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Abstract—We introduce extensions of first-order logic (FO)
and fixed-point logic (FP) with operators that compute the rank
of a definable matrix. These operators are generalizations of
the counting operations in FP+C (i.e. fixed-point logic with
counting) that allow us to count the dimension of a definable
vector space, rather than just count the cardinality of a defin-
able set. The logics we define have data complexity contained
in polynomial time and all known examples of polynomial
time queries that are not definable in FP+C are definable in
FP+rk, the extension of FP with rank operators. For each prime
number p and each positive integer n, we have rank operators
rkp for determining the rank of a matrix over the finite field
GFp defined by a formula over n-tuples. We compare the
expressive power of the logics obtained by varying the values
p and n can take. In particular, we show that increasing the
arity of the operators yields an infinite hierarchy of expressive
power. The rank operators are surprisingly expressive, even
in the absence of fixed-point operators. We show that FO+rkp

can define deterministic and symmetric transitive closure. This
allows us to show that, on ordered structures, FO+rkp captures
the complexity class MODp L, for all prime values of p.

I. INTRODUCTION

The question whether there is a logic capturing poly-
nomial time was first raised by Chandra and Harel [6] in
the context of database theory and later reformulated by
Gurevich [15] in the form it is usually stated today. It asks
for a logic, satisfying some minimal requirements to exclude
pathological examples, in which precisely those properties
of finite structures which are decidable in polynomial time
are definable. The question is still wide open. It is considered
to be one of the main open problems in finite model theory
and in database theory.

A logic that has been intensively studied as a candidate
for a logic capturing polynomial time is fixed point logic
with counting (FP+C). Proposed by Immerman [20] in
the late 1980s, it has been shown to capture polynomial
time on many natural classes of structures including planar
graphs and structures of bounded tree width [12], [13], [14],
[22]. Indeed, FP+C captures polynomial time on almost all
structures in a precise technical sense [18]. However, Cai,
Fürer, and Immerman [5] proved that FP+C does not capture
polynomial time (on the class of all finite structures). The
property they used to separate FP+C from polynomial time
will play an important role in this paper; we call it the CFI-
property henceforth.

It has been observed in recent years [1], [8] that all known
examples of properties separating FP+C from polynomial
time can be explained by the inability of the logic to
express certain basic linear-algebraic properties such as the
solvability of systems of linear equations; such properties
are easily seen to be decidable in polynomial time by
Gaussian elimination. Hence it is a natural idea to extend
FP+C by operators that enable it to perform basic linear
algebra. In this paper, we propose to extend fixed-point
logic by operators defining the rank of definable matrices.
The resulting logic FP+rk is at least as expressive as FP+C,
because counting can be simulated by rank operators using
the observation that the rank of a diagonal matrix is precisely
the number of nonzero entries. It is easy to show that
the CFI-property is definable in FP+rk. Hence FP+rk is
strictly more expressive than FP+C. It is also not hard to
see that all other known properties separating FP+C from
polynomial time are definable in FP+rk. Still, the choice of
adding a rank operator, rather than other possible linear-
algebraic operators, to fixed-point logic may seem arbitrary
at first. Having considered a number of other possibilities,
we believe it is a good choice for a number of reasons. First
of all, FP+rk still has polynomial time data complexity, that
is to say that all FP+rk-definable properties are decidable in
polynomial time. Secondly, as we have seen above, counting
can directly be simulated with a rank operator and also
the solvability of systems of linear equations can easily be
expressed in terms of matrix rank (the system Ax = b is
solvable if and only if the matrices A and (A|b) have the
same rank). This enables us, among other things, to define
the CFI-property. Finally, the rank operator has a simple and
natural formalisation in the familiar framework of two-sorted
structures that is used to formalise the counting operators
in FP+C. Indeed, it may be argued that the rank operator
is no more than a generalised form of counting operator
that counts the dimension of a vector space rather than the
cardinality of a set. An alternative one might consider is an
operator for computing the determinant of a matrix rather
than its rank. However, as we show in Section VI, such an
operator is already definable in FP+C, over all finite fields as
well as the field of rationals and the ring of integers (building
on earlier work of Rossman and Blass and Gurevich [2]). By
similar techniques, we prove that even the rank of matrices
over the field of rationals is expressible in FP+C. It is



therefore seen that the additional expressive power of the
logic FP+rk comes from the rank operators over finite fields.

While we do not have reason to believe that the logic
FP+rk captures polynomial time, we believe that linear
algebraic algorithms based on Gaussian elimination need to
be understood in a logical context if progress is to be made
on the existence of a logic capturing polynomial time. These
would seem to be the most fundamental polynomial time
algorithms that cannot be represented in FP+C. It turns out
to be difficult to understand the interaction between logic
and linear algebra, and we think it is most promising to
study it in isolation first and hence consider a logic such
as FP+rk before proceeding to more complicated logics that
may potentially capture polynomial time.

Indeed, a considerable part of this paper is devoted to
even simpler logics, the extension FO+rk of first-order logic
by rank operators and, for every prime p, its fragment
FO+rkp that only has a rank operator over the field GFp.
We show that undirected graph reachability is expressible in
FO+rkp (for every prime p) and hence that FO+rkp is strictly
more expressive than the extensions DTC and STC of first-
order logic by deterministic and symmetric transitive closure
operators. Over ordered finite structures, we characterise the
complexity of the logics by proving that FO+rkp captures
the complexity class MODp L. In particular, over ordered
structures the logic FO+rk2 captures the complexity class
⊕L = MOD2 L (known as “parity L”) consisting of all
problems for which there is a nondeterministic logarithmic
space Turing machine accepting an input if and only if an
odd number of computation paths halt in an accepting state.

Our main result on the logic FP+rk is that it has a strict
arity hierarchy. The row and column indices of definable
matrices are tuples of elements of a structure, and the arity
of a rank operator is the sum of the lengths of the tuples
used as row and column indices of the matrices it applies to.
The strictness of the arity hierarchy distinguishes the rank
operators from counting operators: it is known that unary
counting operators can simulate counting operators of all
arities. Our result is based on a theorem due to Hella [17]
stating that no extension of finite variable infinitary logic
by Lindström quantifiers of bounded arity can define all
polynomial time properties. Even though rank operators
are not themselves Lindström quantifiers, it can be shown
that the n-ary fragment of FP+rk can be embedded into
the extension of finite variable infinitary logic by n-ary
Lindström quantifiers.

