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Abstract

We introduce the concept of locally excluded minors.
Graph classes locally excluding a minor are a common gen-
eralisation of the concept of excluded minor classes and of
graph classes with bounded local tree-width.

We show that first-order model-checking is fixed-
parameter tractable on any class of graphs locally exclud-
ing a minor. This strictly generalises analogous results by
Flum and Grohe on excluded minor classes and Frick and
Grohe on classes with bounded local tree-width.

As an important consequence of the proof we obtain
fixed-parameter algorithms for problems such as dominat-
ing or independent set on graph classes excluding a minor,
where now the parameter is the size of the dominating set
and the excluded minor.

We also study graph classes with excluded minors, where
the minor may grow slowly with the size of the graphs
and show that again, first-order model-checking is fixed-
parameter tractable on any such class of graphs.

1 Introduction

An important task in the theory of algorithms is to find
feasible instances of otherwise intractable algorithmic prob-
lems. For this purpose, the notion of bounded tree-width
has proved to be extremely useful. Many NP-complete
problems become tractable on graphs whose tree-width is
bounded by a fixed constant. These include k-colourability,
Hamiltonicity and the k-dominating and k-vertex cover
problems. Courcelle [2] proved a meta-theorem stating that
any decision problem definable in monadic second-order
logic can be decided in linear time on any class of graphs of
bounded tree-width.

Although among the most prominent, tree-width is not
the only structural property of graphs that allows for ef-
ficient solutions of otherwise intractable problems. Other
important restrictions are planarity or bounded degree. Un-
fortunately, Courcelle’s theorem fails for any of these re-
strictions. Seese [16] was the first to give a logical meta-
theorem for another general class of graphs. He showed

that any first-order definable decision problem can be de-
cided in linear time on any class of graphs of bounded de-
gree. A property of planar graphs and graphs of bounded
degree that is often used to obtain tractable algorithms is
the fact that every neighbourhood of a vertex has low tree-
width, i.e. the tree-width of any neighbourhood of a vertex
only depends on its diameter. This observation led Epp-
stein [6] to introduce the notion of bounded local tree-width
(which he calls diameter tree-width property). The concept
of local tree-width strictly generalises tree-width, planarity
and bounded degree.

In [10], Frick and Grohe generalise Seese’s result to
classes of graphs of bounded local tree-width. They proved
that first-order definable decision problems can be decided
in linear time on what they call locally tree-decomposable
classes of graphs. In the same paper, they show that any
first-order definable decision problem can be decided in
quadratic time on any class of graphs of bounded local tree-
width.

Another important concept of graph structure that has
been used to obtain tractable algorithms is the concept of
excluded minors. In a series now running to 23 papers,
Robertson and Seymour developed their groundbreaking
theory on graph minors that culminated in the proof of Wag-
ner’s conjecture stating that in every infinite class of finite
graphs one graph is a minor of another. In other words, ev-
ery minor closed class of graphs that is not the class of all
graphs can be characterised by a finite set of excluded mi-
nors. They also proved that testing whether a fixed graph
is a minor of a graph G can be done in cubic time. It fol-
lows, that any minor closed class of graphs can be decided
in cubic time.

Many parts of the rich and deep theory developed by
Robertson and Seymour have found algorithmic applica-
tions. In [7], Flum and Grohe proved a meta-theorem simi-
lar to the results mentioned above. They showed that any
first-order definable decision problem can be decided in
polynomial time on any class of graphs excluding a fixed
minor. The concept of excluded minors is incomparable
to the concept of local tree-width, in fact even to bounded
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degree. It is therefore a natural question whether there ex-
ists a common generalisation of excluded minor classes and
bounded local-tree width classes on which we can still effi-
ciently decide first-order definable decision problems. The
main contribution of this paper is to introduce such a gener-
alisation. It is based on the following simple concept. Let C
be a class of graphs. Instead of requiring that any graph in
C excludes a fixed minor, we only require that every neigh-
bourhood excludes a minor, depending on its radius. For-
mally, we require that for every radius r there is a graphHr

so that every r-neighbourhood of a vertex of any member of
C excludes Hr. We call classes of graphs with this property
graph classes locally excluding a minor. It is easily seen
that if C is a class of graphs of bounded local tree-width or
C is a class of graphs excluding a fixed minor, then C also
locally excludes a minor. The following is our main result
on locally excluded minor classes.

Theorem 1.1 Let C be a class of graphs locally exclud-
ing a minor. Then deciding first-order properties is fixed-
parameter tractable on C.

Here, the exponent of the polynomial is fixed and neither
depends on the formula used to define the problem nor on
the locally excluded minors.

It is instructive to compare graph classes locally exclud-
ing a minor with other generalisation of graphs of bounded
tree-width. As stated above, they generalise classes of
bounded local tree-width and classes with excluded minors.
However, they are incomparable with classes of bounded
clique-widthh [3], for which first-order model checking is
known to be fixed-parameter tractable and also classes of
graphs of bounded expansion [17], for which the question
of fixed-parameter tractability of first-order logic remains
open.

We also consider classes C of graphs such that there is
a (slowly growing) function f : N → N with the prop-
erty that any G ∈ C exclude a minor of cardinality at most
f(|G|) and show that also on such classes of graphs, first-
order model checking is still fixed-parameter tractable.

Theorem 1.2 There is an unbounded function f : N → N

such that deciding first-order properties is fixed-parameter
tractable on the class Cf of graphs G excluding a clique of
order at most f(|G|).

