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Recapitulation

Descriptive Complexity provides an alternative perspective on
Computational Complexity.

For a first-order sentence ϕ, the class of its finite models can be decided
in polynomial time and logarithmic space.

Existential second-order logic captures exactly the complexity class NP.

The search for a logic for P focusses on logics intermediate between first
and second-order logic.
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Recapitulation II

FP is a logic that extends first-order logic by means of inductive
definitions.

On linearly ordered structures, FP exactly captures the complexity class P

In the absence of order, FP cannot express evenness. This is proved
through a pebble game for Lk, first-order logic with k variables.

FPC is the extension of FP with a mechanism for counting. Its expressive
power can be analyzed through a connection with Ck, first-order logic
with k variables and counting quantifiers.

We aim to use this to show that solvability of linear systems of equations
over Z2 is not definable in FPC..
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Undefinability in FPC

To show that the satisfiability of systems of equations is not definable in
FPC it suffices to show that for each k, we can construct two systems of
equations

Ek and Fk

such that:

• Ek is satisfiable;

• Fk is unsatisfiable; and

• Ek ≡C
k

Fk
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Constructing systems of equations

Take G a 3-regular, connected graph.
Define equations EG with two variables xe0, x

e
1 for each edge e.

For each vertex v with edges e1, e2, e3 incident on it, we have eight
equations:

Ev : xe1a + xe2b + xe3c ≡ a+ b+ c (mod 2)

ẼG is obtained from EG by replacing, for exactly one vertex v, Ev by:

E′v : xe1a + xe2b + xe3c ≡ a+ b+ c+ 1 (mod 2)

We can show: EG is satisfiable; ẼG is unsatisfiable.
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Satisfiability

Lemma EG is satisfiable.

by setting the variables xei to i.

Lemma ẼG is unsatisfiable.

Consider the subsystem consisting of equations involving only
the variables xe0.
The sum of all left-hand sides is

2
∑
e

xe0 ≡ 0 (mod 2)

However, the sum of right-hand sides is 1.

Now we show that, for each k, we can find a graph G such that

EG ≡C
k

ẼG .
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Counting Game

Immerman and Lander (1990) defined a pebble game for Ck.
This is again played by Spoiler and Duplicator using k pairs of pebbles
{(a1, b1), . . . , (ak, bk)} on a pair of structures A and B

At each move, Spoiler picks i and a set of elements of one
structure (say X ⊆ B)

Duplicator responds with a set of vertices of the other structure
(say Y ⊆ A) of the same size.

Spoiler then places ai on an element of Y and Duplicator must
place bi on an element of X.

Spoiler wins at any stage if the partial map from A to B defined
by the pebble pairs is not a partial isomorphism

If Duplicator has a winning strategy for p moves, then A and B
agree on all sentences of Ck of quantifier rank at most p.
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Bijection Games

≡Ck

is also characterised by a k-pebble bijection game. (Hella 96).
The game is played on graphs A and B with pebbles a1, . . . , ak on A and
b1, . . . , bk on B.

• Spoiler chooses a pair of pebbles ai and bi;

• Duplicator chooses a bijection h : A→ B such that for pebbles aj
and bj(j 6= i), h(aj) = bj ;

• Spoiler chooses a ∈ A and places ai on a and bi on h(a).

Duplicator loses if the partial map ai 7→ bi is not a partial isomorphism.

Duplicator has a strategy to play forever if, and only if, A ≡Ck B.
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Equivalence of Games

It is easy to see that a winning strategy for Duplicator in the bijection
game yields a winning strategy in the counting game:

Respond to a set X ⊆ A (or Y ⊆ B) with h(X) (h−1(Y ),
respectively).

For the other direction, consider the partition induced by the equivalence
relation

{(a, a′) | (A,a[a/ai]) ≡C
k

(A,a[a′/ai])}

and for each of the parts X, take the response Y of Duplicator to a
move where Spoiler would choose X.
Stitch these together to give the bijection h.
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Cops and Robbers

A game played on an undirected graph G = (V,E) between a
player controlling k cops and another player in charge of a
robber.

At any point, the cops are sitting on a set X ⊆ V of the nodes and the
robber on a node r ∈ V .
A move consists in the cop player removing some cops from X ′ ⊆ X
nodes and announcing a new position Y for them. The robber responds
by moving along a path from r to some node s such that the path does
not go through X \X ′.
The new position is (X \X ′) ∪ Y and s. If a cop and the robber are on
the same node, the robber is caught and the game ends.
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Cops and Robbers on the Grid

If G is the k × k toroidal grid, than the robber has a winning strategy in
the k-cops and robbers game played on G.