The paper is organised as follows: After some preliminar-
ies, we formally introduce the rank operators in Section II.
In Section III, we present our results on the expressive power
of first-order rank logic FO+rk. In Section IV we prove
that over ordered finite structures, FO+rkp captures the com-
plexity class MODp L for prime p. Then in Section V, we
prove the strictness of the arity hierarchy. In Section VI we
prove that determinants over the integers, rationals and finite

fields and matrix rank over the rationals are expressible in
FP+C. Finally, in Section VII we discuss several interesting
directions for further research.

Due to space constraints, proofs of some of our results
have been deferred to the full version of this paper.

II. RANK OPERATORS

A vocabulary τ is a finite sequence of relation symbols
(R1, . . . Rk) in which each Ri has a fixed arity ni. A τ -
structure A =

(
U(A), RA1 , . . . , R

A
k

)
is a non-empty set

U(A), called the universe of A, together with relations
RAi ⊆ U(A)ni for 1 ≤ i ≤ k. We let |A| := |U(A)|.

We write N and N0 for the positive and non-negative
integers, respectively. For m,n ∈ N0, let [m,n] := {` ∈
N0

∣∣m ≤ ` ≤ n} and [n] := [1, n]. We often denote tuples
(v1, . . . , vk) by ~v and denote their length by |~v|.

Given a logic L and a vocabulary τ , L[τ ] denotes the set
of τ -formulas of L. For a formula ϕ ∈ L[τ ] we write ϕ(~x)
to indicate that all of ϕ’s free variables are among ~x. Given
a τ -structure A, we write A |=L ϕ[~a] if ~a ∈ U(A)|~x| and
A satisfies ϕ under the assignment of ai to xi for every
i ∈ [|~x|]. When the logic L is clear from the context, we
omit the subscript to the satisfaction relation.

A τ -formula ϕ(~x) with |~x| = k defines a k-ary query that
takes any τ -structure A to the set of k-tuples ~a from U(A)
for which A |= ϕ[~a]. We say that a logic L1 is (at least) as
expressive as a logic L2, and write L2 5 L1, if every query
definable in L2 is also definable in L1. We write L1 ≡ L2 if
L1 5 L2 and L2 5 L1.

Two-sorted structures: We equip structures with
an additional integer sort. For a τ -structure A =(
U(A), (RA)R∈τ

)
we define A+ to be the extension of A

by the standard model of arithmetic. In other words, A+ is
the two-sorted structure

(
U(A),N0, (RA)R∈τ ,+, ·,≤, 0, 1

)
,

where + and · are binary functions denoting standard
addition and multiplication over the integer sort, ≤ is the
linear order on the integers, and 0 and 1 are the usual
constants from N0.

For logics over such two-sorted structures, we assume all
variables to be typed, so each variable x ranges either over
the universe U(A) or over the numbers N0. We say that a
tuple of variables ~x has type k.` if |~x| = k + `, the first
k variables of ~x range over U(A) and the last ` variables
range over N0. A numeric term is a term in the language
of A+ that takes values in N0. If t is a numeric term, then
tA denotes the integer value t takes over A+. It will be
convenient to view formulas as numeric terms taking the
values 1, 0 corresponding to their truth values.

In order to avoid undecidability, quantification over num-
ber variables has to be bounded. Thus, if x is a number
variable, its binding quantifier must appear in the form
∀x ≤ t ϕ or ∃x ≤ t ϕ for a numeric term t and a formula ϕ.
Let us denote first-order logic over the two-sorted extension



of structures with bounded quantification over the numerical
sort by FO+. We usually write A |= ϕ to mean A+ |=FO+ ϕ.

Rank operators: We are now ready to define rank
operators. Consider a numeric term η and variables ~x and
~y, which are possibly free in η. Given a structure A, define
m~a~b := ηA[~a,~b] for tuples ~a,~b from U(A) interpreting ~x
and ~y respectively. We consider M :=

(
m~a~b

)
as an integer

matrix whose rows are indexed by |~x|-tuples and whose
columns are indexed by |~y|-tuples.

For prime p let Mp denote the matrix of the residue
classes of M ’s matrix entries mod p. We view Mp as a
matrix over GFp. Notice that the rank of Mp is well-defined
since it does not depend on the ordering of the rows and
columns. In general, we also allow matrices to be indexed
by number variables, but they need to be bounded again so
that we obtain finite matrices.

Definition II.1. Given a prime p, a τ -structure A, and a
numeric FO+[τ ]-term or formula η, let ~x1, ~y1 be universe
variables, ~x2, ~y2 be number variables and ~t1, ~t2 be tuples of
numeric terms bounding the number variables in ~x2 and ~y2,
respectively. Then rkp(~x1 ~x2≤~t1, ~y1 ~y2≤~t2) η is a numeric
term denoting the rank of Mp =

(
ηA[~a1~a2,~b1~b2] mod p

)
over GFp.

For prime p, we write FO+rkp for the extension of FO+ with
the rank operator rkp, and we let FO+rk be the extension of
FO+ with all the rank operators.

Remark. For any numeric term t, there is a polynomial p
so that tA ≤ p(|A|) in any structure A. To see this, use
induction over terms and notice that the rank of a matrix is
bounded by both its row and column dimension.

Other logics: In this paper, we relate FO+rk to various
other logics that play a prominent role in descriptive com-
plexity theory. In particular, we consider inflationary fixed-
point logic FP, deterministic transitive closure logic DTC,
symmetric transitive closure logic STC, transitive closure
logic TC, and infinitary first-order logic with finitely many
variables Lω∞ω . For a detailed discussion we refer to the
standard literature [10], [21].

Let ϕ be an FO+[τ ]-formula. We define the counting
terms ]~x ϕ to denote the number of assignments to ~x so
that ϕ holds in A. Once again, we require all occurrences
of number variables in ~x to be bounded by numeric terms
and we write ]~x ~y≤~tϕ to indicate that the number variables
yi are bounded by numeric terms ti for each i respectively.
Let FO+C denote the extension of FO+ with counting terms.

We also consider FP over the two-sorted exten-
sion of structures with bounded quantification. We write
ifpX←~x~y≤~t ϕ for the inflationary fixed-point of ϕ over the
relation variable X of mixed type |~x|.|~y|, where the number
variables in ~y are bounded by the numeric terms in ~t.
Extending this now with counting terms, we obtain the
logic FP+C which plays an important role in descriptive

complexity theory. Similarly, for prime p, the rank logic
FP+rkp is obtained by extending FP in the two-sorted setting
with the rank operator rkp, and we write FP+rk for the
extension of FP with all the rank operators.
Remark. For any formula ϕ(~x) and any prime p, the term
rkp(~x, ~y) ~x=~y ∧ ϕ(~x) with |~y| = |~x| denotes the number of
|~x|-tuples from U(A) so that ϕ holds. It follows immediately
that FO+C 5 FO+rk and FP+C 5 FP+rk.
Remark. Observe that all the rank logics FP+rk, FO+rk,
FP+rkp and FO+rkp (for prime p) are closed under first-order
reductions.