The method we use to show the theorem has further
important consequences. It is well known that various in-
tractable problems such as k-dominating set and others are
fixed-parameter tractable on classes of graphs excluding a
fixed minor, where k is the parameter. However, it was an
open problem whether the exponent of the polynomials can
be made independent of the excluded minor, i.e. whether
these problems can be solved by a fixed-parameter algo-
rithm where the parameter is both k and the excluded mi-

nor. The second main contribution of this paper is to give a
positive answer to this question.

At the core of many algorithms on excluded minor
classes is a deep decomposition theorem by Robertson and
Seymour which states that any graph excluding a fixed mi-
nor can be decomposed into a tree whose bags are almost
embeddable into a surface that almost has bounded genus.
In [4], Demaine et al. give a polynomial time algorithm for
computing such decompositions. Grohe [12] derived from
Robertson and Seymour’s work a different decomposition
that is often easier to use in the design of algorithms. He
showed that any graph excluding a fixed minor can be de-
composed into a tree whose bags have bounded local tree-
width after removal of a constant number of elements. The
main technical contribution of this paper is to show that we
can compute such a decomposition in time f(|H |) · nO(1),
where H is the excluded minor. We use this to show the
following theorem.

Theorem 1.3 Let C be a class of graphs excluding the fixed
minor H . Then any first-order definable decision problem
can be solved in time f(|H |, |ϕ|) ·nO(1), where f is a com-
putable function, ϕ is the sentence defining the decision
problem, and H is the excluded minor.

This result immediately implies fixed-parameter algo-
rithms for problems such as the k-dominating set problem,
where now the parameter is k and the excluded minor. On
the other hand, the new decomposition can also be used di-
rectly to obtain faster algorithms for a variety of problems
on excluded minor classes.

2 Preliminaries

We denote the set of real numbers by R, the set of in-
tegers by Z, and the set of positive integers (natural num-
bers) by N. For all n ∈ N, by [n] we denote the set
{1, . . . , n}, and for all m,n ∈ Z, by [m,n] we denote the
set {m, . . . , n} (the empty set if m > n). Occasionally, we
use [0, 1] to denote the unit interval {x ∈ R | 0 ≤ x ≤ 1}
instead of the set {0, 1}; it will always be clear from the
context what is meant.

Graphs are undirected and simple. If G is a graph, we
write V (G) for its vertex set and E(G) for its set of edges.
For any set X ⊆ V (G) we write G[X ] for the subgraph of
G induced byX , and we letG\X = G[V (G)\X ]. For a set
F ⊆ E, we writeG−F for the graph (V,E \F ). For every
set S, by K[S] we denote the complete graph with vertex
set S. Furthermore, for every k ∈ N we let Kk = K

[
[k]

]
.

The distance dG(v, w) between two vertices v, w of a
graph G is defined to be the length of the shortest path
from v to w. For nonempty sets X,Y ⊆ V (G), we let
dG(X,Y ) = min{dG(x, y) | x ∈ X, y ∈ Y }, and simi-
larly we define the distance dG(v,X) of a vertex v ∈ V (G)
from a nonempty set X ⊆ V (G). We write ρ(G) :=
minv∈V (G) maxv′∈V (G) d

G(v, v′) for the radius of G.
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For every nonempty set X ⊆ V (G) and every r ≥ 1 we
define the r-neighborhood of X and the r-sphere aroundX
by

NG
r (X) =

{
v ∈ V (G) : dG(v,X) ≤ r

}
,

SG
r (X) =

{
v ∈ V (G) : dG(v,X) = r

}
.

For a vertex v ∈ V (G), we let NG
r (v) = NG

r ({v}) and
SG

r (v) = SG
r ({v}). For a nonempty subgraph H ⊆ G

we let NG
r (H) = NG

r (V (H)) and SG
r (H) = SG

r (V (H)).
For 1-neighborhoods and 1-spheres, we write NG and SG

instead of NG
1 and SG

1 , respectively.
A separation of a graph G is a pair (X,Y ) of subsets of

V (G) such thatG = G[X ]∪G[Y ]. The set X ∩Y is called
the separator of the separation (X,Y ), and its cardinality
is the order of the separation.

We write G � H to denote that G is a minor of H . A
class C of graphs is minor-closed if it is downward closed
under �. C is an excluded minor class if its minor-closure
is not the class of all graphs. Note that every class C of
graphs that excludes a fixed minor excludes a fixed clique as
a minor. For any such class C, the excluded clique number
of C is the least k ∈ N such that Kk 	� G for any G ∈ C.

Theorem 2.1 (Robertson and Seymour [14]) The follow-
ing problem is fixed-parameter tractable:

p-MINOR

Input: GraphsG,H .
Parameter: |V (H)|.

Problem: Decide if H � G.

More precisely, there is a computable function f and an
algorithm that solves the problem in time f(k) · n3, where
k = |V (H)| and n = |V (G)|.

A curve in the plane R
2 is the image of a continuous

function f : [0, 1] → R
2 (here [0, 1] denotes the unit in-

terval of real numbers). The endpoints of the curve are
f(0) and f(1), and its interior is the set of all other points.
The curve is simple if f is one-to-one. A plane graph is a
graph Γ whose vertices are distinct elements of the plane
and whose edges are simple curves such that the endpoints
of each edge are the two vertices incident with it, and the in-
terior of each edge is disjoint from the vertex set and from
all other edges. Abusing notation, we also write Γ to de-
note the point set V (Γ) ∪ ⋃

E(Γ) ⊆ R
2. We say that Γ is

embedded in a subset X ⊆ R
2 if Γ ⊆ X .

