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Is There a Logic for P?

The question of whether or not there is a logic expressing exactly the P
properties of (unordered) relational structures is the central problem in
Descriptive Complexity.

If we assume structures are ordered, then FP, the extension of first-order
logic with least fixed points suffices. (Immerman; Vardi 1982)

In the absence of order FP fails to express simple cardinality properties
such as evenness.
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Fixed-point Logic with Counting

Immerman had proposed FPC—the extension of FP with a mechanism
for counting.

Most “obviously” polynomial-time algorithms can be expressed in FPC.

This includes P-complete problems such as

CVP—the Circuit Value Problem
Input: a circuit, i.e. a labelled DAG with source labels from
{0, 1}, internal node labels from {∨,∧,¬}.
Decide: what is the value at the output gate.

CVP is expressible in FP.

It is expressible in FPC for circuits that may include threshold or counting
gates.
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Expressive Power of FPC

Many non-trivial polynomial-time algorithms can be expressed in FPC:

• FPC captures all of P over any proper minor-closed class of graphs
(Grohe 2010)

• FPC can express linear programming problems; max-flow and
maximum matching on graphs. (Anderson, D., Holm 2015)

But some cannot be expressed:

• There are polynomial-time decidable properties of graphs that are
not definable in FPC. (Cai, Fürer, Immerman, 1992)

• Solvability of a system of linear equations over a finite field cannot
be expressed in FPC. (Atserias, Bulatov, D. 2009)
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Circuit Complexity
A language L ⊆ {0, 1}∗ can be described by a family of Boolean
functions:

(fn)n∈ω : {0, 1}n → {0, 1}.

Each fn may be computed by a circuit Cn made up of

• Gates labeled by Boolean operators: ∧,∨,¬,

• Boolean inputs: x1, . . . , xn, and

• A distinguished gate determining the output.

If there is a polynomial p(n) bounding the size of Cn, i.e. the number of
gates in Cn, the language L is in the class P/poly.

If, in addition, the function n 7→ Cn is computable in polynomial time, L
is in P.

Note: For these classes it makes no difference whether the circuits only use

{∧,∨,¬} or a richer basis with threshold or majority gates.
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Circuit Lower Bounds

It is conjectured that NP 6⊆ P/poly.

Lower bound results have been obtained by putting further restrictions on
the circuits:

• No constant-depth (unbounded fan-in), polynomial-size family of
circuits decides parity. (Furst, Saxe, Sipser 1983).

• No polynomial-size family of monotone circuits decides clique.
(Razborov 1985).

• No constant-depth, O(n
k
4 )-size family of circuits decides k-clique.

(Rossman 2008).

No known result separates NP from constant-depth, polynomial-size
families of circuits with majority gates.
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Circuits for Graph Properties

We want to study families of circuits that decide properties of graphs (or
other relational structures—for simplicity of presentation we restrict
ourselves to graphs).

We have a family of Boolean circuits (Cn)n∈ω where there are n2 inputs
labelled (i, j) : i, j ∈ [n], corresponding to the potential edges.
Each input takes value 0 or 1;

Graph properties in P are given by such families where:

• the size of Cn is bounded by a polynomial p(n); and

• the family is uniform, so the function n 7→ Cn is in P (or
DLogTime).
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Invariant Circuits

Cn is invariant if, for every input graph, the output is unchanged under a
permutation of the inputs induced by a permutation of [n].

That is, given any input G : [n]2 → {0, 1}, and a permutation π ∈ Sn,

Cn accepts G if, and only if, Cn accepts the input πG given

(πG)(i, j) = G(π(i), π(j)).

Note: this is not the same as requiring that the result is invariant under
all permutations of the input. That would only allow us to define
functions of the number of 1s in the input. The functions we define
include all isomorphism-invariant graph properties such as connectivity,
perfect matching, Hamiltonicity, 3-colourability.
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Symmetric Circuits

Say Cn is symmetric if any permutation of [n] applied to its inputs can
be extended to an automorphism of Cn.

i.e., for each π ∈ Sn, there is an automorphism of Cn that
takes input (i, j) to (πi, πj).

Any symmetric circuit is invariant, but not conversely.

Consider the natural circuit for deciding whether the number of
edges in an n-vertex graph is even.

Any invariant circuit can be converted to a symmetric circuit, but with
potentially exponential blow-up.
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Logic and Circuits

Any formula of ϕ first-order logic translates into a uniform family of
circuits Cn

For each subformula ψ(x) and each assignment a of values to
the free variables, we have a gate.
Existential quantifiers translate to big disjunctions, etc.

The circuit Cn is:

• of constant depth (given by the depth of ϕ);

• of size at mose c · nk where c is the number of subformulas of ϕ and
k is the maximum number of free variables in any subformula of ϕ.

• symmetric by the action of π ∈ Sn that takes ψ[a] to ψ[π(a)].
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FP and Circuits

For every sentence ϕ of FP there is a k such that for every n, there is a
formula ϕn of Lk that is equivalent to ϕ on all graphs with at most n
vertices.