Linear systems: Let a τ -structureA be given along with
numeric τ -terms ψ(~x, ~y) and β(~x). Considering ψA[~a,~b] as
a matrix Aψ and βA[~c] as a vector bβ over GFp for some
prime p, ψ and β describe the system of linear equations
Aψx = bβ on A.

Such a system is solvable if and only if bβ is contained
in the span of the column vectors of Aψ , or in other words,
if and only if adding bβ as a new column to Aψ does not
increase the rank of the matrix. Based on this, it is easy to
see that the following formula of FO+rkp defines solvability
of the system.

∀z rkp(~x, ~yy′) ((y′ 6= z) · β + (y′ = z) · ψ) ≤ rkp(~x, ~y)ψ

In the above formula, by our convention, the formulas y′ = z
and y′ 6= z take on truth values from {0, 1} ⊂ N0. Note that
the matrix defined on the left-hand side of the inequality will
contain multiple copies of the column vector bβ , which of
course does not alter the solvability of the system. Atserias
et al. [1] have shown that the solvability of linear systems
cannot be defined in FP+C. Thus, FP+rk is strictly more
expressive than FP+C.

III. EXPRESSIVE POWER OF FO+rk

Graph connectivity: The symmetric (s, t)-reachability
problem is the problem of determining, given a graph G
with distinguished vertices s and t, whether there is a path
from s to t in the undirected graph underlying G. We show
that symmetric (s, t)-reachability can be defined in FO+rkp
for all primes p.

Let G = (V,E) be an undirected graph and let s and t be
two vertices in V . For a prime p, let SG,s,t be the system
of linear equations over GFp with variables xv for all v ∈ V
and equations:
• for every edge e = (u, v) ∈ E: xu − xv = 0,
• xs = 1; xt = 0.

Lemma III.1. The linear system SG,s,t is solvable over
GFp iff there is no path between s and t in the graph G.

Proof: This follows from the observation that the edge
equations of SG,s,t force variables xu and xv to take the
same value if u and v are in the same connected component
of G.



The matrix of the system SG,s,t is easily definable in first-
order logic by a numeric term η(x1x2, y) holding the value
1 at (ss, s), (tt, t), and (uv, u) and −1 at (uv, v) for edges
(u, v) ∈ E. Note that every edge equation is stated twice in
equivalent ways. For any directed graph G, the underlying
undirected graph is also first-order definable. Hence there is
a first-order reduction from symmetric (s, t)-reachability to
the problem of deciding solvability of linear systems.

Corollary III.2. Symmetric (s, t)-reachability is definable
in FO+rkp for all primes p.

The above method for defining reachability fails in general
when applied to directed graphs. We can, however, consider
an important special case: the class of all directed graphs
whose vertices have out-degree at most 1.

Let G = (V,E) be a directed graph. Define the deter-
ministic part Ed of E as all those edges (u, v) from E for
which u has out-degree 1. Thus, Ed ⊆ E and all vertices of
Gd := (V,Ed) have out-degree at most 1.

Given G and vertices s, t ∈ V , the deterministic (s, t)-
reachability problem asks whether there is a path from s to t
in Gd. It is easy to see that after removing any outgoing edge
from t, deterministic (s, t)-reachability becomes equivalent
to symmetric (s, t)-reachability, thus establishing:

Lemma III.3. Deterministic (s, t)-reachability is definable
in FO+rkp for all primes p.

Corollary III.4. On the class of all finite structures, STC �
FO+rkp and DTC � FO+rkp for all primes p.

Cai-Fürer-Immerman graphs: Cai, Fürer and Immer-
man [5] proved that FP+C does not capture PTIME on the
class of all finite structures, thereby settling what had been
an important open problem in descriptive complexity theory.
For the proof, they constructed a query on a class of graphs
that can be defined by a polynomial time computation but not
by any sentence of FP+C. In this section we show that this
query can be expressed in the logic FO+rk, by considering
a first-order definable system of linear equations over GF2.

We first introduce the class of Cai-Fürer-Immerman (CFI)
graphs on which we define the separating query. The fol-
lowing presentation of the graphs is adapted from [5], [9].
Note that unlike the presentation of Dawar et al. [9], who
show that the CFI query can be expressed in the logic of
choiceless polynomial time, we do not require an ordering
on the underlying graphs G.

Definition III.5 (Cai-Fürer-Immerman graphs). Let G =
(V,E) be a connected undirected graph with at least two
vertices. We denote the set of edges incident to v ∈ V by
E(v). Let T ⊆ V . For each v ∈ T , let

Iv := {vZ : Z ⊆ E(v), |Z| ≡ 1 (mod 2)},
and for each v ∈ V \ T , let

Iv := {vZ : Z ⊆ E(v), |Z| ≡ 0 (mod 2)}.

Let V̂ := ∪v∈V Iv , Ê := {e0, e1
∣∣e ∈ E}, Ĉ := {ec

∣∣e ∈ E},
and U∗ := V̂ ∪ Ê ∪ Ĉ. Define an edge relation on U∗

E∗ :=
{
{vZ , e1} : e ∈ Z

}
∪{

{vZ , e0} : e ∈ E(v) \ Z
}
∪{

{ei, ec} : e ∈ E(v), i ∈ {0, 1}
}
,

and a unary relation C∗ := Ĉ ⊂ U∗. Finally define GT :=
(U∗, E∗, C∗).

We refer to the sets of vertices Ĉ, Ê and V̂ as the colour
nodes, outer nodes and inner nodes of GT , respectively. The
parity of a CFI graph GT is the parity of |T |. We say GT is
even if it has even parity and odd if it has odd parity. In [5],
Cai et al. show the following:
• For a connected graph G, where every vertex has degree

at least two, and all T, S ⊆ V (G), the graphs GT and
GS are isomorphic iff they have the same parity.

• While there is a PTIME algorithm that can distinguish
between the odd and even CFI graphs of any graph G,
there is no fixed formula of FP+C that can do the same.

Now let G = (V,E) be a connected graph where every
vertex has degree at least two and let GT be a CFI graph
constructed from G.

