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Abstract

Let ϕ(X) be a first-order formula in the language of
graphs that has a free set variable X, and assume that X
only occurs positively in ϕ(X). Then a natural minimisation
problem associated with ϕ(X) is to find, in a given graph
G, a vertex set S of minimum size such that G satisfies ϕ(S).
Similarly, if X only occurs negatively in ϕ(X), then ϕ(X)
defines a maximisation problem. Many well-known optimi-
sation problems are first-order definable in this sense, for
example, MINIMUM DOMINATING SET or MAXIMUM IN-
DEPENDENT SET.

We prove that for each class C of graphs with excluded
minors, in particular for each class of planar graphs, the
restriction of a first-order definable optimisation problem to
the class C has a polynomial time approximation scheme.

A crucial building block of the proof of this approxima-
bility result is a version of Gaifman’s locality theorem for
formulas positive in a set variable. This result may be of
independent interest.

1. Introduction

It has long been known that many combinatorial optimisa-
tion problems that are hard to approximate in general have
polynomial time approximation schemes (PTASs) on pla-
nar graphs, that is, they can be approximated to any given
ratio in polynomial time. Among these problems are MINI-
MUM DOMINATING SET, MINIMUM VERTEX COVER, and
MAXIMUM INDEPENDENT SET. The two main techniques
for proving such approximation results on planar graphs
are Lipton and Tarjan’s planar separator theorem [20] and
Baker’s layerwise decomposition technique [4]. Both tech-
niques have been generalised from planar graphs to more
general graph classes such as graphs of bounded genus and
ultimately to arbitrary classes of graphs with excluded mi-
nors [1, 10, 14, 7]. Recall that a minor of a graph G is a
graph that can be obtained from a subgraph of G by con-
tracting edges. We say that a class C of graphs has an ex-
cluded minor if there is some graph H such that H is not a

minor of any graph in G. For example, the complete graph
on five vertices, K5, is an excluded minor of the class of
all planar graphs. Most approximation results on general
classes of graphs with excluded minors make heavy use of
Robertson and Seymour’s structure theory for graphs with
excluded minors [23]. In a recent paper, Demaine, Ha-
jiaghayi, and Kawarabayashi [7] have proved algorithmic
versions of some of the central parts of this theory and use
these to obtain several new approximability results.

What kind of problems are approximable on graphs with
excluded minors? Demaine et al. [7] gave a general cri-
terion that is met by most problems known to be approx-
imable, but is somewhat unsatisfactory because it describes
when a certain proof technique works rather than describing
a “natural” class of problems. On planar graphs, Khanna
and Motwani [17] tried a more systematic “syntactic” ap-
proach: They defined three “generic” problems based on
propositional logic and showed that the planar versions of
these problems have PTASs. Then they showed that most
problems which at that time were known to have PTASs
can easily be reduced to one of these three problems. In
this paper, we carry out a different logic based approach
towards identifying a large class of problems that have
PTASs on classes of graphs with excluded minors. Our
approach, in contrast to that of Khanna and Motwani, is
based on first-order logic: Let ϕ(X) be a first-order for-
mula in the language of graphs that has a free set vari-
able X , and assume that X only occurs positively in ϕ(X).
Then a natural minimisation problem MINϕ(X) associated
with ϕ(X) is to find, in a given graph G, a vertex set S
of minimum size such that G satisfies ϕ(S). Many nat-
ural minimisation problems can be described as problems
MINϕ(X) for a suitable formula ϕ(X). For example, the
MINIMUM DOMINATING SET problem is MINϕ(X) for the
formula ϕ(X) = ∀x(Xx ∨ ∃y(Xy ∧ Exy)). The condition
that ϕ(X) be positive in X is imposed to guarantee mono-
tonicity, which is necessary to exclude pathological exam-
ples (see Example 11). Similarly, if X only occurs nega-
tively in a formula ψ(X) then this formula defines a natu-
ral maximisation problem MAXψ(X). For example, MAX-
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IMUM INDEPENDENT SET is MAXψ(X) for the formula
ψ(X)= ∀x∀y(¬Xx∨¬Xy∨¬Exy). Papadimitriou and Yan-
nakakis [22] considered similar syntactically defined op-
timisation problems to introduce their well-known class
MAXSNP; a more detailed analysis of such problems was
later carried out by Kolaitis and Thakur [18, 19]. The syn-
tactical problems studied by these authors can be directly
translated to problems of the form MAXϕ(X) or MINϕ(X),
where ϕ is a formula of first-order or existential second-
order logic and X a (not necessarily unary) relation variable.

We call problems of the form MINϕ(X) or MAXϕ(X)
first-order definable optimisation problems. For a class C
of graphs, we write MINϕ(X)(C ) and MAXϕ(X)(C ) to de-
note the restriction of MINϕ(X) (MAXϕ(X), respectively)
to instances from C . Our main result states that the re-
strictions of first-order definable optimisation problems to
graphs with excluded minors have PTASs. More precisely:

Theorem 1. Let ϕ(X) be a first-order formula in the lan-
guage of graphs that is positive in a set variable X, and
let C be a class of graphs with an excluded minor. Then
MINϕ(X)(C ) has a PTAS.