The formula ϕn has

• depth nc for some constant c;

• at most k free variables in each sub-formula for some constant k.

It follows that every graph property definable in FP is given by a family
of polynomial-size, symmetric circuits.
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FPC and Counting

For every sentence ϕ of FP there is a k such that for every n, there is a
formula ϕn of Ck that is equivalent to ϕ on all graphs with at most n
vertices.

The formula ϕn has

• depth nc for some constant c;

• at most k free variables in each sub-formula for some constant k.

It follows that every graph property definable in FP is given by a family
of polynomial-size, symmetric circuits in a basis with threshold gates.

Note: we could also alternatively take a basis with majority gates.
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Main Results

The following are established in (Anderson, D. 2014):

Theorem
A class of graphs is accepted by a P-uniform, polynomial-size, symmetric
family of Boolean circuits if, and only if, it is definable by an FP formula
interpreted in G ] ([n], <).

Theorem
A class of graphs is accepted by a P-uniform, polynomial-size, symmetric
family of threshold circuits if, and only if, it is definable in FPC.
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Some Consequences

We get a natural and purely circuit-based characterisation of FPC
definability.

Inexpressibility results for FP and FPC yield lower bound results against
natural circuit classes.

• There is no polynomial-size family of symmetric Boolean circuits
deciding if an n vertex graph has an even number of edges.

• Polynomial-size families of uniform symmetric threshold circuits are
more powerful than Boolean circuits.

• Invariant circuits cannot be translated into equivalent symmetric
threshold circuits, with only polynomial blow-up.
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Symmetric Circuits for non-Boolean Queries

Instead of circuits computing Boolean (i.e. 0/1) queries, we can consider
circuits C that compute an m-ary relation on an input graph.

The output gate is not unique. Instead, we have an injective function
Ω : [n]m → C.
The range of Ω forms the output gates.

The requirement that π ∈ Sn extends to an automorphism π̂ of C
includes the condition:

π̂(Ω(x)) = Ω(π(x))
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Automorphisms of Symmetric Circuits

For a symmetric circuit Cn we can assume w.l.o.g. that the
automorphism group is the symmetric group Sn acting in the natural way.

That is:

• Each π ∈ Sn gives rise to a non-trivial automorphism of Cn
(otherwise Cn would compute a constant function).

• There are no non-trivial automorphisms of Cn that fix all the inputs
(otherwise there is redundancy in Cn that can be eliminated).

By abuse of notation, we use π ∈ Sn both for permutations of [n] and
automorphisms of Cn.
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Stabilizers

For a gate g in Cn, Stab(g) denotes the stabilizer group of g, i.e. the
subgroup of Sn consisting:

Stab(g) = {π ∈ Sn | π(g) = g}.

The orbit of g is the set of gates {h | π(g) = h for some π ∈ Sn}

By the orbit-stabilizer theorem, there is one gate in the orbit of g for
each co-set of Stab(g) in Sn.
Thus the size of the orbit of g in Cn is [Sn : Stab(g)] = n!

|Stab(g)| .

So, an upper bound on Stab(g) gives us a lower bound on the orbit of g.

Conversely, knowing that the orbit of g is at most polynomial in n tells us
that Stab(g) is big.
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Supports

For a group G ⊆ Sn, we say that a set X ⊆ [n] is a support of G if

For every π ∈ Sn, if π(x) = x for all x ∈ X, then π ∈ G.

In other words, G contains all permutations of [n] \X.

So, if |X| = k, [Sn : G] is at most n!
(n−k)! ≤ n

k.

Groups with small support are big.

The converse is clearly false since [Sn : An] = 2, but An has no support
of size less than n− 1.

Note: For the family of circuits (Cn)n∈ω obtained from an FPC formula
there is a constant k such that all gates in each Cn have a support of
size at most k.
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Support Theorem

In polynomial size symmetric circuits, all gates have (stabilizer groups
with) small support:

Theorem
For any polynomial p, there is a k such that for all sufficiently large n, if
C is a symmetric circuit on [n] of size at most p(n), then every gate in C
has a support of size at most k.

The general form of the support theorem in (Anderson, D. 2014) gives
bounds on the size of supports in sub-exponential circuits.
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Proof sketch – Supporting Equivalence Relations

Say that a permutation π ∈ Sn respects an equivalence relation ∼ on [n]
if

π(x) ∼ x for all x ∈ [n].

Say that an equivalence relation ∼ on [n] supports a group G ⊆ Sn if
every permutation that respects ∼ is in G.

We can show that every group G ⊆ Sn has a unique, coarsest
equivalence relation ∼G that supports it.
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Supporting Equivalence Relations

Lemma: There is a coarsest equivalence relation that supports G.

Proof sketch: For two equivalence relations ∼1 and ∼2, let E(∼1,∼2)
denote the finest partition that is coarser than ∼1 and ∼2.
Then, any permutation that fixes each equivalence class E(∼1,∼2) can
be expressed as a composition of permutations fixing all classes of ∼1

and ∼2 respectively.

