Finite Model Theory and Graph Isomorphism. IV.

Anuj Dawar

University of Cambridge Computer Laboratory
visiting RWTH Aachen

Beroun, 14 December 2013
Finite Model Theory gives rise to notions of indistinguishability on finite structures, such as graphs. These are used to prove inexpressibility results for various logics.

These equivalences are often characterised by games.

When the relations of indistinguishability are computable in polynomial time, they give rise to tractable approximations of graph isomorphism.

In many cases, they give a structural explanation of when certain graph classes admit polynomial time isomorphism tests.
Recapitulation. II

The equivalences \equiv^{C^k} correspond (as a family) to the k-dimensional *Weisfeiler-Lehman* isomorphism test.

This family of equivalences has a number of different *characterisations* in combinatorics, logic and linear programming.

It captures isomorphism in many significant *graph classes* including, most generally, any graph class excluding a minor.

There are graphs (of *degree* bounded by 3 and *colour-class size* bounded by 4) in which \equiv^{C^k} fails to capture isomorphism.

This can be used to show that *FPC* does not express *all* polynomial-time properties of graphs.
Solvability of Linear Equations

It has been shown by similar methods that the problem of solving linear equations over the two element field \mathbb{Z}_2 is not definable in FPC. (Atserias, Bulatov, D. 09)

The question arose in the context of definability of Constraint Satisfaction Problems.

The problem is clearly solvable in polynomial time by means of Gaussian elimination.
Undefinability in FPC

Take G a 3-regular, connected graph with treewidth $> k$. Define equations E_G with two variables x_0^e, x_1^e for each edge e. For each vertex v with edges e_1, e_2, e_3 incident on it, we have eight equations:

$$E_v : \quad x_{a}^{e_1} + x_{b}^{e_2} + x_{c}^{e_3} \equiv a + b + c \pmod{2}$$

\tilde{E}_G is obtained from E_G by replacing, for exactly one vertex v, E_v by:

$$E'_v : \quad x_{a}^{e_1} + x_{b}^{e_2} + x_{c}^{e_3} \equiv a + b + c + 1 \pmod{2}$$

We can show: E_G is satisfiable; \tilde{E}_G is unsatisfiable; $E_G \equiv^C \tilde{E}_G$ follows by the same proof as for Cai, F{"u}rer, Immerman graphs.
\(E_G \) is satisfiable.

by setting the variables \(x^e_i \) to \(i \).

\(\tilde{E}_G \) is unsatisfiable.

Consider the subsystem consisting of equations involving only the variables \(x^e_0 \).

The sum of all left-hand sides is

\[
2 \sum_e x^e_0 \equiv 0 \pmod{2}
\]

However, the sum of right-hand sides is 1.
Rank Operators

This motivates the introduction of an operator for \textit{matrix rank} into the logic.

We have, as with FPC, terms of \textit{element sort} and \textit{numeric sort}.

We interpret $\eta(x, y)$—a \textit{term} of numeric sort—in G as defining a \textit{matrix} with rows and columns indexed by elements of G with entries $\eta[a, b]$.

\[\text{rk}_{x, y} \eta \] is a \textit{term} denoting the number that is the rank of the matrix defined by $\eta(x, y)$.

To be precise, we have, for each finite field $\mathbb{GF}(q)$ (q prime), an operator rk^q which defines the rank of the matrix with entries $\eta[a, b](\text{mod } q)$.

(D., Grohe, Holm, Laubner, 2009)
Adding rank operators to FP, we obtain a proper extension of FPC.

\[\# x \varphi \ = \ \text{rk}_{x,y}[x = y \land \varphi(x)] \]

In FPrk we can express the solvability of linear systems of equations, as well as the Cai-Fürer-Immerman graphs.
More generally, for each prime p and each arity m, we have an operator rk_m^p which binds $2m$ variables and defines the rank of the $n^m \times n^m$ matrix defined by a formula $\varphi(x, y)$.

FOrk, the extension of first-order logic with the rank operators is already quite powerful.

- it can express \textit{deterministic transitive closure};
- it can express \textit{symmetric transitive closure};
- it can express solvability of linear equations.
Define the equivalence relation \(G \equiv^{R_{\Omega,m}^k} H \) to mean that \(G \) and \(H \) are not distinguished by any formula of \(\text{FO}_{\Omega} \) using operators \(r_k^p \) (for \(p \in \Omega \)) and with at most \(k \) variables.

This equivalence relation has a characterisation in terms of games.

\[(D., \ Holm \ 2012)\]

What can we say about the approximations of isomorphism given by \(\equiv^{R_{\Omega,m}^k} \)?
Partition Games

We formulate a general framework of *partition games*, played with k pebbles.
First consider a simple version.