Similarly, if ϕ(X) is negative in X, then MAXϕ(X)(C )
has a PTAS.

In fact, we prove a stronger result; we actually get an
EPTAS (efficient polynomial time approximation scheme,
cf. [11, 21]). This means that the running time of the ε-
approximation algorithm is f (ε) · nO(1) for some function
f . Let us remark that the statement of Theorem 1 does not
extend, for example, to monadic second-order logic (cf. Ex-
ample 11).

We see our result as an algorithmic meta theorem in the
style of Courcelle’s theorem [6]. It gives a uniform and nat-
ural explanation for a large family of algorithmic results,
and for many problems it gives a quick way of proving that
they have a PTAS on graphs with excluded minors. Con-
sider, for example, the MINIMUM DISTANCE d DOMINAT-
ING SET problem (for a constant d ≥ 1), which asks for a
minimum set S of vertices of a graph such that each vertex is
within distance d of the set S. It is easy to find a first-order
formula ϕ(X) such that this problem is MINϕ(X). Thus it
has a PTAS on all classes with excluded minors. This was
not known before, and the problem also does not meet De-
maine et al.’s general approximability criterion mentioned
above. Our theorem can easily be extended from graphs to
arbitrary relational structures and also to weighted versions
of the problems, but we defer the details of these general-
isations to the full version of this paper. Even with these
generalisations, we do not claim that our theorem captures
all problems that have PTASs on classes of graphs with ex-
cluded minors. Indeed, it is easy to find problems that meet
Demaine et al.’s approximability criterion, but are not first-
order definable in our sense. Even on planar graphs, our

approach seems incomparable with Khanna and Motwani’s
in that there is no obvious translation of our syntactically
defined problems into theirs or vice versa. An important dif-
ference between our result and those of Demaine et al. and
Khanna and Motwani is that we obtain an EPTAS. For the
problem PLANAR TMIN, for which Khanna and Motwani
obtained a PTAS, it can actually be proved that, under rea-
sonable complexity theoretic assumptions, it does not have
an EPTAS [5, 21].

The proof of Theorem 1 has two parts: the second, algo-
rithmic, part builds on techniques that were first applied in
[14] to classes of graphs with excluded minors and gener-
alise Baker’s layerwise decomposition technique [4]. How-
ever, the techniques have to be generalised considerably to
handle the very general class of problems we consider here.
The crucial property of first-order definable optimisation
problems that our algorithms exploit is the locality of first-
order logic. In the first part of the proof of Theorem 1, we
prove a “positive version” of Gaifman’s locality theorem, a
result which may be of independent interest:

Theorem 2. Let ϕ(X) be a first-order sentence that is posi-
tive in the set variable X. Then there is a Boolean combina-
tion ψ(X) of basic local sentences so that ψ(X) is positive
in X and equivalent to ϕ(X).

The necessary definitions will be given later. Rather un-
expectedly, the proof of this theorem proved to be fairly dif-
ficult, as we were unable to adapt the known proofs of Gaif-
man’s theorem [12] (see [9, 16] for alternative proofs) or of
its existential version [15]. Our proof of the positive ver-
sion uses ideas from [3] to analyse the spatial distribution
of the types occurring in a structure, and it uses a lemma
from [15] to get from a nonuniform to a uniform version of
the theorem, but the core combinatorial argument is new.

2. Preliminaries

A vocabulary is a finite set of relation symbols and constant
symbols. Associated with every relation symbol R is a pos-
itive integer called the arity of R. In the following, τ always
denotes a vocabulary. τ is called relational if it does not
contain any constant symbol.

A τ-structure A consists of a non-empty set A, called the
universe of A , an element cA ∈ A for each constant symbol
c∈ τ , and a relation RA ⊆ Ar for each r-ary relation symbol
R ∈ τ .

The Gaifman graph of a τ-structure A is the (undirected,
loop-free) graph GA with vertex set A and an edge between
two vertices a,b ∈ A iff there exists an R ∈ τ and a tuple
(a1, . . ,ar) ∈ RA such that a,b ∈ {a1, . . ,ar}.

The distance between two elements a,b ∈ A in A , de-
noted by distA (a,b), is defined to be the length (that is,
number of edges) of the shortest path from a to b in the Gaif-
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man graph of A . For r ≥ 0 and a ∈ A, the r-neighbourhood
of a in A is the set NA

r (a) = {b ∈ A : distA (a,b) ≤ r}.
The induced substructure of A with universe NA

r (a) is
denoted by N A

r (a). We omit superscripts A if A is clear
from the context.

We write FO(τ) to denote the class of all formulae in
first-order logic over the vocabulary τ , and we write qr(ϕ)
to denote the quantifier rank of an FO(τ)-formula ϕ . If X
is a unary relation symbol not in τ , then an occurrence of
X in an FO(τ ∪{X})-formula ϕ is said to be positive if it
is within the scope of an even number of negations and it
is said to be negative otherwise. We say that the formula ϕ
is positive in X (or X-positive) if all occurrences of X in ϕ
are positive. