements for an application of the *automata-theoretic method*, but

If
$$X=x_1,\ldots,x_s$$
, the \equiv_m -type of (G,x_1,\ldots,x_s) , where $G=G_1\oplus_{X,G_X}G_2,$

is given by the \equiv_m -types of (G_1, x_1, \ldots, x_s) and (G_2, x_1, \ldots, x_s) .

However, different clique-sum operations may apply to different cliques X.

Bounding decompositions

While in a *bounded-width* treedecomposition of G, the size of the individual bags is bounded, here we only have a bound on the size of the *intersections* between bags. What we do have is a bound on the *local tree-width* of the bags G_1 (by replacing structures in $\mathcal{L}_{\lambda,\mu}$ by their encodings in \mathcal{L}_{λ}).

Idea: the type of X_2 in $G_1 \oplus_X G_2$ is determined by the type of $(G_1, \bar{x_2})$, the type of $(G_2, \bar{x_1})$ and the *local neighbourhood* of the clique X_1 in G_1 .

40

Typing the Sum

The tree-decomposition of $N_r^{G_1}(X)$ determines a function θ that takes the \equiv_m -type of $(G_2, \bar{x_2})$ to the \equiv_m -type of $N_r^{G_1}(X) \oplus_X (G_2, \bar{x_2})$

There are only finitely many such functions θ .

Define the asymmetric clique-sum of type θ :

$(G_1, \bar{y}) \oplus_{X, G_X}^{\theta} (G_2, \bar{x})$

of taking the clique-sum of the two graphs, joining \bar{x} to a clique in G_1 whose neighbourhood has type θ .

Automata on \mathcal{M}_k

Given a first-order sentence φ , it determines a radius of locality r and quantifier rank m.

- We have a finite collection of operations $\bigoplus_{X,G_X}^{\theta}$ (depending on r and m).
- We have structures (\mathbb{A}, \bar{x}) , where the length of x is bounded by s (depending only on k).

Thus, there are only finitely many \equiv_m classes.

• \equiv_m is a congruence for each operation \oplus_{X,G_X}^{θ} .

Thus, first-order logic is fixed-parameter tractable on \mathcal{M}_k .

(Flum-Grohe)

Locally Excluded Minors

Let $t : \mathbb{N} \to \mathbb{N}$ be a non-decreasing function.

LEM_t—the class of structures A such that for every $a \in A$:

 $K_{t(r)} \not\prec GN_r^{\mathbb{A}}(a)$

We say that C locally excludes minors if there is some function t such that $C \subseteq \text{LEM}_t$.

Theorem (D., Grohe, Kreutzer)

First-order logic is fixed-parameter tractable on every class \mathcal{C} that locally excludes minors.

Application of Locality Method?

The result would be an easy application of the *locality method* if we had established:

There is an algorithm deciding $\mathbb{A} \models \varphi$ in time $f(l, k)n^c$ where k is the least value such that $K_k \not\prec G\mathbb{A}$

While the **Flum-Grohe** theorem does give a $O(n^5)$ algorithm for the class of structures that exclude K_k as a minor, *it is not clear if the constants are bounded by a computable function of k*.

Potential Sources of Uncomputability

- 1. The algorithm decomposing a graph in \mathcal{M}_k over the class $\mathcal{L}_{\lambda,\mu}$ relies on a membership test in a *minor-closed superclass* of \mathcal{M}_k . It is not known whether the excluded minors for this class are given by a computable function of k.
- 2. The algorithm for reducing structures in $\mathcal{L}_{\lambda,\mu}$ to \mathcal{L}_{λ} relies on membership tests for $\mathcal{L}_{\lambda,\mu'}$ (for $\mu' \leq \mu$) and it is not known if the excluded minors for these classes are given by a computable function of k.

(D., Grohe, Kreutzer) gives constructive solutions to both these problems.

Constructive Decomposition

There is a *uniform in* k algorithm which computes a decomposition of a graph $G \in \mathcal{M}_k$ over $\mathcal{L}_{\lambda,\mu}$ in time $O(n^4)$.

Instead of *clique-sums*, the decomposition uses *neighbourhood-sums*.

 $(G_1, x) \odot_x (G_2, x)$

is the graph obtained by taking the *disjoint sum* of G_1 and G_2 while identifying $N_1(x)$ and *deleting x*.

It is also shown that given $G \in \mathcal{L}_{\lambda,\mu}$, we can effectively find v_1, \ldots, v_{μ} such that $G \setminus \{v_1, \ldots, v_{\mu}\} \in \mathcal{L}_{\lambda'}$ for some λ' computable from λ .

Review

We have gone from graphs of *bounded size* to *locally excluded minors* in four steps, alternating decomposition steps with localisation steps.

In general, these steps may be carried out for logics more expressive than firstorder logic.

- Each decomposition gives rise to a notion of automata. What is the full power of these automata?
- Locality steps would work, not just for first-order logic, but the "Gaifman closure" of the logic. What is its power?