Let SGT be the system of linear equations over GF2 with
variables xei

for all ei ∈ Ê and xvZ
for all vZ ∈ V̂ , and

equations:
•
∑
vZ∈V̂ xvZ

= 0,
• for all ei ∈ Ê: xei + xe1−i = 1,
• for all vZ ∈ V̂ :∑

e∈Z xe1 +
∑
e∈E(v)\Z xe0 =

∑
vY ∈Iv

xvY
.

The following is not hard to establish.

Lemma III.6. SGT is first-order definable over GT .

Proof: It can be seen that there are first-order formulas
ϕc(x), ϕo(x) and ϕi(x) that define the sets Ĉ, Ê and V̂ ,
respectively. Similarly, there is a first-order formula θp(x, y)
that says that x and y are distinct outer nodes derived from
the same edge e ∈ E, and a first-order formula θi(x, y) that
says that x and y are inner nodes derived from the same
vertex v ∈ V .

The system SGT can now be defined by formulas ϕ(x, y)
and β(x) over GT in the following way. The equations for
the outer nodes ei are defined at row indices a for which
ϕo[a] = 1. Similarly, the equations for inner nodes vZ are
defined at row indices a for which ϕi[a] = 1, using θi(x, y)
and the fact that the set of e1 with e ∈ Z is exactly the
neighbourhood of vZ in GT , and the set of e0 with e ∈
E(v) \Z can be defined similarly. Finally, the equation that
sums all the xvZ

can be defined at row indices a for which
ϕc[a] = 1; there will be multiple copies of this equation,
which of course does not affect the solvability of the system.
The definition of β(x) follows similarly.



Lemma III.7. The system SGT is solvable iff GT is even.

Proof: We show that the system is solvable when |T | =
0 and not solvable when |T | = 1. Since SGT is definable
by a first-order sentence ϕ(x, y) by Lemma III.6 and ϕ is
invariant under isomorphism, it then follows that SGT is
solvable if and only if |T | is even.

First suppose T = ∅. In this case it is readily verified
that any assignment that puts xei

= i for all ei ∈ Ê and∑
vY ∈Iv

xvY
= 0 for all v ∈ V is a solution to SGT .

Next suppose T = {u} where u is an arbitrary vertex
in V . Fix one edge f ∈ E(u) and consider the following
equations from SGT :
• for every v ∈ V \ {u}:

∑
e∈E(v) xe0 =

∑
vY ∈Iv

xvY
,

• for u:
(∑

e∈E(u)\{f} xe0
)

+ xf1 =
∑
uY ∈Iu

xuY
.

In this subsystem, there is exactly one equation for each
v ∈ V . It follows that for all e ∈ E \ {f}, the variable xe0
occurs exactly twice on the left-hand side of the system, as
each edge is connected to two vertices v ∈ V . However, for
the edge f , we get both xf0 and xf1 on the left-hand side.
Summing up all the above equations we therefore get∑

vZ∈V̂

xvZ
= xf0 + xf1 = 1,

where the last equality comes from the corresponding edge
equation in SGT . But this is inconsistent with the first
equation in SGT . Therefore, SGT has no solution.

The preceding lemmas now establish that there is a first-
order reduction from the problem of distinguishing odd and
even CFI graphs to the problem of deciding solvability of
linear systems over GF2.

Theorem III.8. There is a sentence ϕCFI ∈ FO+rk2 that
holds in structures GT when |T | is even but not in structures
GT when |T | is odd.

Since the work of Cai et al., other constructions that expose
the limitations of FP+C have been given. Gurevich and
Shelah [16] define a class of rigid structures known as
multipedes, and consider the problem of uniformly defining
a linear order over this class. They show that this problem,
while computable in polynomial time, is not definable by
any fixed formula of FP+C. We are able to show that such
an order can be defined in FO+rk. The details are left out of
the present paper due to lack of space.

IV. DESCRIPTIVE COMPLEXITY

It is a classical result of descriptive complexity theory
that extensions of first-order logic with various fixed-point
operators capture different complexity classes on the class of
ordered structures. TC, for instance, captures nondeterminis-
tic logspace, while FP captures PTIME in the presence of an
order. In this section, we show such a natural correspondence
for first-order logic with rank operators, namely that for each

prime p, FO+rkp captures the complexity class MODp L on
ordered structures.

We start by reviewing some classical notions from the
field of descriptive complexity. For a vocabulary τ with
≤∈ τ , we call a τ -structure A an ordered structure if A
interprets ≤ as a total order of its universe. We will identify
A’s linearly ordered universe with [0, |A| − 1] ⊂ N0.

An ordered τ -structure A can be encoded as a word over
{0, 1} in a canonical way (see e.g. [10] for details). We write
enc (A) for the canonical encoding of an ordered structure
A. The Turing machines we consider use {0, 1} as their
input and work tape alphabet. If K is a class of ordered
τ -structures, we say that a Turing machine M decides K if
for any ordered τ -structure A,

M(enc (A))

{
accepts if A ∈ K,
rejects if A 6∈ K.

Since it can be decided in logarithmic space whether a given
string in {0, 1}∗ is a valid encoding of a τ -structure, M can
be turned into a machine that decides {enc (A)

∣∣A ∈ K} ⊆
{0, 1}∗. For a complexity class C we write K ∈ C to mean
{enc (A)

∣∣A ∈ K} ∈ C.
Given a complexity class C, a logic L captures C on

ordered structures if for any vocabulary τ with ≤∈ τ and
any class K of ordered τ -structures, K ∈ C if and only if
there is a sentence ϕK of L[τ ] that defines K.

Definition IV.1. For a non-deterministic Turing machine
M , let |M(x)| denote the number of accepting computation
paths on input string x. Let n ∈ N. A MODn L-Turing
machine M is a non-deterministic Turing machine with
logarithmic workspace which is said to accept an input x
whenever |M(x)| 6= 0 mod n.

The complexity class MODn L consists of all problems
P ⊆ {0, 1}∗ for which there is a MODn L-Turing machine
M deciding P .

MOD2 L is better known under the name “parity logspace”,
usually denoted by ⊕L.

Theorem IV.2. Let p be prime. FO+rkp captures MODp L
on ordered structures.

Proof: The proof consists of two parts. Firstly, we
have to show that for any sentence ϕ ∈ FO+rkp there is
a MODp L-Turing machine Mϕ that, given the encoding of
a structure A, decides A |= ϕ. Secondly, given a MODp L-
Turing machine M , we construct a sentence ϕM that holds
in a structure A if and only if M accepts enc (A).