- **Spoiler** picks a pebble from G and the corresponding pebble from H.
- **Duplicator** responds with
 - a partition P of $V(G)$
 - a partition Q of $V(H)$
 - a bijection $f : P \rightarrow Q$ such that a condition (*) holds.
- **Spoiler** chooses a part $A \in P$ and places the chosen pebbles on an element in A and the matching pebble on an element in $f(A)$.

With no restriction (*), we have a game for \equiv^k.
If we require A and $f(A)$ to have the same size for all $A \in P$, we have a game for \equiv^{C^k}.
Stable Partitions

The equivalence defined by the game is the \textit{stable partition} of \(k\)-tuples reached by refining equivalences:

\[
\equiv_k \supseteq \equiv_k^1 \supseteq \ldots \supseteq \equiv_k^i \ldots
\]

Each tuple \(a\) and each \(\equiv_k^p\) induce a partition of \(V\) where \(u\) and \(v\) are in the same part if any way of substituting them into \(a\) gives \(\equiv_k^p\)-tuples.

Two tuples are \(\equiv_k^{p+1}\)-equivalent iff they induce \textit{similar} partitions.
Games for Rank Quantifiers

Since the rank quantifier r_k^p binds two variables, we have the following variation.

- **Spoiler** picks 2 pebbles from G and the corresponding pebbles from H and $p \in \Omega$.

- **Duplicator** repsonds with
 - a partition P of $V(G) \times V(G)$
 - a partition Q of $V(H) \times V(H)$
 - a bijection $f : P \to Q$ such that for all labellings $\gamma : P \to GF(p)$

$$\text{rank}\left(\sum_{A \in P} \gamma(A)M_A\right) = \text{rank}\left(\sum_{A \in P} \gamma(A)M_{f(A)}\right)$$

- **Spoiler** chooses a part $A \in P$ and places the chosen pebbles on a pair in A and the matching pebbles on a pair in $f(A)$.

This characterises the equivalence $\equiv^R_{k,\Omega,1}$.
Games for Logics with Rank

The *arity hierarchy* does not collapse for rank logics, so the general game is defined as follows.

- **Spoiler** picks $2m$ pebbles from $V(G)$ and from $V(H)$ and $p \in \Omega$.
- **Duplicator** responds with
 - a partition P of $V(G)^m \times V(G)^m$
 - a partition Q of $V(H)^m \times V(H)^m$
 - a bijection $f : P \rightarrow Q$ such that for all labellings $\gamma : P \rightarrow GF(p)$

$$\text{rank}(\sum_{A \in P} \gamma(A) M_A) = \text{rank}(\sum_{A \in P} \gamma(A) M_{f(A)})$$

- **Spoiler** chooses a part $A \in P$ and places the chosen pebbles on an m-tuple in A and the matching pebbles on an m-tuple in $f(A)$.

This characterises the equivalence $\equiv^R_{k,\Omega,m}$.
Limitations of the Game

The arbitrary arity m and the *matrix-equivalence* condition make the game unwieldy. It’s difficult to prove inexpressibility results with it.

- the relation \equiv^k can itself be defined in FP; and
- the relation \equiv^{C^k} can itself be defined in FPC.

Both of these follow by an inductive definition of the game winning positions.

Is $\equiv^{R^k}_{k,\Omega,m}$ definable in FPrk?
Is it even decidable in *polynomial time*?
In the stepwise refinement of equivalences converging to $\equiv^R_{k,\Omega,m}$

$$\equiv_0 \supseteq \equiv_1 \supseteq \cdots \supseteq \equiv_i \cdots$$

to decide if a and a' are equivalent at stage $p + 1$, we can compute the partitions of $V^m \times V^m$ induced using the equivalence \equiv_p by a and a' respectively.

We then need to compute the rank of the matrices formed by taking all linear combinations of parts of the partitions.
There are potentially exponentially many of these.
Invertible Map Game

We define a variant partition game with a stronger condition:

There is an invertible matrix S such that for all labellings
\[\gamma : P \to \mathbb{GF}(p), \sum_{A \in P} \gamma(A)M_A = S(\sum_{A \in P} \gamma(A)M_{f(A)})S^{-1} \]

Since this (unlike the rank function) is linear on the space of matrices, it is sufficient to check it on a basis, which is given by the individual parts of P.

That is, it suffices to check, for each $A \in P$ that $M_A = SM_{f(A)}S^{-1}$.

A result of (Chistov, Karpinsky, Ivanyov 1997) guarantees that simultaneous similarity of a collection of matrices is decidable in polynomial time.
This gives us a family of polynomial-time isomorphism tests $\equiv_{k,\Omega,m}^{\text{IM}}$.