3 Tree-Decompositions

A tree decomposition of a graphG is a pairD = (T,B),
where T is a tree and B is a mapping that associates with
every node t ∈ V (T ) a set Bt ⊆ V (G) such that G =⋃

t∈V (T )G[Bt], and for every v ∈ V (G) the set B−1(v) =

{t ∈ V (T ) | v ∈ B(t)} is connected in T . The sets Bt,
for t ∈ V (T ), are called the bags of the decomposition D.
For a subset U ⊆ V (T ) we let B(U) =

⋃
t∈U Bt, and for a

subtree or forest T ′ ⊆ T we let B(T ′) =
⋃

t∈V (T ′)Bt.
With each bag Bt of a tree decomposition (T,B) of a

graph G we associate two graphs:

• The closure of Bt is the graph Bt = G[Bt] ∪⋃
u∈ST (t)K[Bt ∩Bu].

• The companion of Bt is the graph B̂t obtained from
G[Bt] by adding new vertices xu for all u ∈ ST (t)
and edges from xu to all v ∈ Bt ∩Bu.

A tree decomposition is strongly over a class C of graphs
if the closures of all its bags belong to C, and it is weakly
over C if the companions of all its bags belong to C. Strong
and weak decompositions over a class of graphs differ in
how much the interaction between a bag and the rest of the
graph is taken into account within the bag. Strong decom-
positions are better behaved, because the decompositions
are minor monotone, that is, if C is a class of graphs closed
under taking minors and D is the class of all graphs having
a tree decomposition strongly over C, then D is also closed
under taking minors. However, we only get an algorithm
that computes weak decompositions, but fortunately that is
good enough for our purposes.

The proof of the following lemma is straightforward:

Lemma 3.1 Let (T, (Bt)t∈V (T )) be a decomposition of a
graph G, and let t ∈ V (T ). Then for every connected sub-
graph C of G the graph Bt[V (C) ∩ Bt] is either empty or
connected.

For a tree T and an edge e = {t, u} ∈ E(T ), by Ttu and
Tut we denote the two connected components of T − {e}
such that u ∈ V (Ttu) and t ∈ V (Tut). (Thus the indices
determine which way we are looking from e.) The follow-
ing lemma is well-known and easy to prove.

Lemma 3.2 Let (T,B) be a tree decomposition of a graph
G and {t, u} ∈ E(T ). Then

(
B(Ttu), B(Tut)

)
is a separa-

tion of G with separator Bt ∩Bu.

Let D = (T, (Bt)t∈V (T )) be a tree decomposition of
a graph G. For every edge e = {t, u} ∈ E(T ), we call(
B(Ttu), B(Tut)

)
the separation at e. We call the collec-

tion of all such separations the separations of D. Similarly,
we call Bt ∩ Bu the separator at e and the collection of
all these separators the separators of D. The order of the
decomposition D is defined to be the maximum of the car-
dinalities of its separators.

The width of the decomposition is the number
width(D) = max{|Bt| | t ∈ V (T )}− 1. The tree width of
a graph G is the number

tw(G) = min{width(D) | D tree decomposition of G}.
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The local tree width of G is the function ltw(G, · ) defined

by ltw(G, r) = max
{

tw
(
G[NG

r (v)]
)

: v ∈ V (G)
}
. A

class C of graphs has bounded local tree-width if there is a
function f : N → N that dominates the local tree-width of
everyG ∈ C. For all nonnegative integers λ, µ we let

L(λ) =
{
G : ∀H � G ∀r ≥ 0 : ltw(H, r) ≤ λ · r},

L(λ, µ) =
{
G : ∃X ⊆ V (G) s. th.

|X | ≤ µ and
G \X ∈ L(λ)

}
.

The following result is a consequence of Robertson and
Seymour’s deep structure theorem for graphs with excluded
minors proved in [15].

Theorem 3.3 (Grohe [12]) There are computable func-
tions λ, µ : N → N such that for every k ∈ N, every graph
G with Kk 	� G has a tree decomposition that is strongly
over L(λ(k), µ(k)).

The previous theorem can be used to obtain algorithms
for various problems on excluded minor classes. These al-
gorithms usually work along the following lines. Given a
graph with a fixed forbidden minor, the first step is to com-
pute the tree decomposition over a class L(λ, µ). Then, for
each block of the decomposition, the µ elements that need
to be removed to obtain a graph with small local tree-width
are computed. The problem, for instance the dominating set
problem, is then solved on each of these blocks using meth-
ods on minor closed classes with bounded local tree-width.
The results are then extended to the blocks with the µ re-
moved elements put back in and then to the whole tree. For
this approach to work we need to be able to a) compute the
tree decomposition over the class L(λ, µ) and b) compute,
for each block, the µ-elements that need to be removed to
obtain a graph in L(λ).

Polynomial-time algorithms for both steps are known,
but the exponent of the polynomials depend on the excluded
minor, for instance on the number µ of elements that need
to be removed. In the following two sections, we show that
both steps are fixed parameter tractable if the parameter is
the excluded minor.

In the next section we give an algorithm to compute the
decomposition within the desired running time. In the sec-
tion thereafter we show that the second step can be com-
puted within suitable time bounds.

4 Computing tree-decompositions over L(λ, µ)

The goal of this section is to prove the following theorem:

Theorem 4.1 There are computable functions f, λ, µ :
N → N and an algorithm that, given a graph G with
Kk 	� G, computes a tree decomposition ofG that is weakly
over L(λ(k), µ(k)) in time f(k) · nO(1).

Let us first give a high level description of the proof. The
algorithm to compute the tree decompositions is actually
quite simple. Essentially we repeatedly compute small sep-
arators in the input graph G to obtain a clique-sum decom-
position of G of order k. It turns out that we can take any
separator of order k in G, as long as the graph is separated
into two parts which are both not too small, where we can
take “not too small” to mean at least of order k!.

