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Finite Model Theory

In finite model theory we are concerned with studying the definability of
classes of finite relational structures by means of formulas of logic.

Mod(ϕ) denotes the finite models of ϕ

Specifically, the study of descriptive complexity relates definability to the
computational complexity of the decision problem:

Given A decide if A |= ϕ

Many of the examples in this talk concern finite structures over a
vocabulary with one binary relation, which we think of as finite graphs:

G = (V ,E )
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First Order Formulas

∀x∀y∀z(¬E (x , y) ∨ ¬E (x , z) ∨ ¬E (y , z))

defines the graphs that do not contain a triangle.

For any first-order sentence ϕ, Mod(ϕ) is trivially decidable (in
polynomial time and logarithmic space).

There are computationally easy classes that are not defined by any
first-order sentence.

• The class of graphs with an even number of vertices.
• The class of graphs that are connected.
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First Order Theories

For every finite structure A, there is a first-order sentence ϕA defining the
structures isomorphic to A.
Every isomorphism-invariant class S of finite structures is definable by a
first-order theory T :

T = {¬ϕA | A 6∈ S}

The interesting definability questions are obtained by considering:
• extensions of first-order logic; or equivalently
• restricted first-order theories.
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Fixed-Point Logic with Counting

FPC is the extension of first-order logic with a mechanism for iteration
and a mechanism for counting.

It was proposed by Immerman as a possible logic for capturing P:

It was proved (Cai, Fürer, Immerman 1992) that there are polynomial-time
graph properties that are not expressible in FPC.
A number of other results about the limitations of FPC followed.

Still, FPC forms a natural and powerful fragment of P.
In this talk, we look at three recent, positive results on the expressive
power of FPC.
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Fixed-Point Logic

The logic FP is formed by closing first-order logic under the rule:
If ϕ is a formula, positive in the relational variable R, then so is

[lfpR,xϕ](t).

The formula is read as:
the tuple t is in the least fixed point of the operator that maps
R to ϕ(R, x).
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Connectivity

The formula

∀u∀v [lfpT ,xy (x = y ∨ ∃z(E (x , z) ∧ T (z , y)))](u, v)

is satisfied in a graph (V ,E ) if, and only if, it is connected.

The expressive power of FP properly extends that of first-order logic.

On structures which come equipped with a linear order FP expresses
exactly the classes that are decidable in polynomial time.

(Immerman; Vardi)

In the absence of order, there is no formula of FP that defines the graphs
with an even number of vertices.

Anuj Dawar January 2015



Fixed-Point Logic with Counting

FPC is a logic formulated to add the ability to count to FP.

If ϕ(x) is a formula with free variable x , then #xϕ is a term denoting the
number of elements satisfying ϕ.

Formulae of FPC:
• all atomic formulae as in FP;
• τ1 < τ2; τ1 = τ2 where τi is a term of numeric sort;
• ∃x ϕ; ∃ν ϕ; where ν is a variable ranging over numbers up to the
size of the domain;

• [lfpX ,x,νϕ](t); and
• ϕ ∧ ψ; ¬ϕ.
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Counting Quantifiers

C k is the logic obtained from first-order logic by allowing:
• counting quantifiers: ∃ix ϕ; and
• only the variables x1, . . . .xk .

Every formula of C k is equivalent to a formula of first-order logic, albeit
one with more variables.

For every sentence ϕ of FPC, there is a k such that ϕ is equivalent to a
theory of C k .

Indeed, for any fixed n, there is a formula of C k equivalent to ϕ on
structures with at most n elements.
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Cai-Fürer-Immerman

There are polynomial-time decidable properties of graphs that are not
definable in FPC. (Cai, Fürer, Immerman, 1992)

Other inexpressiblity results for FPC follow, either as a consequence of
(Cai, Fürer, Immerman, 1992) or by similar methods:

• Hamiltonian Cycle and Satisfiability are not definable in FPC.
• 3-Colourability is not definable in FPC.

(D. 1998)

• Solvability of systems of linear equations (over any fixed finite
Abelian group) is not definable in FPC

(Atserias, Bulatov, D. 2009)

All of these are shown, in fact, to be not axiomatizable in C k , for any k.
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Restricted Graph Classes

If we restrict the class of structures we consider, FPC may be powerful
enough to express all polynomial-time decidable properties.

1. FPC captures P on trees. (Immerman and Lander 1990).
2. FPC captures P on any class of graphs of bounded treewidth.

(Grohe and Mariño 1999).
3. FPC captures P on the class of planar graphs. (Grohe 1998).
4. FPC captures P on any proper minor-closed class of graphs.

(Grohe 2010).