For the first part, assume that τ is a vocabulary with ≤∈ τ ,
and that ϕ is a FO+rkp[τ ]-sentence. In order to deal with rank
operators occurring in ϕ, we need two results on MODp L-
machines. The first one says that the rank of a matrix over
GFp can be decided by a MODp L-machine.



Lemma IV.3 (Buntrock et al. [4]). Let p be prime. There
is a MODp L machine Mrk which takes as input an integer
r ∈ N0 and a matrix A ∈ GFm×np and decides if rkA = r.

The second result states that MODp L-machines that make
oracle queries to a MODp L problem can be simulated by a
MODp L-Turing machine without oracle queries.

Lemma IV.4 (Hertrampf et al. [19]). Let p be prime. Then
MODp LMODp L = MODp L.

It is left to show that there is a MODp L-machine Mϕ that
decides ϕ by induction over the construction of ϕ. The
argument is fairly tedious but straightforward and will be
omitted.

For the other direction, consider a MODp L-Turing ma-
chine M with space bound d · log n that decides a class
of τ -structures K ∈ MODp L. Without loss of generality
we assume that M has only one accepting configuration.
We construct a formula ϕM that defines K. By standard
methods we can restrict ourselves to structures A so that
|A| > max{d log |A|, q} where q is the number of states of
M and choose d′ large enough so that all configurations of
M can be encoded by d′-tuples of elements from A.

Consider the configuration graph of M , that is, the
directed graph GM with vertices ~a ∈ U(A)d

′
and edges

(~a,~b) whenever ~b is a successor configuration of ~a under
M ’s transition relation. If s and t denote the unique start
and accept configurations, respectively, M accepting A is
equivalent to the condition that the number of paths from s
to t in GM is 6= 0 mod p. Note that GM can be assumed
to be free of cycles; if it is not, use d variables to add a
time mark to each configuration that is increased by 1 at
every transition. Since DTC 5 FO+rkp (Corollary III.4), the
following result shows that GM can be defined in FO+rkp.

Lemma IV.5 (Ebbinghaus and Flum [10]). There are DTC-
formulas χstart(~x), χaccept(~x), and χsucc(~x, ~y) such that for
all ordered τ -structuresA with |A| > max{d log |A|, q} and
~a ∈ U(A)d

′
,

• A |= χstart(~a) (A |= χaccept(~a)) if and only if ~a is the
encoding of the start (accept) configuration of M ,

• A |= χsucc(~a,~b) if and only if ~b is a valid successor
configuration of ~a.

χsucc(~x, ~y) defines the adjacency matrix A of GM . Let I
denote the identity matrix of the same dimension as A. Then
I−A is definable in FO+rkp by a term η(~x, ~y), and the term

η∗(~x, ~y) :=
(
¬χaccept(~x) ∧ ¬χstart(~y)

)
· η(~x, ~y)

defines I−A with row t and column s set to 0. The formula
ε(~x, ~y) := ~x=~y ∧ ¬χstart(~x) defines the identity matrix of
the same dimension as A with one row set to 0. Let

ϕM := rkp(~x, ~y) ε(~x, ~y) = rkp(~x, ~y) η∗(~x, ~y).

The following completes the proof of Theorem IV.2.

Lemma IV.6. For any ordered τ -structure A with |A| >
max{d log |A|, q}, A |= ϕM if and only if M accepts A.

Proof: As GM is cycle-free, there is no path of length
≥ nd

′
=: m, hence Am = 0. Thus, I − A is non-singular

over GFp, with the inverse explicitly given by (I−A)−1 =
I+A+A2 + . . .+Am−1, where all arithmetic is over GFp.
Notice that for k ∈ N0, the (i, j)th entry of Ak equals the
number of paths modulo p of length k from i to j in GM .
Thus, (I −A)−1 is the matrix of the total numbers of paths
modulo p. Recall that s and t denote the start and accept
configuration, respectively. Then M accepts A if and only
if (I −A)−1(s, t) 6= 0.

The adjugate rule says that for any invertible matrix B,
the entries b−1

ij of its inverse B−1 are given by

b−1
ij = (−1)i+j detBji

/
detB,

where Bji is B with the jth row and the ith column deleted.
To check if (I − A)−1(s, t) 6= 0, it is therefore enough to
test if (I − A)ts has full rank, which is exactly what ϕM
does.

V. ARITY HIERARCHY OF RANK OPERATORS

Generalized quantifiers were introduced by Lindström in
[24] and have been studied as a way to increase the expres-
siveness of FO by a prescribed query. For any vocabulary
σ = (R1, . . . , Rk) with relations Ri of arity ni, and any
class of σ-structures K, let QK denote the Lindström quan-
tifier associated with K. For any vocabulary τ , a τ -structure
A satisfies the formula QK~x1 . . . ~xk(ψ1(~x1), . . . , ψk(~xk)) if
(U(A), ψA1 , . . . , ψ

A
k ) ∈ K as a σ-structure. If Q is a set of

Lindström quantifiers, then L(Q) denotes the extension of
a logic L by all the quantifiers in Q . More information on
Lindström quantifiers can be found in [10].

In 1996, Hella [17] proved that for any n ∈ N, augmenting
infinitary first-order logic with all Lindström quantifiers of
arity at most n, denoted Lω∞ω(Qn), is not expressive enough
to define all PTIME queries over the class of all structures
(not necessarily ordered). Since FP+C 5 Lω∞ω(Q1), his
result extends Cai, Fürer, and Immerman’s result discussed
in Section III.

Our aim is to show that the arities of rank operators
yield a strict hierarchy. Rank operators are not themselves
Lindström quantifiers, but they can be translated into such
quantifiers. To be precise, we define quantifiers rk≤rp so
that rk≤rp ~x~y (η) is interpreted as rkp η[~x, ~y] ≤ r. The arity
of the quantifier is |~x + ~y|. Writing Rn for the set of all
rank quantifiers of arity at most n and FP+rk[n] for the
set of all those FP+rk-formulas in which all occurrences of
rk-operators are of arity at most n, it can be shown that
formulas of FP+rk[n] can be translated into Lω∞ω(Rn), so in
particular FP+rk[n] 5 Lω∞ω(Qn) for all n ∈ N.



Theorem V.1. For any n ∈ N there is an FO(Rn+1)
query that is not definable in Lω∞ω(Qn). Thus, FP+rk[n] �
FP+rk[n+1] and FO+rk[n] � FO+rk[n+1] for any n.

