Constraint Satisfaction Problems and Descriptive Complexity

Anuj Dawar University of Cambridge

AIM workshop on Universal Algebra, Logic and CSP 1 April 2008 1

Descriptive Complexity

Descriptive Complexity seeks to classify computational problems on finite structures (i.e. *queries*) according to their definability in different logics.

Investigate the connection between

the *descriptive complexity* of queries (i.e. the logical resources required to describe them) and

their *computational complexity* (measured in terms of space, time, etc. on a suitable model of computation).

2

Logic and Complexity

Recall:

For a logic L

The *combined complexity* of L is the complexity of determining, given a structure A and a sentence $\varphi \in L$, whether or not $A \models \varphi$.

The *data complexity* of L is in the complexity class C, if every query definable in L is in C.

We say L captures the complexity class C if the data complexity of L is in C, and every query whose complexity is in C is definable in L.

Fagin's Theorem

A formula of *Existential Second-Order Logic* (ESO) of vocabulary σ is of the form:

 $\exists R_1 \cdots \exists R_m \psi$

- R_1, \ldots, R_m are relational variables
- ψ is FO formula in the vocabulary $\sigma \cup \{R_1, \ldots, R_m\}$.

Theorem (Fagin 1974)

ESO captures NP.

Corollary

For each \mathbf{B} , $CSP(\mathbf{B})$ is definable in ESO.

3-Colourability

The following formula is true in a graph (V, E) if, and only if, it is 3-colourable.

$$\begin{aligned} \exists R \exists B \exists G \quad \forall x (R(x) \lor B(x) \lor G(x)) \land \\ \forall x (\neg (R(x) \land B(x)) \land \neg (B(x) \land G(x)) \land \neg (R(x) \land G(x))) \land \\ \forall x \forall y (E(x,y) \to ((R(x) \land B(y)) \lor (B(x) \land R(y)) \lor \\ & (B(x) \land G(y)) \lor (G(x) \land B(y)) \lor \\ & (G(x) \land R(y)) \lor (R(x) \land G(y)))) \end{aligned}$$

This example easily generalises to give a direct translation from \mathbf{B} to a formula of ESO expressing $CSP(\mathbf{B})$.

CSPs in ESO

For a fixed structure **B**, take a monadic second-order variable P_b for each element b in **B**.

$$\exists P_{b_1} \cdots \exists P_{b_m} \quad \forall x (\bigvee_{b \in \mathbf{B}} P_b(x)) \land \\ \forall x (\bigwedge_{b \neq b'} \neg (P_b(x) \land P_{b'}(x))) \\ \forall \bar{x} (\bigvee_{R \in \sigma} R(\bar{x}) \to (\bigvee_{\bar{b} \in R^{\mathbf{B}}} \bigwedge_i P_{b_i}(x_i)))$$

This formula defines CSP(B).

The formulas of ESO we obtain this way are of a special syntactic form:

- the first-order quantifiers are all *universal*;
- the second-order quantifiers are all *monadic*;
- all occurrences of unquantified relations are *negative*; and
- the equality symbol = is not used.

MMSNP

Monotone, Monadic SNP without inequalities (MMSNP) was defined by Feder and Vardi as a syntactic fragment of ESO

SNP consists of formulas of ESO in which the first-order part is *universal*.

MMSNP consists of those formulas of SNP in which

- second-order quantifiers are monadic;
- unquantified relations are either all positive or all negative;
- the equality symbol does not appear in the scope of a negation.

MMSNP can express every query of the form CSP(B), and more.

Dichotomy Results

Theorem (Feder-Vardi, Kun)

For every query Q in MMSNP, there is a **B** such that Q is equivalent to CSP(B) under polynomial-time reductions.

Dichotomy Conjecture: Every query in MMSNP is either in P or NP-complete.

Let C be a class of queries obtained by dropping one of the three syntactic restrictions in the definition of MMSNP.

Theorem (Feder-Vardi)

For every query in NP, there is a query in C which is equivalent under polynomial-time reductions.

Courcelle's Theorem

One consequence of the syntactic restriction is that it enables us to deploy powerful *algorithmic meta-theorems*.

Theorem (Courcelle)

For any sentence φ of monadic second-order logic and every k, there is a polynomial time algorithm which, given a structure **A** of *treewidth* at most k will decide whether **A** $\models \varphi$.

Corollary

CSP(B) is tractable when restricted to inputs of bounded treewidth.

More on *treewidth* in Martin Grohe's talk.

Classifying Tractable CSPs

We next consider the definability of CSPs in logics whose *data complexity* is in P.

Recall:

- Data complexity of FO is in L, but it cannot express 2-colourability.
- Data complexity of Datalog is in P.
- For CSPs, Datalog is strictly more expressive than FO.

Datalog cannot express solvability of linear equations over \mathbb{Z}_2 . (Feder-Vardi)

Ehrenfeucht-Fraïssé Games

Games provide a useful method for proving that certain properties are not definable in a logic.

There are many variations for different logics.

Two players (Spoiler and Duplicator) play on structures **A** and **B** with k pairs of pebbles $(a_1, b_1), \ldots, (a_k, b_k)$ for m rounds.