We then associate with any such clique-sum decomposi-
tion a certain tree decomposition and show that it can easily
be computed given the clique-sum decomposition. We call
these k-CMS tree decompositions.

The main and difficult part of the proof consists in show-
ing that these k-CMS tree decompositions actually are tree
decompositions that are weakly over L(λ, µ) for some λ :=
λ(k) and µ := µ(k).

A separation (X,Y ) of order k ≥ 1 of some graph is
substantial if |X |, |Y | > k!. A separation (X,Y ) of or-
der 0 is substantial if |X |, |Y | > 0. (X,Y ) is a minimum
substantial separation if it is substantial, and if there is no
substantial separation of smaller order.

Lemma 4.2 There is an fpt-algorithm with parameter k
that decides whether a given graphG has a substantial sep-
aration of order at most k and computes a minimum sub-
stantial separation if there is one of order at most k.

Proof. We shall design a recursive fpt-algorithm for the fol-
lowing more general problem:

Input: Graph G, sets P,Q ⊆ V (G),
and nonnegative integers k, k′, �,m
with k′ ≤ k and �,m ≤ k!.

Parameter: k.
Problem: Decide whether G has a separation

(X,Y ) of order k′ such thatP ⊆ X
and Q ⊆ Y and |X \ Y | ≥ � and
|Y \ X | ≥ m and compute such a
separation if there is one.

Let G,P,Q, k, k′, �,m be an instance of the problem.
Without loss of generality we may assume that k ≥ 2. Let
n = |V (G)|. If n < k′ + � + m no substantial separator
with the desired properties exists, and the algorithm reports
failure. So suppose that n ≥ k′ + � + m. If k′ = 0, it
is straightforward to check whether the connected compo-
nents ofG can be arranged into a separation with the desired
properties, so we further assume that k′ > 0.

Using standard techniques, the algorithm computes some
separation (X,Y ) of G of order k′ with P ⊆ X and Q ⊆
Y . If no such separation exists, then the algorithm reports
failure. If |X \ Y | ≥ � and |Y \ X | ≥ m, the algorithm
returns the separation (X,Y ). In the following, we assume
without loss of generality that |X \Y | < �. Let S = X∩Y .
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Now for all separations (X1, X2) of G[X ] of order at
most k′ with P ∩X ⊆ X1 andQ∩X ⊆ X2, we recursively
call our algorithm on the instance G′, P ′, Q′, k, k′′, �′,m′

defined as follows: Let T = X1∩X2 and S1 = (S∩X1)\T ,
S2 = (S ∩X2) \ T .Let

• G′ = G[Y ] \ T ,

• k′′ = k′ − |T |,

• P ′ = (P ∪ S1) ∩ V (G′),

• Q′ = (Q ∪ S2) ∩ V (G′),

• �′ = max{0, �− |X1 \ (X2 ∪ S)|} and

• m′ = max{0,m− |X2 \ (X1 ∪ S)|}.

If the recursive call returns a separation (Y1, Y2), then our
algorithm returns the separation (X1 ∪Y1, X2 ∪Y2), which
can easily be seen to have the desired properties. If the re-
cursive calls fail for all (X1, X2), then the algorithm reports
failure.

Let tk(n, k, �,m) denote the worst case running time of
the algorithm in terms of the parameters n, �,m, k, and let
T (n, k, s) = max{t(n, k, �,m) | 0 ≤ �,m ≤ s, � + m =
s}. (The parameter k′ is irrelevant for our running time
analysis.) We get the following recurrence in terms of s:

T (n, k, 0) = nO(1) for n ≥ 0
T (n, k, s) = O(1) for n < s

T (n, k, s) = O
(
2k! · Tk(n, s− 1)

)
for n ≥ s ≥ 1.

To obtain this recurrence, we put a crude upper bound of 2k!

on the number of separations (X1, X2) of G[X ] and ignore
the fact that not only s, but n also decreases in the recursive
calls. Since s ≤ 2k!, this yields an fpt-bound on the running
time. �

Let G be a graph. The graphG is a clique sum of graphs
A,B (we write G = A⊕B) if there is a separation (X,Y )
of G such that A = G[X ] ∪ K[X ∩ Y ] and B = G[Y ] ∪
K[X∩Y ]. We writeG = A⊕kB to indicate thatG = A⊕
B and the order of the corresponding separation is at most
k, and we similarly write G = A ⊕S B to indicate that the
separator is S. A clique-sum decomposition of G is a pair
(T,A) where T is a rooted binary tree and H is a mapping
that associates a graph At with every node t ∈ V (T ) such
that:

1. Ar = G for the root r of T ;

2. At = At1⊕At2 for every node t ∈ V (T ) with children
t1, t2.

The separation corresponding to the clique sum At =
At1 ⊕ At2 is called the separation at node t, and its sep-
arator V (At1 ) ∩ V (At2) is called the separator at node t.
The graphs At for the leaves t of T are called the pieces
of the decomposition. The order of a clique-sum decom-
position (T,A) is the least k such that At = At1 ⊕k At2

for every node t ∈ V (T ) with children t1, t2. The height
of the decomposition is the height of the tree T , that is, the
maximum length of a path from the root of T to a leaf.

A clique-sum decomposition (T,A) is an MS decompo-
sition if all its separations are minimum substantial. It is a
complete MS decomposition of order k (for short: k-CMS
decomposition) if the order of the decomposition is at most
k, and if for all leaves t of T the graphAt has no substantial
separation of order at most k. The proof of the next lemma
follows directly from Lemma 4.2.