We prove this theorem by showing that Hella’s queries,
which separate Lω∞ω(Qn) from PTIME, can be expressed
using a linear system over GF2 of arity n + 1. In fact, our
proof already shows the strictness of the rk2 arity hierarchy.
By generalizing Hella’s construction, strictness can be shown
for the arity hierarchy of rkp for every prime p, though we
omit details for lack of space. The following construction is
due to Hella [17].

Let C = {c1, . . . , cn+1, d1, . . . , dn+1} be equipped with
the quasi order ≺ defined by

x ≺ y :⇔ x ∈ {ci, di} and y ∈ {cj , dj} for
some 1 ≤ i < j ≤ n+ 1,

and let P = {d1, . . . , dn+1} ⊂ C. Define relations R+ and
R− by

(a1, . . . , an+1) ∈ R+ :⇔ a1 ≺ . . . ≺ an+1

and |{i : ai ∈ P}| is even

(a1, . . . , an+1) ∈ R− :⇔ a1 ≺ . . . ≺ an+1

and |{i : ai ∈ P}| is odd

Now assume that n ≥ 2 and G = (V,EG, <G) is a finite
undirected graph which is connected, regular of degree n+1,
and <G is a strict linear order on V . For every vertex u ∈ V ,
fix an enumeration hu : {v | (u, v) ∈ E} → [n + 1] of its
n+ 1 neighbors.

Definition V.2. Let τ = (R,E,<) be a vocabulary, where R
is (n+1)-ary and E, < are binary. For any subset S ⊆ V , the
τ -structure D(G,S) = (DG, R

D(G,S), ED(G,S), <D(G,S))
is defined by
• DG = V × C,
• RD(G,S) is the set of all tuples ((u, a1), . . . , (u, an+1))

in DG so that either u 6∈ S and (a1, . . . , an+1) ∈ R+,
or u ∈ S and (a1, . . . , an+1) ∈ R−,

• ED(G,S) is the set of all pairs ((u, ci), (v, cj)) and
((u, di), (v, dj)) in D2

G such that (u, v) ∈ E, i =
hu(v), and j = hv(u),

• (u, a) <D(G,S) (v, b) if and only if
u <G v or u = v ∧ a ≺ b

Unlike the CFI graphs, Hella’s graph construction does not
“twist” the actual edges. Instead, the twists are encoded in
RD(G,S). Notice that <D(G,S) has width 2, as for every
(u, a) ∈ DG, there is exactly one (u, b) ∈ DG with
neither (u, a) <D(G,S) (u, b) nor (u, b) <D(G,S) (u, a). We
call (u, a), (u, b) an incomparable pair. Hella proves the
following:

Lemma V.3. Let S, T ⊆ V . The structures D(G,S) and
D(G,T ) are isomorphic if and only if |S| and |T | are of
the same parity.

Thus, there are exactly two non-isomorphic structures
D(G,S) for any graph G. Let A(G) = D(G, ∅) and
B(G) = D(G, {u}) for some u ∈ V .

Theorem V.4 (Hella 1996). For any n ∈ N, there is a family
of connected (n+ 1)-regular graphs Gk with |Gk| = O(k2)
so that for any Lω∞ω(Qn)-sentence ϕ there is kϕ ∈ N such
that A(Gk) |= ϕ⇔ B(Gk) |= ϕ for all k ≥ kϕ.

A(G) and B(G) can actually be distinguished by a PTIME
computation, so this theorem implies that FP(Qn) does not
capture PTIME for any n ∈ N. We show here that A(G)
and B(G) can be distinguished by a linear system of arity
n+ 1.

Let T = (V ×C,RT , ET , <T ) be a τ -structure. Then let
S be the linear system over GF2 with variables x(u,a) for
every (u, a) ∈ V × C and the following equations:
• for every incomparable pair (u, a), (u, b):
x(u,a) + x(u,b) = 1,

• for each ((u, a), (v, b)) ∈ ET : x(u,a) + x(v,b) = 0,
• for every (n+ 1)-tuple ((u, a1), . . . , (u, an+1)) ∈ RT :
x(u,a1) + . . .+ x(u,an+1) = 0.

S can be defined by formulas ϕ(~x, y) and β(~x) over
T with |~x| = n as follows. For every n-tuple ~a :=
((u, a1), . . . , (u, an)) with a1 ≺ . . . ≺ an, there is at most
one element (u, an+1) such that ((u, a1), . . . , (u, an+1)) ∈
RT . Let ϕ(~a, y) express the equation x(u,a1) + . . . +
x(u,an+1) = 0, i.e., ϕ[~a, b] = 1 ⇔ b = (u, ai) for some
1 ≤ i ≤ n + 1. The equations for edges and incomparable
pairs can be defined at row indexes v1 . . . vn for which
v1 = . . . = vn−1. Defining the vector β(~x) is trivial.

In order to prove Theorem V.1, we have to decide whether
S has a solution without increasing the arity of the matrix
defined by ϕ. For this, we need the following lemma from
linear algebra, which is easy to prove.

Lemma V.5. Let A be a matrix that does not have full
column rank. Then the linear system Ax = b is solvable if
and only if for all columns c of A, adding b to c does not
increase the rank of A.

As G is an (n + 1)-regular graph with n ≥ 1, G contains
a cycle. Let H be such a cycle and let J = {(u, a) ∈
DG

∣∣ u ∈ H has a neighbor v in H s.t. for some b :
((u, a), (v, b)) ∈ ET }. Then it is readily verified that on
every row, the sum of the entries in columns indexed by J
is 0.

Thus, the matrix defined by ϕ does not have full column
rank and (using Lemma V.5) there is a sentence ΨS ∈
FO(Rn+1) defining the solvability of S. It is easy to verify
that S is solvable over A(G) by setting

x(u,a) =

{
0 if a = ci for some i,
1 if a = di for some i.

Since ΨS is invariant under isomorphism, S is solvable over



D(G,S) whenever |S| is even. The following lemma allows
us to complete the proof of Theorem V.1.

Lemma V.6. Let D(G,S) be as above. Any solution ~x of S
over D(G,S) induces an isomorphism ι : D(G,S)→ A(G)
by letting

ι(u, ai) =

{
(u, ci) if x(u,ai) = 0,
(u, di) if x(u,ai) = 1.