- at each move, Spoiler chooses a pebble a_i or b_i and places it on an element of the corresponding structure;
- *Duplicator* places the matching pebble on an element of the other structure;
- Spoiler wins the game if the partial map defined by $a_i \mapsto b_i$ is not a *partial isomorphism*.

Games and Equivalence

- Duplicator has a strategy to survive *m* rounds of the game on a pair of structures A and B if, and only if, A and B agree on all first-order sentences with *quantifier rank* at most *m* and using at most *k* distinct variables.
- Duplicator has a strategy to survive m rounds of the game against a Spoiler who only plays on \mathbf{A} if, and only if, every existential sentence with quantifier rank at most m and using at most k distinct variables that is true in \mathbf{A} is also true in \mathbf{B} .
- Duplicator has a strategy to maintain a partial homomorphism against a Spoiler who only plays on A if, and only if, every existential positive sentence with quantifier rank at most m and using at most k distinct variables that is true in A is also true in B.

Proof (by example)

Suppose $\theta(x, y, z)$ is quantifier free, such that: $\mathbf{A} \models \exists x \forall y \exists z \theta$ and $\mathbf{B} \models \forall x \exists y \forall z \neg \theta$.

round 1: Spoiler chooses $a_1 \in A$ such that $\mathbf{A} \models \forall y \exists z \theta[a_1]$. Duplicator responds with $b_1 \in B$.

round 2: Spoiler chooses $b_2 \in B$ such that $\mathbf{B} \models \forall z \neg \theta[b_1, b_2]$ Duplicator responds with $a_2 \in A$.

round 3: Spoiler chooses $a_3 \in A$ such that $\mathbf{A} \models \theta[a_1, a_2, a_3]$ Duplicator responds with $b_3 \in B$

Spoiler wins, since $\mathbf{B} \models \neg \theta[b_1, b_2, b_3]$.

Infinitary Logic

 $L_{\infty\omega}$ —extension of FO with infinitary conjunctions and disjunctions.

 $\begin{aligned} \exists L_{\infty\omega}^{+} & -\text{existential positive fragment of } L_{\infty\omega}. \\ \exists L_{\infty,\omega}^{k,+} & -\text{fragment of } \exists L_{\infty\omega}^{+} \text{ using only } k \text{ variables.} \\ \exists L_{\infty,\omega}^{\omega,+} & = \bigcup_{k} \exists L_{\infty,\omega}^{k,+} \\ L_{\infty,\omega}^{k} & -\text{fragment of } L_{\infty\omega} \text{ using only } k \text{ variables.} \\ L_{\infty,\omega}^{\omega} & = \bigcup_{k} L_{\infty,\omega}^{k} \end{aligned}$

We have seen, every query in k-Datalog is in $\exists L_{\infty,\omega}^{k,+}$.

Consequently, every query in Datalog is in $\exists L^{\omega,+}_{\infty,\omega}$.

Infinite Games

Play with k pairs of pebbles on a pair of structures A and B with no limit on the number of rounds.

Duplicator has a strategy to maintain a partial homomorphism forever while *Spoiler* plays only in **A** if, and only if, every $\exists L_{\infty,\omega}^{k,+}$ sentence true in **A** is true in **B**. *Existential* k-pebble game

Duplicator has a strategy to maintain a partial isomorphism forever with *Spoiler* allowed to play in either structure if, and only if, **A** and **B** agree on every $L^k_{\infty,\omega}$ sentence.

For *finite* A and B, this is true if, and only if, A and B agree on all sentences of FO^k . (Kolaitis-Vardi)

Using Games

To show that a query Q is not definable in FO, we find, for every m, a pair of structures A_m and B_m such that

- $\mathbf{A}_m \in Q$, $\mathbf{B}_m \in \overline{Q}$; and
- Duplicator wins an m round game with m pairs of pebbles on A_m and B_m .

To show that a query Q is not definable in $\exists L_{\infty,\omega}^{\omega,+}$ (and hence, not in Datalog), we find, for every k, a pair of structures A_k and B_k such that

- $\mathbf{A}_k \in Q, \, \mathbf{B}_k \in \overline{Q};$ and
- Duplicator wins the existential k-pebble game on A_k and B_k .

2-Colourability

 C_n —a cycle of length n.

Duplicator wins the m round game on C_{2^m} and C_{2^m+1} .

2-Colourability is not definable in FO.

 K_n —clique on n vertices.

Duplicator wins the infinite k-pebble game on K_k and K_{k+1} .

Even cardinality is not definable in $L^{\omega}_{\infty,\omega}$.

LFP

LFP is a logic that extends FO by allowing recursive definitions.

Like **Datalog** but in rules

$$R(\bar{x}):-\varphi,$$

 φ need not be a conjunctive query. Allow any formula of FO as long as IDBs only appear positively.

Alternating Reachability:

$$\begin{array}{lll} R(x) & : - & F(x) \\ R(x) & : - & \mathsf{Exi}(x) \land \exists y (E(x,y) \land R(x)) \\ R(x) & : - & \mathsf{Uni}(x) \land \forall y (E(x,y) \to R(x)) \end{array}$$

Datalog is just the existential positive fragment of LFP, i.e. those formulas of LFP in which negation and universal quantification do not appear.