Lemma 4.3 There is an fpt-algorithm with parameter k
that computes a k-CMS-decomposition for a given graph
G.

Definition 4.4 Let D = (T,A) be a clique-sum decompo-
sition of a graph G.

A tree decomposition associated with the clique decom-
position D is a tree decompositionD′ = (T ′, A′) such that

• the closures of the bags of D′ are the pieces of D (and
hence the bags of D′ are the vertex sets of the pieces
of D).

• for every node t ∈ V (T ) there is an edge e ∈ E(T ′)
such that for the separation (X,Y ) at t and the sepa-
ration (X ′, Y ′) at e it holds thatX ′∩V (At) = X and
Y ′ ∩ V (At) = Y .

• for every edge e ∈ E(T ′) there is a node t ∈ V (T )
such that for the separation (X,Y ) at t and the sepa-
ration (X ′, Y ′) at e it holds thatX ′∩V (At) = X and
Y ′ ∩ V (At) = Y .

• D and D′ have the same separators and hence the
same order.

Lemma 4.5 For every clique-sum decomposition D =
(T,A) of a graph G there is an associated tree decompo-
sition D′ = (T ′, A′).

Proof. By induction on the height of t ∈ V (T ), we define a
tree T ′

t whose vertex set is the set of all leaves of T that are
in the subtree with root t. Let t ∈ V (T ). If t ∈ V (T ) is a
leaf of T , we let T ′

t be the tree ({t},∅). So suppose that t
has children t1, t2. Let (X1, X2) be the separation at t such
that V (At1) ⊆ X1 and V (At2) ⊆ X2. Let S = X ∩ Y .
As S induces a clique in both At1 and At2 , there must be
leaves u1, u2 of T such that for i = 1, 2 the leaf ui is in the
subtree of T with root ti, and S ⊆ V (Aui).
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Applying the induction hypothesis, let T ′
ti

be the trees
constructed for Tti . Thus ui ∈ V (T ′

ti
). We let T ′

t be the tree
obtained from the disjoint union of T ′

t1 and T ′
t2 by adding

an edge from u1 to u2.
Now let T ′ = T ′

r for the root r of T . For every t ∈ V (T )
we let A′

t = V (At). It is easy to see that (T ′, A′) is a tree
decomposition of G with the desired properties. �

A k-CMS tree decomposition of a graph G is a tree de-
composition associated with a k-CMS decomposition.

Corollary 4.6 There is an fpt-algorithm with parameter k
that computes a k-CMS tree decomposition for a given
graphG.

The next lemma shows that any κ-CMS tree-
decomposition actually is a tree-decomposition weakly over
some L(λ, µ). Due to space limitations, we refer the reader
to the full version of the paper for a proof of the lemma.

Lemma 4.7 Let λ, µ ∈ N and κ = λ + µ + 1. Let G be
a graph that has a tree decomposition over L(λ, µ), and let
D = (T,A) be a κ-CMS tree decomposition of G. Then the
companions of all bags of D are in L(2κ!, µ).

As a consequence we obtain Theorem 4.1, the main the-
orem of this section.

5 Graphs of almost bounded local tree-width

The goal of this section is to prove that there is an fpt-
algorithm that, given a graph in L(λ, µ), computes a set of
at most µ vertices such that the graph obtained by deleting
these vertices is in L(λ′) for a suitable λ′ (Corollary 5.7).
The proof is based on a deep structure theorem (Theorem
5.1) by Robertson and Seymour that essentially says that
any graph either has small tree-width, or contains a large
clique minor, or consists of a large planar wall to which
subgraphs of small tree-width are attached in a not too com-
plicated way together with a bounded number of elements
which may have arbitrary connections to the rest. As the
problem can easily be solved if G has low tree-width and
no graph in L(λ, µ) contains a large clique minor, we only
have to deal with the third case. This, however, requires
some work. Due to space limitations we only sketch the re-
sult here. A full proof can be found in the full version of the
paper.

5.1 Walls and Layouts

An elementary wall of height h ≥ 1 is a graph as illus-
trated in Figure 5.1. A wall of height h is a subdivision of
an elementary wall of height h. The perimeter of a wall is
the boundary cycle (cf. Figure 5.2). A wall in a graph G is
a wall H that is a subgraph of G. Note that, up to home-
omorphisms, walls have unique embeddings in the sphere.
For walls of height 1, this is obvious, and for walls of height
h ≥ 2 this follows from a well known theorem due to Tutte

stating that 3-connected graphs have unique embeddings,
because walls of height ≥ 2 are subdivisons of 3-connected
graphs.
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Figure 5.1. Elementary walls of height 1–4

For a subgraph D of a graph G, we let ∂GD be the set
of all vertices ofD that are incident with an edge in E(G)\
E(D).

In the following, let H be a wall of height at least 2 in
a graph G, and let P be the perimeter of H . Let K ′ be the
unique connected component of G \P that containsH \P .
The graph K = K ′ ∪ P is called the compass of H in G.
A layout of K (with respect to the wall H in G) is a family
(C,D1, . . . , Dm) of connected subgraphs of K such that:

1. K = C ∪D1 ∪ . . . ∪D�;

2. H ⊆ C, and there is no separation (X,Y ) of C of
order ≤ 3 with V (H) ⊆ X and Y \X 	= ∅;

3. ∂GDi ⊆ V (C) for all i ∈ [m];

4. |∂GDi| ≤ 3 for all i ∈ [m];

5. ∂GDi 	= ∂GDj for all i 	= j ∈ [m].

We let C be the graph obtained from C by adding new ver-
tices d1, . . . , dm and, for 1 ≤ i ≤ m, edges between di

and the vertices in ∂GDi and edges between all vertices in
∂GDi. Hence, for each i ∈ [m] the vertex di together with
the (at most 3) vertices in ∂GDi form a clique. We call C
the core of the layout and D1, . . . , Dm its extensions. The
layout (C,D1, . . . , Dm) is flat if its core C is planar. Note
that this implies that the core has an embedding in the plane
that extends the “standard planar embedding” of the wall H
(as shown in Figures 5.1 and 5.2), because the wall H has a
unique embedding into the sphere. We call the wall H flat
(in G) if the compass of H has a flat layout.

Theorem 5.1 (Robertson and Seymour [14]) There are
computable functions f, g : N

2 → N and an algorithm
A that, given a graph G and nonnegative integers k, h,
computes either
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1. a tree decomposition of G of width f(k, h), or

2. a Kk-minor of G, or

3. a subset X ⊆ V (G) with |X | < (
k
2

)
, a wall H of

height h in G \X , and a flat layout (C,D1, . . . , Dm)
of the compass ofH inG\X such that the tree width of
each of the extensions D1, . . . , Dm is at most f(k, h).

Furthermore, the running time of the algorithm is bounded
by g(k, h)·n2, where n is the number of vertices of the input
graphG.

Proof. This is (essentially) Lemma (9.8) of [14]. Concern-
ing the uniformity, see the remarks at the end of [14] (on
page 109). �

5.2 Algorithmic Aspects

We now prove the main algorithmic result of this section.
It is based on Theorem 5.1 and the following two lemmas,
whose proofs can be found in the full version of the paper.

For every � ≥ 1, the (�×�)-pyramid is the graph obtained
from the (� × �)-grid by adding a new vertex a (the apex)
and edges from a to all vertices of the grid. For every λ ≥ 1,
we let

K(λ) =
{
G | the (λ+ 1) × (λ+ 1)-pyramid

is not a minor of G

}
,

K(λ, µ) =
{
G | ∃X ⊆ V (G) : |X | ≤ µ

and G \X ∈ K(λ)
}
.

The bricks of an elementary wall are the cycles of length
6, and the bricks of a wall are the subdivisions of the bricks
of the corresponding elementary wall. Two bricks are adja-
cent if they are distinct and have a nonempty intersection.
We can assign coordinates to the bricks of a wall as shown
in Figure 5.2. In the folllowing, we always assume that we
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(4, 1) (4, 2) (4, 3) (4, 4)

Figure 5.2. The coordinates of the bricks of a wall

have fixed the coordinates in our walls. Let H be a wall.
For 1 ≤ i, j ≤ h, letBij denote the brick ofH with coordi-
nates (i, j). A subgraph H ′ ⊆ H is a subwall if there exist
h′ ≤ h and i, j ≤ h− h′ such that

H ′ =
⋃

i+1≤i′≤i+h′

j+1≤j′≤j+h′

Bi′j′ .

Hence a subwall consists of consecutive bricks both in hor-
izontal and vertical direction.

Lemma 5.2 There is a computable function f : N
4 → N

such that the following holds for all h′, κ, λ, µ ∈ N: Let
G ∈ K(λ, µ), X ⊆ V (G) with |X | ≤ κ, and let H be a flat
wall of height at least f(h′, κ, λ, µ) in G \X . Then

1. either there is a vertex x ∈ X such that G \ {x} ∈
K(λ, µ− 1),

2. or H has a subwall H ′ of height h′ such that the com-
pass of H ′ in G has an empty intersection with X .

Furthermore, there is an algorithm with running time
f(h′, κ, λ, µ)·nO(1) that tests which of the two cases applies
and either computes the subwall H ′ or the element x ∈ X
so that G \ {x} ∈ K(λ, µ − 1).

Lemma 5.3 There is a computable function f : N
2 →

N such that for all λ, µ ≥ 1 the following holds: Let
G be a graph, H a wall of height f(λ, µ) in G, and
(C,D1, . . . , Dm) be a flat layout of the compass K of H
such that every extension Di has tree width at most λ − 4.
Furthermore, let z be a vertex of the central brick of H .
Then

G ∈ K(λ, µ) ↔ G \ {z} ∈ K(λ, µ)

and if X ⊆ V (G) \ {z} is such that |X | ≤ µ and G \ (X ∪
{z}) ∈ K(λ) then G \X ∈ K(λ).

We are now ready to prove the main result of this section.

Theorem 5.4 There are computable functions f, g : N
2 →

N and an algorithm that, given a graph G ∈ K(λ, µ),
computes a set X ⊆ V (G) with |X | ≤ µ such that
G \X ∈ K(g(λ, µ)) in time f(λ, µ) · nO(1).