Proof: ι is well-defined since S ensures that in ev-
ery incomparable pair (u, ci), (u, di), exactly one of the
corresponding variables is set to 1. It is immediately
clear that ι is an isomorphism with respect to E and <.
Now if ((u, a1), . . . , (u, an+1)) ∈ RD(G,S), we must have
x(u,ai) = 1 for an even number of i ∈ [n + 1]. Thus,
(ι(u, a1), . . . , ι(u, an+1)) ∈ RA(G) by the definition of
RA(G). If ((u, a1), . . . , (u, an+1)) 6∈ RD(G,S) we must have
x(u,ai) = 1 for an odd number of i ∈ [n+1], since replacing
any (u, ai) with its incomparable partner gives a tuple in
RD(G,S) whose sum is forced to be 0 mod 2. Therefore
(ι(u, a1), . . . , ι(u, an+1)) 6∈ RA(G) and ι is an isomorphism.

VI. LINEAR ALGEBRA IN FP+C

We have seen that fixed-point logic with counting is not
expressive enough to describe the rank of matrices over
finite fields. It is still, however, an open problem whether
or not matrix determinant is definable in this logic. It has
been observed by Rossman that Csanky’s algorithm [7] for
computing the characteristic polynomial (and thereby, the
determinant) of a matrix over any commutative ring of
characteristic zero is expressible in the logic of choiceless
polynomial time with counting. Blass and Gurevich [2] used
this observation to show that the same logic can also express
the determinant of any definable matrix over a finite field.

In this section we strengthen the above result by showing
that Le Verrier’s method for finding the coefficients of the
characteristic polynomial of a matrix (cf. [11]), which is the
main building block of Csanky’s algorithm, can already be
expressed in FP+C for both integer and rational matrices,
as well as matrices over finite fields. Le Verrier’s method
calculates M ’s characteristic polynomial

χM (x) := det(xI−M) = xn−p1x
n−1+p2x

n−2−· · ·±pn

by solving the linear system Ax = b for x = (pn, . . . , p1)t

with b = (± sn

n ,∓
sn−1
n−1 , . . . , s1)t, sk := tr(Mk) and

A =


1 − s1n . . . ± sn−2

n ∓ sn−1
n

0 1 . . . ∓ sn−3
n−1 ± sn−2

n−1
...

...
. . .

...
...

0 0 . . . 1 − s12
0 0 . . . 0 1

 .

Characteristic polynomial over Q and Z: To represent
matrices with values from the ring of integers and the field
of rationals as finite structures, we follow the convention of
Blass et al. [3] and write matrix entries in binary notation. In
this way, an integer matrix A = (aij) can be thought of as
a ternary relation A(i, j, k) defined by “the coefficient of 2k

in the binary expansion of aij is 1”. Matrices with rational
entries can be treated similarly by handling the numerators
and denominators separately.

Matrices as above can be represented using a framework
similar to the one we introduced in section II. Here we
consider rational matrices; integer matrices can be defined
by setting all denominators to 1. Let A be a τ -structure and
let ηn(~x, ~y, z) and ηd(~x, ~y, z) be FP+C[τ ]-formulas, where ~x
and ~y are universe variables and z is a number variable. The
determinant and the characteristic polynomial are defined
only for square matrices, so we assume |~x| = |~y|. The role
of z is to index the binary expansion of the matrix elements
over the number sort, bounded by some numeric term t. Let
M denote the square rational matrix in binary representation
of bit length tA defined by ηn and ηd, which separately
define the numerators and denominators of M , respectively.
Below we will sketch a proof of the following theorem.

Theorem VI.1. There are numeric FP+C[τ ]-terms
θnchar(x, y) and θdchar(x, y), where x and y are number
variables, which satisfy:

• θnchar[k, i] = d iff the i-th bit of the numerator of the
coefficient of xk in the characteristic polynomial pM (x)
of M over Q is d;

• θdchar[k, i] = d iff the i-th bit of the denominator of the
coefficient of xk in the characteristic polynomial pM (x)
of M over Q is d.

Recall that for any n × n matrix M , the constant term of
χM (x) takes value (−1)n det(M).

Corollary VI.2. There are numeric FP+C[τ ]-terms θndet(x)
and θddet(x), where x is a number variable, which satisfy:

• θndet[i] = d iff the i-th bit of the numerator of the
determinant of M over Q is d;

• θddet[i] = d iff the i-th bit of the denominator of the
determinant of M over Q is d.

In [3], Blass et al. describe various matrix properties and
operations that are definable in FP+C (see also [8] for a
good summary). These constructions can be adapted to work
for matrices over Z and Q in the representation we chose
above. This gives us the following.

• Matrix product: There are terms and formulas of FP+C
that define the matrix product MN for any definable
matrices M,N .

• Matrix powers: There are terms and formulas of FP+C
that define the matrix Mk for any definable n×n matrix
M and k ∈ [n].



• Trace: There are terms and formulas of FP+C that
define tr(M) for any definable matrix M .

We also need to justify that we can define the terms sk =
tr(Mk) over M for each k ∈ [n]. Let m be the maximum
absolute value of any integer appearing either as a numerator
or denominator of an element of M ; clearly log2(m) ≤ t
where t is the number term bounding the binary indices in
M . The following bound is not hard to establish.

Lemma VI.3. sk ≤ (nm)k for all k ∈ [n].

This shows that we have to consider binary indices up to

dlog2((nm)n)e ≤ ndlog2(n) + log2(m)e ≤ (n+ t)2.

Hence we can define all the required index positions by
using quantification over the number sort bounded by the
definable numeric term κ := (n+ t)2.

By now it is clear that we can define the linear system
Ax = b from equation (VI) in FP+C. We can express any
polynomial-time property of this linear system, because the
matrices A and b are defined on an ordered definable subset
of the number sort. In particular, we can express Gaussian
elimination as a fixed-point formula, use that to solve the
system for x and hence obtain the coefficients of χM (x).

Characteristic polynomial over finite fields: Now con-
sider a τ -structure A of size n and numeric FP+C[τ ]-terms p
and η(~x, ~y), where ~x, ~y are universe variables with |~x| = |~y|.
Let Mp denote the matrix modulo p defined by η(~x, ~y), as in
section II. Le Verrier’s method involves division by integers
up to n, so it cannot be applied directly over the prime field
GFp. Instead, we map the input to a matrix M̂ over the ring
of integers, apply Le Verrier’s method to M̂ over Z, and
then reduce the result modulo p to get the specification of
the characteristic polynomial over GFp. This approach was
shown to work by Blass and Gurevich in [2].

We assume that the elements of Mp are initially given by
numeric terms in the range [0, p−1]. The binary expansion of
each element of Mp can be defined in FP+C using p ≥ log p
bits, thereby defining the matrix M̂ (cf. [21]). Likewise, the
binary representations θnchar(x, y) and θndet(x) can be reduced
modulo p to an integer in [0, p−1], from which we recover a
term using a counting quantifier. Thus we get the following
corollary.