Essentially, every permutation in G can be expressed as a composition of
permutations that respect ∼G and those that permute the equivalence
classes of ∼G.
Call such permutations ∼G-permutations
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Proof Sketch – Counting Equivalence Classes

If [Sn : G] < p(n), then there is a constant c so that the number of
equivalence classes of ∼G is either < c or > n− c.

This is a computation of an upper bound on the number
∼G-permutations when the number of ∼G-equivalence classes is in the
range [c, n− c].

Say that ∼G is small if it has at most c parts and big otherwise.

An is an example of a group with small index where ∼An is big.
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Proof Sketch – Largest Equivalence Class

If [G : Sn] < p(n), then there is a constant c′ such that if ∼G is small,
then the largest equivalence class has size at least n− c′.

This is again proved by showing that if ∼G has fewer than c equivalence
classes and all of them are smaller than n− c′, then there are too few
∼G-permutations.
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Proof Sketch – Small Supports

Claim: For a gate g in Cn, ∼Stab(g) is small.

Suppose that g is a minimal gate (in the DAG-order of the circuit) with
∼Stab(g) large.

We can show that this implies that g has a large number of immediate
predecessors which (by assumption) have small supporting equivalence
relations.

Using bounds from the previous claims, we can find a large enough subset
of these, and independently combine automorphisms that move them.

This is used to show that Orb(g) must be big.
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Support Theorem

In polynomial size symmetric circuits, all gates have (stabilizer groups
with) small support:

Theorem
For any 1 > ε ≥ 2

3 , let C be a symmetric s-gate circuit over [n] with

n ≥ 2
56
ε2 , and s ≤ 2n

1−ε
. Then every gate g of C has a support of size at

most 33
ε

log s
logn .

We write sp(g) for the small support of g given by this theorem and note
that it can be computed in polynomial time from a symmetric circuit C.
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Translating Symmetric Circuits to Formulas

Given a polynomial-time function n 7→ Cn that generates symmetric
circuits:

1. There are formulas of FP interpreted on ([n], <) that define the
structure Cn.

2. We can also compute in polynomial time (and therefore in FP on
([n], <)) sp(g) for each gate g.

3. For an input structure A and an assignment γ : [n]→ A of the
inputs of Cn to elements of A, whether g is made true depends only
on γ(sp(g)).

4. We define, by induction on the structure of Cn, the set of tuples
Γ(g) ⊆ Asp(g) that represent assignments γ making g true.

5. This inductive definition can be turned into a formula (of FP for a
Boolean circuit, of FPC for one with threshold gates.)
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Upper and Lower Bounds
The class of properties decided by symmetric, polynomial size, threshold
circuits is FPC—a proper subset of P.
This has interesting upper and lower bounds which makes it an
interesting object of study.

Upper Bounds Lower Bounds

CVP SAT

2-Colourability 3-Colourability

2-SAT 3-SAT

Perfect Matching Hamiltonian Cycle

Linear Programming XOR-SAT

Isomorphism on planar graphs Isomorphism on bounded-degree
graphs

Anuj Dawar June 2016



FP with Rank Operators

FPrk is fixed-point logic with an operator for matrix rank over finite fields.
(D., Grohe, Holm, Laubner, 2009)

We have, as with FPC, terms of element sort and numeric sort.

We interpret η(x, y)—a term of numeric sort—in G = (V,E)
as defining a matrix with rows and columns indexed by
elements of V with entries η[a, b].
rkx,yη is a term denoting the number that is the rank of the
matrix defined by η(x, y).

To be precise, we have, for each finite field Fq (q prime), an operator rkq

which defines the rank of the matrix with entries η[a, b](modq).
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Choiceless Polynomial Time

Choiceless Polynomial Time with counting (C̃PT(Card)) is a class of
computational problems defined by (Blass, Gurevich and Shelah 1999).

It is based on a machine model (Gurevich Abstract State Machines) that
works directly on a graph or relational structure (rather than on a string
representation).

The machine can access the collection of hereditarily finite sets with the
vertices of the graph as atoms, and can perform counting operations.

C̃PT(Card) is the polynomial time and space restriction of the machines.
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Beyond FPC

FPrk can express the CFI property and solvability of systems of linear
equations on finite fields. (D., Grohe, Holm, Laubner, 2009)

C̃PT(Card) can express the CFI property (but requires sets of unbounded
rank). (D.,Richerby, Rossman, 2008)

The relationship between the two (and their relationship to P) remains
open.
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Big Picture

Logic Circuits

FP on structures with a disjoint
number sort ([n], <).

Poly-size symmetric Boolean cir-
cuits.

Additional predicates on number
sort.

Non-uniformity (of function n 7→
Cn).

Connections between element sort
and number sort (FPC and FPrk).

Additional gates
(counting and rank).

C̃PT(Card). Breaking symmetry (how?).
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