In each case, the proof proceeds by showing that for any G in the class, a
canonical, ordered representaton of G can be interpreted in G using FPC.
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Graph Minors

We say that a graph H is a minor of graph G (written H � G ) if H can
be obtained from G by repeated applications of the operations:
• delete an edge;
• delete a vertex (and all incident edges); and
• contract an edge

⇒
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Graph Minors

Alternatively, H = (U,F ) is a minor of G = (V ,E ), if there is a set
V ′ ⊆ V and a surjective map M : V ′ → U such that
• for each u ∈ U, M−1(u) is a connected subgraph of G ; and
• for each edge (u, v) ∈ F , there is an edge in E between some
x ∈ M−1(u) and some y ∈ M−1(v).

H V ′ ⊆ V (G )
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Robertson-Seymour

Recall: G is planar if, and only if, K5 6� G and K3,3 6� G .
Theorem (Robertson-Seymour)
In any infinite collection {Gi | i ∈ ω} of graphs, there are i , j with
Gi � Gj .
Corollary
For any class C closed under minors, there is a finite collection F of
graphs such that G ∈ C if, and only if, F 6� G for all F ∈ F .
A consequence is that any C closed under minors is decidable in
polynomial-time.

The proof relies on Robertson and Seymour’s structure theorem:
A graph G that excludes a minor Kk admits a
tree-decomposition in which each bag is almost embeddable in
a surface of genus k ′
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Treelike Decompositions

Grohe’s proof is a version of the structure theorem with definable
decompositions.

A treelike decomposition of a graph G is a directed acyclic graph D, with
a bag β(d) ⊆ V (G ) of vertices associated with each node of D and
satisfying certain connectedness and consistency conditions.

A treelike decomposition of G can be obtained (for instance) from a tree
decomposition by closing it under the automorphisms of G—starting at
leaves and working upwards.
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Treelike Decomposition of a 5-cycle
The picture shows a treelike decomposition of a 5-cycle C5.
The grey nodes form a tree decomposition.

picture credit: M. Grohe: JACM, 59(5), 27.
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Definable Treelike Decompositions

Grohe shows that there is an FPC-definable decomposition of planar
graphs into their 3-connected components.
This is lifted into a decomposition of graphs embeddable in an arbitrary
surface.
More heavy lifting is required to obtain a definable treelike decomposition
of the class of graphs excluding a Kk -minor into components that can be
almost embedded in a surface.
This is used to show that for each k , there is a k ′ such that on graphs
excluding Kk as a minor, C k′ defines isomorphism.
As a consequence, every class of graphs closed under taking minors is
definable in FPC.
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Linear Programming

We can represent an instance of a linear programming feasibility problem
as a relational structure over a suitable vocabulary.

We have a set C of constraints over a set V of variables.
Each c ∈ C consists of ac ∈ QV and bc ∈ Q.
The numbers are encoded in binary over an ordered set of bit positions.

Feasibility Problem: Given a linear programming instance, determine if
there is an x ∈ QV such that:

aT
c x ≤ bc for all c ∈ C

In Anderson, D., Holm (2013) we show that this, and the corresponding
optimization problem are expressible in FPC.
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Ellipsoid Method

The set of constraints determines a polytope
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Ellipsoid Method

x

Start at the origin and calculate an ellipsoid enclosing it.
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Ellipsoid Method

x

If the centre is not in the polytope, choose a constraint it violates.
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Ellipsoid Method

x

x ′

Calculate a new centre.
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Ellipsoid Method

x

x ′

And a new ellipsoid around the centre of at most half the volume.
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Ellipsoid Method in FPC

We can encode all the calculations involved in FPC.
This relies on expressing algebraic manilpulations of unordered matrices.

What is not obvious is how to choose the violated constraint on which to
project.

However, the ellipsoid method works as long as we can find, at each step,
some separating hyperplane.
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Ellipsoid Method in FPC

x
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Ellipsoid Method in FPC

We can encode all the calculations involved in FPC.
This relies on expressing algebraic manilpulations of unordered matrices.

What is not obvious is how to choose the violated constraint on which to
project.

However, the ellipsoid method works as long as we can find, at each step,
some separating hyperplane.

So, we can take:
(
∑
c∈S

ac)
T x ≤

∑
c∈S

bc

where S is the set of all violated constraints.
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Separation Oracle

More generally, the ellipsoid method can be used, even when the
constraint matrix is not given explicitly, as long as we can always
determine a separating hyperplane.

In particular, the polytope represented may have exponentially many
facets.

Anderson, D., Holm (2013) shows that as long as the separation oracle can
be defined in FPC, the corresponding optimization problem can be solved
in FPC.
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Matching

In a graph G = (V ,E ) a matching M ⊂ E is a set of edges such that
each vertex is incident on at most one edge in M.

The problem of finding a maximum matching in G can be represented by
a linear program with exponentially many constraints.

We show that a separation oracle for this polytope is definable by an FPC
formula interpreted in the graph G .

As a consequence, there is an FPC formula defining the size of the
maximum matching in G .

Blass, Gurevich and Shelah (2001) had shown that matching on bipartite
graphs is definable in FPC and conjectured that this was not true on
general graphs.
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Circuit Complexity
A language L ⊆ {0, 1}∗ can be described by a family of Boolean
functions:

(fn)n∈ω : {0, 1}n → {0, 1}.

Each fn may be computed by a circuit Cn made up of
• Gates labeled by Boolean operators: ∧,∨,¬,
• Boolean inputs: x1, . . . , xn, and
• A distinguished gate determining the output.

If there is a polynomial p(n) bounding the size of Cn, i.e. the number of
gates in Cn, the language L is in the class P/poly.

If, in addition, the function n 7→ Cn is computable in polynomial time, L
is in P.

Note: For these classes it makes no difference whether the circuits only use
{∧,∨,¬} or a richer basis with threshold or majority gates.
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Circuits for Graph Properties

A property of graphs (or other relational structures) in P is recognised by
a family of Boolean circuits (Cn)n∈ω where:

• inputs to Cn are n2 potential edges, each taking value 0 or 1;
• the size of Cn is bounded by a polynomial p(n); and
• the family is uniform, so the function n 7→ Cn is in P (or

DLogTime).

Cn is invariant if, for every input graph, the output is unchanged under a
permutation of the inputs induced by a permutation of [n].
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Symmetric Circuits

Say Cn is symmetric if any permutation of [n] applied to its inputs can be
extended to an automorphism of Cn.

• Any symmetric circuit is invariant, but not conversely.
• Any formula of first-order logic translates into a uniform
family of constant-depth, polynomial-size symmetric Boolean circuits.

For each subformula ψ(x) and each assignment a of values
to the free variables, we have a gate.

• Any formula ϕ of FP translates into a uniform family of
polynomial-size symmetric Boolean circuits.

• Any formula of FPC translates into a uniform family of
polynomial-size symmetric threshold (or majority) circuits.
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Circuits and Fixed-Point Logic

We established the following in Anderson, D. (2014):
Theorem
A class of graphs is accepted by a P-uniform symmetric family of
Boolean circuits if, and only if, it is definable by an FP formula
interpreted in G ] ([n], <).

Theorem
A class of graphs is accepted by a P-uniform symmetric family of
threshold circuits if, and only if, it is definable in FPC.

Anuj Dawar January 2015



Main Technical Tools

For a symmetric circuit Cn we can assume w.l.o.g. that the
automorphism group is the symmetric group Sn acting in the natural way.

For a gate g in Cn, Stab(g) denotes the stabilizer group of g , i.e.,

Stab(g) = {π ∈ Sn | π(g) = g}.

Say a set X ⊆ [n] supports g if

Stab•(X ) ⊆ Stab(g),

where Stab•(X ) := {π ∈ Sn | π(x) = x for all x ∈ X} is the pointwise
stabilizer of X .

Note: For the family of circuits (Cn)n∈ω obtained from an FPC formula
there is a constant k such that all gates in each Cn have a support of size
at most k .
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Support Theorem

Our main technical theorem shows that in sub-exponential size symmetric
circuits, all gates have small support.

Theorem
For any 1 > ε ≥ 2

3 , let C be a symmetric s-gate circuit over [n] with
n ≥ 2

56
ε2 , and s ≤ 2n1−ε

. Then every gate g of C has a support of size at
most 33

ε
log s
log n .

Corollary
Polynomial-size symmetric circuits have constant support.
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Some Consequences

There is no polynomial-size family of symmetric Boolean circuits deciding
if an n vertex graph has an even number of edges.

Polynomial-size families of uniform symmetric threshold circuits are more
powerful than Boolean circuits.

There is no translation of invariant circuit into equivalent symmetric
threshold circuits, with only polynomial blow-up.

We get a natural and purely circuit-based characterisation of FPC
definability.

Inexpressibility results for FPC are also lower bound results against a
natural circuit class.
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Conclusions

The intuition behind the conjecture that FPC captures P was that
algorithmic techniques that are obviously polynomial-time are all
expressible in the logic.

The Cai-Fürer-Immerman construction and related results show that one
important polynomial-time algorithmic technique—Gaussian
elimination—is not captured by the logic.

Recent results show that some very non-trivial and non-obvious
polynomial-time problems can be expressed in FPC:
• Linear Programming
• Arbitrary minor-closed classes
• Maximum Matching

And, there is a natural circuit complexity class corresponding to FPC.
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