Corollary VI.4. There are numeric FP+C[τ ]-terms θdet and
θchar(x), where x is a number variable, which satisfy:
• θdet = d iff the determinant of Mp over GFp is d;
• θchar[k] = d iff the coefficient of xk in the characteristic

polynomial pMp(x) of Mp over GFp is d.

As a consequence of this result, we can use the adjugate
rule to construct a numeric term denoting the inverse to a
given invertible matrix η(~x, ~y) over GFp.

Note that our framework for representing finite matrices
by definable terms and formulas allows us to handle matrices

in any of the relational vocabularies for prime fields defined
by Blass et al. in [3]. More generally, we can show that the
characteristic polynomial of a matrix over any finite field,
not necessarily prime, can be defined in FP+C. We defer
the details of this construction to the journal version of this
paper.

Defining matrix rank over Q in FP+C: Let M be a
matrix over Q, not necessarily square, and let M∗ = M tM ,
where M t denotes the transpose of M . It can be shown that
rankM = rankM∗ = rank (M∗)2. With this in mind, the
following lemma (cf. [23]) tells us that the rank of M can
be inferred directly from its characteristic polynomial.

Lemma VI.5. Let M be an n× n matrix over any field. If
rankM = rankM2, then rankM = n− k where xk is the
highest power of x that divides the characteristic polynomial
χM (x).

Now let M be presented by definable terms and formulas
as before. As all the computation steps described above can
be carried out in FP+C, we get the following result.

Corollary VI.6. There is a numeric FP+C[τ ]-term θrank

which satisfies: θrank = r iff the rank of M over Q is r.

VII. DISCUSSION

We have introduced logics with rank operators and
demonstrated their surprising expressive power. This work
raises many interesting questions. A first natural question
that arises is what are the limits of the expressive power of
FP+rk? Can we demonstrate a polynomial-time property that
is not definable in this logic? Establishing this requires not
only finding suitable candidate properties but also develop-
ing methods for proving inexpressiblity in FP+rk. Our results
in Section V give one approach, by translating the operators
into Lindström quantifiers, but perhaps, other, game-based
methods need to be developed.

An easier testing ground for such methods would be to
establish inexpressiblity results for FO+rk. For instance, can
we show that the alternating transitive closure (ATC) query
is not definable in this logic? If it were definable in FO+rk2,
as deterministic transitive closure is, then it would imply that
PTIME = ⊕L. It might also be possible to show that ATC is
not in FO+rk without complexity-theoretic assumptions. This
would establish (the expected result) that FO+rk is strictly
weaker than FP+rk.

It would also be interesting to investigate the relationship
of FP+rk with other logics that have been proposed which
extend FP+C while remaining inside poynomial time. In
particular, how does FP+rk compare with Choiceless Poly-
nomial Time with Counting (C̃PT(Card)) as introduced by
Blass et al. [3]? It has been shown [9] that C̃PT(Card)
can express the CFI property where the CFI graph GT is
constructed from an ordered graph G, while our construction
in Section III works even with unordered G. It remains



an open question whether the rank of a matrix can be
computed or the solvability of systems of linear equations
determined in C̃PT(Card). Indeed, an inclusion either way
between FP+rk and C̃PT(Card) is unknown.

A more positive direction to investigate would be to use
FP+rk to express some natural properties that are not known
to be in FP+C. One example is the problem of determining
whether a given graph has a perfect matching. It is known [3]
that there is a sentence of FP+C that defines this property
on bipartite graphs, but it is an open question whether or not
there is one that defines it on all graphs. Another interesting
problem to consider is isomorphism on bounded-degree
graphs, which is known to be decidable in polynomial-time
by a result of Luks [25] but is also known not to be in FP+C
as a consequence of the CFI construction. Indeed, classes of
graphs of bounded-degree are an interesting case where we
know, in principle, that there is a logic that captures PTIME,
since there is a polynomial-time canonization algorithm, but
we do not have a natural logic for that purpose. Could it be
that FP+rk captures PTIME on such classes?
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Ann. Pure Appl. Logic, 152(1-3):31–50, 2008.

[10] H.-D. Ebbinghaus and J. Flum. Finite model theory. Springer,
2nd edition, 1999.

[11] D. K. Faddeev and V. N. Faddeeva. Computational Methods
of Linear Algebra (Translated by RC Williams). Freeman,
1963.

[12] M. Grohe. Fixed-point logics on planar graphs. In LICS ’08,
pages 6–15. IEEE Computer Society, 1998.

[13] M. Grohe. Definable tree decompositions. In LICS ’08, pages
406–417. IEEE Computer Society, 2008.

[14] M. Grohe and J. Mariño. Definability and descriptive com-
plexity on databases of bounded tree-width. In ICDT ’99,
volume 1540 of LNCS, pages 70–82. Springer, 1999.

[15] Y. Gurevich. Logic and the challenge of computer science.
In E. Börger, editor, Current trends in theoretical computer
science, pages 1–57. Computer Science Press, 1988.

[16] Y. Gurevich and S. Shelah. On finite rigid structures. J. Symb.
Log., 61:61–549, 1996.

[17] L. Hella. Logical hierarchies in PTIME. Inf. Comput.,
129(1):1–19, 1996.

[18] L. Hella, Ph.G. Kolaitis, and K. Luosto. Almost everywhere
equivalence of logics in finite model theory. Bulletin of
Symbolic Logic, 2:422–443, 1996.

[19] U. Hertrampf, S. Reith, and H. Vollmer. A note on closure
properties of logspace MOD classes. Inf. Process. Lett.,
75:91–93, 2000.

[20] N. Immerman. Expressibility as a complexity measure:
Results and directions. In Second Structure in Complexity
Theory Conf., pages 194–202, 1987.

[21] N. Immerman. Descriptive Complexity. Springer, 1999.

[22] N. Immerman and E. Lander. Describing graphs: A first-
order approach to graph canonization. In Complexity theory
retrospective, pages 59–81. Springer, 1990.

[23] D. C. Kozen. The Design and Analysis of Algorithms.
Springer, 1992.

[24] P. Lindström. First order predicate logic with generalized
quantifiers. Theoria, 32:186–195, 1966.

[25] E. M. Luks. Isomorphism of graphs of bounded valence can
be tested in polynomial time. J. Comput. Syst. Sci., 25:42–65,
1982.