The *data complexity* of LFP is P-complete.

If we consider only structures that include a *linear order* of their universe, LFP *captures* P. (Immerman; Vardi)

 $\mathsf{LFP} \subseteq L^{\omega}_{\infty,\omega}.$

Homomorphism Preservation

For any **B** if CSP(B) is in FO, $\neg CSP(B)$ is in $\exists FO^+$. (Atserias)

If a Boolean query Q is in FO and closed under homomorphisms, then it is in $\exists FO^+$. (Rossman)

If CSP(B) is in LFP, is $\neg CSP(B)$ in Datalog?

There is a Q in LFP, closed under homomorphisms but not definable in Datalog (D.-Kreutzer)

Picture

Note: Every CSP in FO is in $\exists FO^+$ and every CSP in $\exists L^{\omega,+}_{\infty,\omega}$ is in Datalog.

We know that there are CSPs in **Datalog** not in FO.

The strictness of other inclusions in the above picture (for CSPs) remains open.

21

Adding Counting

LFP cannot express simple counting properties.

Immerman proposed an extension of LFP with a mechanism for counting.

LFPC

- two sorts of variables: x ranging over the elements of the structure A and ν ranging over numbers $\{0, \ldots, |A|\}$;
- for a formula φ , $\#x \varphi$ is a term denoting the number of elements satisfying φ ;
- terms 0 and $\tau + 1$ for τ a term of numeric sort.

It was once conjectured that LFPC captures P.

Datalog with Counting

We could add counting to **Datalog** in a similar way.

We allow terms $\#x \varphi$, $\tau + 1$ and equalities $\tau_1 = \tau_2$ between terms on the right-hand side of rules.

Datalog with counting has the same expressive power as LFPC.

(Grädel-Otto)

We can combine counting and recursion to simulate negation.

Infinitary Logic with Counting

LFPC can be translated into $C_{\infty\omega}^{\omega}$ —an *infinitary logic with counting*.

 $C^{\omega}_{\infty\omega}$ is obtained from first-order logic by allowing:

- *infinitary* conjunctions and disjunctions.
- counting quantifiers: $\exists^i x \varphi$
- only finitely many distinct variables in any formula.

 $C_{\infty\omega}^k$ is the fragment of $C_{\infty\omega}^{\omega}$ where each formula has at most k variables.

LFPC is the P-uniform fragment of $C^{\omega}_{\infty\omega}$

(Otto).

Bijection Games

 $C_{\infty\omega}^k$ is characterised by a *k*-pebble *bijection game*. (Hella).

The game is played on structures A and B with k pairs of pebbles.

- Spoiler chooses a pair of pebbles a_i and b_i ;
- Duplicator chooses a bijection $h: A \to B$ such that for pebbles a_j and $b_j (j \neq i)$, $h(a_j) = b_j$;
- Spoiler chooses $a \in A$ and places a_i on a and b_i on h(a).

Duplicator loses if the partial map $a_i \mapsto b_i$ is not a partial isomorphism. Duplicator has a strategy to play forever if, and only if, A and B agree on all sentences of $C_{\infty\omega}^k$.

Counting is Not Enough

Theorem

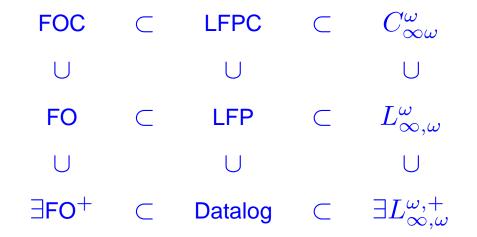
There are polynomial-time queries on graphs that are not definable in $C_{\infty\omega}^{\omega}$. (Cai-Fürer-Immerman)

Indeed, $CSP(\mathbb{Z}_2)$ is not definable.

Theorem

If CSP(B) is definable in $C^{\omega}_{\infty\omega}$ then the variety of the algebra of B omits types 1 and 2. (Atserias, Bulatov, D.)

Limits of $C^{\omega}_{\infty\omega}$



Is there a ${\color{black}B}$ such that

- $\operatorname{CSP}(\mathbf{B}) \in C^\omega_{\infty\omega}$; and
- $\neg CSP(\mathbf{B}) \not\in Datalog.$

A Dichotomy Conjecture

Conjecture: For each **B**, \neg CSP(**B**) is either definable in Datalog or undefinable in $C^{\omega}_{\infty\omega}$.

This would be a consequence of the *Bounded Width* Conjecture of Larose-Zádori.

Fixed-Point Logic with Rank

We can define a logic LFPR that extends LFP with an operator for *matrix rank*.

LFPR properly extends the expressive power of LFPC.

 $CSP(\mathbb{Z}_2)$ is definable in LFPR.

The data complexity of LFPR is contained in P.

Is every tractable CSP definable in LFPR?

More generally, is there a logic whose data complexity is in P and which expresses all tractable CSPs?