Proof. Let k := (λ+1)2 +µ+2 and let h be “big enough”,
so that the recursive calls to the algorithms work. (It is
easy but tedious to compute the correct value for h.) By
Theorem 5.1, G either has tree-width at most f(k, h), or
contains a Kk-minor, or there is a subset X ⊆ V (G) with
|X | < (

k
2

)
, a wall H of height h in G \X , and a flat layout

(C,D1, . . . , Dm) of the compass ofH inG\X such that the
tree width of each of the extensions D1, . . . , Dm is at most
f(k, h). As no graph in K(λ, µ) can contain K(λ+1)2+µ+2

as a minor and the problem can easily be solved for graphs
of bounded tree-width, we only have to deal with Case 3).
In this case, the algorithm in Theorem 5.1 actually returns
the wall and its layout. We can now apply the algorithm
from Lemma 5.2. It either returns an element x ∈ X so
that G \ {x} ∈ K(λ, µ − 1) or a subwall H ′ whose com-
pass has an empty intersection with X . In the first case we
have found one of the µ elements and repeat the process on
the graph G \ {x}. In the latter case, we call the algorithm
recursively on the smaller graph G \ {z} for some vertex z
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of the central brick of H ′. By Lemma 5.3, G ∈ K(λ, µ)
if, and only if, G \ {z} ∈ K(λ, µ) and, in addition, if the
recursive call to the algorithm on G \ {z} returns a set X
then, by Lemma 5.3 again, G \X ∈ K(λ). �

The previous theorem gives an fpt algorithm to compute,
given a graph G ∈ K(λ, µ), a set X of vertices with |X | ≤
µ such that G \X ∈ K(λ). However, we aim at computing
for a given graph G ∈ L(λ, µ) a set X so that G \ X ∈
L(λ). The following lemma by Eppstein [6] and Demaine
and Hajiaghayi [5] solves this problem.

Lemma 5.5 There is a computable function f : N → N

such that for all λ ∈ N: L(λ) ⊆ K(λ) ⊆ L(f(λ)).

Corollary 5.6 There is a computable function f : N →
N such that for all λ, µ ∈ N: L(λ, µ) ⊆ K(λ, µ) ⊆
L(f(λ), µ).

Corollary 5.7 There are computable functions f, g : N
2 →

N and an algorithm that, given a graph G ∈ L(λ, µ),
computes a set X ⊆ V (G) with |X | ≤ µ such that
G \X ∈ L(g(λ, µ)) in time f(λ, µ) · nO(1).

6 FO-model checking on graphs with excluded minors

In [7], Flum and Grohe show that the model-checking
problem for first-order logic is fixed-parameter tractable
with parameter ϕ on any class of graphs with an ex-
cluded minor. In their proof, Flum and Grohe use the
tree-decomposition of graphs excluding a fixed minor guar-
anteed by Theorem 3.3. The proof can easily be modi-
fied to work with tree-decompositions that are weakly over
L(λ, µ). As a consequence, we immediately get the fol-
lowing theorem.

Theorem 6.1 The following problem

FO-MODEL-CHECKING

Input: Graphs G,H such that H 	� G and
ϕ ∈ FO.

Parameter: |ϕ| + |H |.
Problem: Decide whether G |= ϕ.

is fixed-parameter tractable.

The theorem implies that problems such as the domi-
nating or independent set problem become fixed-parameter
tractable when the parameter is the excluded minor and the
size of the solution, e.g. the size of the independent set. This
improves over previously known results, where the minor
was not part of the parameter and determined the exponent
of the polynomials.

Another consequence of the methods developed in the
previous sections is the following result. For any function
f : N → N, let Cf be the class of graphs G such that the
excluded clique number of G is at most f(|G|).

Theorem 6.2 There is an unbounded function f : N →
N such that first-order model checking is fixed-parameter
tractable on Cf .

The algorithms presented in the previous sections de-
pend in various ways on the excluded minorH . For instance
H determines the numbers λ and µ used throughout the sec-
tions. We therefore refrain from giving expicit bounds on
the function f whose existence is proved in Theorem 6.2.

7 Locally Excluding a Minor

In [7] Flum and Grohe prove that first-order model
checking is fixed-parameter tractable on any class of graphs
with an excluded minor. In the same year, Frick and Grohe
[10] established the analogous result for graph classes with
bounded local tree-width. As the two structural properties
are incomparable, i.e. there are classes of graphs excluding
a minor but with unbounded local tree-width and vice-versa,
it is a natural question, whether there is a common gener-
alisation of excluded minors and bounded local tree-width
on which first-order model checking is still fixed-parameter
tractable. In this section we present such a generalisation.

7.1 Definition

Definition 7.1 A class C of graphs locally excludes a minor
if for every r ∈ N there is a graph Hr so that if G ∈ C and
v ∈ V (G) then Hr 	� NG

r (v), i.e. Hr is not a minor of the
r-neighbourhood of v in G.

It is easily seen that any class of graphs with bounded
local tree-width locally excludes a minor as does any class
of graphs excluding a fixed minor.

Proposition 7.2 If C is a class of graphs with

• bounded local tree-width or

• excluding a fixed minor,

then C locally excludes a minor. The converse is not true,
i.e. there are classes of graphs locally excluding a minor
with local tree-width or whose minor closure is the class of
all graphs.

Note, however, that the concept of excluding slowly
growing minors as we considered in Section 6 is incompa-
rable to locally excluding a minor. In [17], Nešetřil and
de Mendez introduce the concept of graph classes with
bounded expansion. This also generalises the concept of ex-
cluded minors. However, the concepts of locally excluded
minors and bounded expansion are mutually incomparable,
as there are examples separating the two concepts in either
direction.
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7.2 First-Order Model-Checking

We show next that first-order model checking is fixed-
parameter tractable on any class of graphs locally excluding
a minor.

Gaifman [11] showed that any first-order sentence is
equivalent to a Boolean combination of basic-local sen-
tences. We recall the definition. For every r ≥ 0 we will
use formulas d(x, y) ≤ r and d(x, y) > r to say that the
distance between x and y is at most r and greater than
r, respectively. Clearly, these are easily first-order defin-
able. If ϕ(x) is a first-order formula, then ϕNr(x)(x) is
the formula obtained from ϕ by relativising the quantifiers
in ϕ to the r-neighbourhood of x, i.e. replacing ∀yψ by
∀y(d(x, y) ≤ r → ψ) and ∃yψ by ∃y(d(x, y) ≤ r ∧ ψ). A
formula ψ(x) of the form ϕNr(x)(x) is called r-local. The
essential property of an r-local formula is that its truth value
at a vertex x in G only depends on the r-neighbourhood of
x in G.