- $\equiv_{k,\Omega,m}^{\text{IM}}$ refines $\equiv_{k,\Omega,m}^{R}$
- $\equiv_{k,\Omega,m}^{\text{IM}}$ gets finer as we increase any of k, m or Ω.
- The \textit{CFI} graphs are distinguished by $\equiv_{4,\{2\},1}^{\text{IM}}$

\textit{(D., Holm 2012)}
Coherent Algebras

Weisfeiler and Lehman presented their algorithm in terms of *cellular algebras*.

These are algebras of matrices on the *complex numbers* defined in terms of *Schur multiplication*:

\[(A \circ B)(i, j) = A(i, j)B(i, j)\]

They are also called *coherent configurations* in the work of **Higman**.

Definition:

A *coherent algebra* with index \(V\) is an algebra \(A\) of \(V \times V\) matrices over \(\mathbb{C}\) that is:

- closed under Hermitian adjoints;
- closed under Schur multiplication;
- contains the identity \(I\) and the all 1's matrix \(J\).
Coherent Algebras

One can show that a coherent algebra has a *unique basis* A_1, \ldots, A_m (i.e. every matrix in the algebra can be expressed as a linear combination of these) of 0-1 matrices which is closed under *adjoints* and such that

$$
\sum_i A_i = J.
$$

One can then derive *structure constants* p^k_{ij} such that

$$
A_i A_j = \sum_k p^k_{ij} A_k.
$$

Associate with any graph G, its *coherent invariant*, defined as the smallest coherent algebra \mathcal{A}_G containing the adjacency matrix of G.
Weisfeiler-Lehman method

Say that two graphs G and H are WL-equivalent if there is an isomorphism between their coherent invariants A_G and A_H. G and H are WL-equivalent if, and only if, $G \equiv^{C^3} H$.

Friedland (1989) has shown that two coherent algebras with standard bases A_1, \ldots, A_m and B_1, \ldots, B_m are isomorphic if, and only if, there is an invertible matrix S such that

$$SA_iS^{-1} = B_i \text{ for all } 1 \leq i \leq m.$$
Define the k-pebble *complex invertible map game*.

- **Spoiler** picks 2 pebbles from G and the corresponding pebbles from H.
- **Duplicator** reponds with
 - a partition P of $V(G) \times V(G)$
 - a partition Q of $V(H) \times V(H)$
 - a bijection $f : P \to Q$ and an invertible matrix S over \mathbb{C} such that for all $A \in P$: $M_A = SM_{f(A)}S^{-1}$.
- **Spoiler** chooses a part $A \in P$ and places the chosen pebbles on a pair in A and the matching pebbles on a pair in $f(A)$.

The game defines an equivalence $\equiv_{\mathbb{C},k}^{\text{IM}}$ over graphs. We can show $\equiv_{\mathbb{C},k+1}^{\text{IM}} \subseteq \equiv_{\mathbb{C}}^{k} \subseteq \equiv_{\mathbb{C},k-1}^{\text{IM}}$.

Anuj Dawar

December 2013
The complex invertible map game gives us essentially the same family of approximations of isomorphism as the Weisfeiler-Lehman method and the bijection games.

The invertible map game we defined in connection with rank logics can then be seen as the tightening of these approximations to a game where Duplicator is required to choose the invertible map S not over \mathbb{C} but over a finite field whose characteristic has been chosen by Spoiler.

Proviso: we defined the latter game with partitions of higher arity. These seem to be unnecessary in the complex invertible map game.
Isomorphism for graphs of colour class size 3 is captured by $\equiv C^3$.

Isomorphism for graphs of colour class size 4 is captured by $\equiv IM_{4,\{2\},1}$. This is proved by a reduction to the solvability of a system of equations over $GF(2)$.

(D., Holm 2014)
Similarly to the Cai, Fürer and Immerman construction, we can construct a sequence of graphs to show that there is no fixed k and no finite set of primes Ω for which $\equiv_{k,\Omega,1}^{IM}$ is the same as isomorphism.

(D., Holm 2014)

Doing this for $\equiv_{k,\Omega,m}^{IM}$ for $m > 1$ remains a challenge as the games become very unwieldy.
Research Questions

Is the *arity hierarchy* really strict on graphs? Could it be that $\equiv_{IM}^{k,\Omega,m}$ is subsumed by $\equiv_{IM}^{k',\Omega,1}$ for sufficiently large k'?

Show that no fixed $\equiv_{IM}^{k,\Omega,m}$ is the same as isomorphism on graphs.

Are the relations $\equiv_{IM}^{k,\Omega,m}$ definable in FPrk?

Does some $\equiv_{IM}^{k,\Omega,m}$ capture isomorphism on graphs of *bounded colour class size*?

What about graphs of *bounded degree*?