To show this, we note that for any set X of at most k vertices, the graph
G \X contains a connected component with at least half the vertices of
G.

If all vertices in X are in distinct rows then G \X is connected.
Otherwise, G \X contains an entire row and column and in its connected
component there are at least k − 1 vertices from at least k/2 columns.

Robber’s strategy is to stay in the large component.
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Cops, Robbers and Bijections

Suppose G is such that the robber has a winning strategy in the k-cops
and robbers game played on G.

We use this to construct a winning strategy for Duplicator in the
k-pebble bijection game on EG and ẼG .

• A bijection h : EG → ẼG is good bar v if it is an isomorphism
everywhere except at the variables xea for edges e incident on v.

• If h is good bar v and there is a path from v to u, then there is a
bijection h′ that is good bar u such that h and h′ differ only at
vertices corresponding to the path from v to u.

• Duplicator plays bijections that are good bar v, where v is the
robber position in G when the cop position is given by the currently
pebbled elements.
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Computational Problems from Linear Algebra

Linear Algebra is a testing ground for exploring the boundary of the
expressive power of FPC.
It may also be a possible source of new operators to extend the logic.

For a set I, and binary relation A ⊆ I × I, take the matrix M over the
two element field Z2:

Mij = 1 ⇔ (i, j) ∈ A.

Most interesting properties of M are invariant under permutations of I.
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Matrix Multiplication

We can write a formula prod(x, y,A,B) that defines the product of two
matrices:

(∃ν2 < t)(t = 2 · ν2 + 1) for t = #z(A(x, z) ∧B(z, y))

A simple application of ifp then allows us to define upower(x, y, ν, A)
which gives the matrix Aν :

[ifpR,uvµ (µ = 0 ∧ u = v∨
(∃µ′ < µ) (µ = µ′ + 1 ∧ prod(u, v,B/R(µ′), A))](x, y, ν),

where prod(u, v,B/R(µ′), A) is obtained from prod(u, v,A,B) by
replacing the occurrence of B(z, v) by R(z, v, µ′).

Anuj Dawar June 2016



Matrix Exponentiation

We can, instead, represent numbers up to 2|A| in binary.
That is, a unary relation Γ interpreted over the number domain (using
numbers up to |A|) codes the number

∑
γ∈Γ 2γ .

Repeated squaring then allows us to define power(x, y,Γ, A) giving AN

where Γ codes a value N which may be exponential.
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Non-Singularity

(Blass-Gurevich 04) show that non-singularity of a matrix over Z2 can be
expressed in FPC.

GL(n,Z2)—the general linear group of degree n over Z2—is the group of
non-singular n× n matrices over Z2.
The order of GL(n,Z2) divides

N =

n−1∏
i=0

(2n − 2i).

Thus, A is non-singular if, and only if, AN = I
Moreover, the inverse A−1 is given by AN−1.
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Representing Finite Fields

We can represent matrices M over a finite field Fq by taking, for each
a ∈ Fq a binary relation Aa ⊆ I × I with

Mij = a ⇔ (i, j) ∈ Aa.

Alternatively, we could have the elements of Fq (along with the field
operations) as a separate sort and include a ternary relation R

Mij = a ⇔ (i, j, a) ∈ R.

These two representations are inter-definable.
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FPC over Finite Fields

More generally, over the finite field Fq, matrix multiplication;
non-singularity of matrices; the inverse of a matrix; are all definable in
FPC.

determinants and more generally, the coefficients of the characteristic
polynomial can be expressed FPC.

(D., Grohe, Holm, Laubner, 2009)

solvability of systems of equations is undefinable.

the rank of a matrix is undefinable.
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Linear Algebra over the Rational Field

Over the rational field Q, we can also define matrix multiplication;
non-singularity of matrices; the inverse of a matrix in FPC

Moreover, we can also define the coefficients of the characteristic
polynomial

and, we can define the rank of a matrix and the solvability of systems of
equations.

(Holm 2010)

The last result also follows from the stronger result that optimization of
linear programs is expressible in FPC.

(Anderson, D., Holm 2015)
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Representing Rational Numbers

We can take the rational number

q = s
n

d

where s{1,−1} and n, d ∈ N
to be given by a structure

(B,<, S,N,D)

where < is a linear order on the domain B and S, N and D are unary
relations.

S = ∅ iff s = 1 and N and D code the binary representation of n and d.

Since the domain is ordered, it is straightforward to see that arithmetic,
in the form of addition and multiplication of numbers is definable in FPC
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Representing Rational Vectors and Matrices

A rational vector indexed by a set I:

v : I → Q

is represented by a structure over domain I ∪B with relations:

• < an order on B;

• S,N,D ⊆ I ×B

Similarly, a rational matrix M ∈ QI×J is given by a structure over
domain I ∪ J ∪B with relations:

• < an order on B;

• S,N,D ⊆ I × J ×B

Anuj Dawar June 2016



Weighted Graphs

We use a similar encoding to represent problems over weighted graphs
where the weights may be integer or rational.

For example, a graph with vertex set V with non-negative rational
weights might be considered as a relational structure over universe V ∪B
where B is bigger than the number of bits required to represent any of
the rational weights and we have

• < an order on B;

• weight relations Wn,Wd ⊆ V × V ×B
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Linear Programming

Linear Programming is an important algorithmic tool for solving a large
variety of optimization problems.

It was shown by (Khachiyan 1980) that linear programming problems can
be solved in polynomial time.
We have a set C of constraints over a set V of variables.
Each c ∈ C consists of ac ∈ QV and bc ∈ Q.

Feasibility Problem: Given a linear programming instance, determine if
there is an x ∈ QV such that:

aTc x ≤ bc for all c ∈ C

In Anderson, D., Holm (2013) we show that this, and the corresponding
optimization problem are expressible in FPC.
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Ellipsoid Method

The set of constraints determines a polytope
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Ellipsoid Method

x

Start at the origin and calculate an ellipsoid enclosing it.
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Ellipsoid Method

x

If the centre is not in the polytope, choose a constraint it violates.
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Ellipsoid Method

x

x′

Calculate a new centre.

Anuj Dawar June 2016



Ellipsoid Method

x

x′

And a new ellipsoid around the centre of at most half the volume.
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Ellipsoid Method in FPC

We can encode all the calculations involved in FPC.

This relies on expressing algebraic manilpulations of unordered matrices.

What is not obvious is how to choose the violated constraint on which to
project.

However, the ellipsoid method works as long as we can find, at each step,
some separating hyperplane.
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Ellipsoid Method in FPC

x
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Ellipsoid Method in FPC

We can encode all the calculations involved in FPC.

This relies on expressing algebraic manilpulations of unordered matrices.

What is not obvious is how to choose the violated constraint on which to
project.

However, the ellipsoid method works as long as we can find, at each step,
some separating hyperplane.

So, we can take:
(
∑
c∈S

ac)
Tx ≤

∑
c∈S

bc

where S is the set of all violated constraints.
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Separation Oracle

More generally, the ellipsoid method can be used, even when the
constraint matrix is not given explicitly, as long as we can always
determine a separating hyperplane.

In particular, the polytope represented may have exponentially many
facets.

Anderson, D., Holm (2013) shows that as long as the separation oracle
can be defined in FPC, the corresponding optimization problem can be
solved in FPC.
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Representations of Polytopes

A representation of a class P of polytopes is a relational vocabulary τ
along with a surjective function ν taking τ -structures to polytopes in P,
which is isomorphism invariant.

A separation oracle for a representation ν,P is definable in FPC if there
is an FPC formula that given a τ -structure A and a vector v ∈ QV either

• determines that v ∈ ν(A); or

• defines a hyperplane separating v from ν(A).
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Folding Polytopes

We use the separation oracle to define an ordered equivalence relation on
the set V of variables.

We also define a projection operation on polytopes which either

• preserves feasibility; or

• refines the equivalence relation further.
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Graph Matching

Recall, in a graph G = (V,E) a matching M ⊂ E is a set of edges such
that each vertex is incident on at most one edge in M .

We saw that the existence of a perfect matching is not definable in FP.

(Blass, Gurevich, Shelah 1999) showed that for bipartite graphs this is
definable in FPC.

They conjectured that this was not the case for general graphs.

We consider the more general problem of determining the maximum
weight of a matching in a weighted graph:

G = (V,E) w : E → Q≥0
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The Matching Polytope

(Edmonds 1965) showed that the problem of finding a maximum weight
matching in G = (V,E) w : QE≥0 can be expressed as the following
linear programming problem

max w>y subject to

Ay ≤ 1V ,

ye ≥ 0, ∀e ∈ E,∑
e∈E∩W 2

ye ≤
1

2
(|W | − 1), ∀W ⊆ V with |W | odd,

(1)
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Matching in FPC

We show that a separation oracle for this polytope is definable by an FPC
formula interpreted in the weighted graph G.

As a consequence, there is an FPC formula defining the size of the
maximum matching in G.

Note that this does not allow us to define an actual matching.
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