Theorem 7.3 (Gaifman [11]) Every first-order sentence is
equivalent to a Boolean combination of basic-local sen-
tences, i.e. a Boolean combination of sentences of the form

∃x1 . . . ∃xk

( ∧
1≤i<j≤k

d(xi, xj) > 2r ∧
∧

1≤i≤k

ϑ(xi)
)
,

for suitable r, k > 0 and an r-local formula ϑ(x).

We are now ready to prove the main result of this section.

Theorem 7.4 Let C be a class of graphs locally excluding
a minor. Then the following problem

FO-MODELCHECKING ON C
Input: G ∈ C, ϕ ∈ FO.

Parameter: |ϕ|.
Problem: Decide G |= ϕ.

is fixed-parameter tractable.

Proof. Let ϕ ∈ FO be a sentence. By Gaifman’s theorem
7.3, ϕ is equivalent to a Boolean combination of basic local
sentences. Hence, to prove the theorem, it suffices to only
consider the case where ϕ is a sentence of the form

∃x1 . . . ∃xk

∧
1≤i<j≤k

d(xi, xj) > 2 · r ∧
∧

1≤i≤k

ϑ(xi)

for r, k ≥ 1 and an r-local formula ϑ.
As C locally excludes a minor, there is for every s ∈

N a graph Hs such that Hs is excluded in every s-
neighbourhood of vertices in any member of C. Let G ∈ C.

The first step of the evaluation algorithm is to compute
the set P ⊆ V (G) of vertices v such thatG[Nr(v)] |= ϑ(v).
As Hr 	� G[Nr(v)], Theorem 6.1 implies that there is a

computable function f : N × N → N such that checking
whetherG[Nr(v)] |= ϑ(v) can be done in time f(|Hr|, |ϑ|)·
|Nr(v)|O(1).

It remains to find a set of k elements of P whose dis-
tance is pairwise > 2r. For this, we proceed as follows.
Set Q := P and set l := 0. While Q 	= ∅ and l < k,
choose an arbitrary element al ∈ Q, increase l to l + 1 and
remove NG

r (al) from Q. If this process stops with l = k,
we can accept, as then {a1, . . . , ak} is the required set. If
l = 0, then P := ∅ and therefore ϑ is false in every r-
neighbourhood of a vertex in G and hence G 	|= ϕ. Finally,
if 0 < l < k, we know that every v ∈ P is contained in
the 2r-neighbourhood of some ai, 1 ≤ i ≤ l. Let N :=
G

[
NG

2r

({a1, . . . , al}
)]

. By construction, the radius of N is
at most 2r · l and hence H := H2rl 	� N . By Theorem 6.1,
there is a function g : N × N → N such that we can test
whether (N,P ) |= ψ in time g(|H |, |ψ|) · |N |O(1), where
ψ := ∃x1 . . . ∃xk

( ∧k
i=1 Pxi ∧

∧
1≤i<j≤k d(xi, xj) > 2r

)
.

If (N,P ) |= ψ, then there is a set of k vertices in P pairwise
far apart and we can accept. Otherwise we reject.

Note that k and hence |ψ|, |Hr|, and |H | only depend on
ϕ and hence are bounded by the parameter |ϕ|. The algo-
rithm correctly determines whether G |= ϕ and has a total
running time of h(|ϕ|) · |G|O(1), where h : N → N is a
function that dominates the functions f and g above. �

As an immediate consequence of this we obtain that on
classes C locally excluding a minor the following problems
are fixed parameter tractable with parameter H : For every
fixed graph H decide whether for a graph G ∈ C: H has
a homomorphism to G; H is a subgraph of G; H is an in-
duced subgraph of G.

Furthermore, problems such as independent or dominat-
ing set and many others are fixed-parameter tractable on any
class of graphs locally excluding a minor.

8 Conclusions

We introduce the notion of graph classes locally exclud-
ing a minor and prove that deciding first-order properties of
such classes is fixed-parameter tractable. The result is par-
ticularly interesting because it unifies incomparable previ-
ous results for classes of bounded local tree width [10] and
for classes with excluded minors [7] in a natural way. But
the result is considerably stronger than just a combination
of those two.

To prove the result, we need to strengthen the fixed-
parameter tractability result for classes with excluded mi-
nors [7] in such a way that the size of the excluded mi-
nor can now be taken as a parameter in the running time
analysis. This implies fixed-parameter tractability results
for problems such as dominating set and independent set,
now parameterized by the size of the desired solution and
the size of the excluded minor. Even though both problems
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have been intensely studied on restricted graph classes in-
cluding classes with excluded minors (see e.g. [13, 1, 9, 8]
and the references there), the existence of such algorithms
was not known before.

Let us finally remark that algorithmic meta theorems like
ours are not meant to be practical, as usually the depen-
dence of the running time on the formula size is nonele-
mentary and the hidden constants are enormous. One rea-
son for the interest in such results is that they often provide
an easy way to quickly check if a concrete problem is fixed-
parameter tractable (see our remarks on dominating set and
independent set above). The more significant reason for our
interest in such meta theorems is that they yield a better un-
derstanding of the limits of general algorithmic techniques
and, in some sense, the limits of tractability. In particular,
they clarify the interactions between logic and combinato-
rial structure, which we believe to be fundamental for com-
putational complexity.
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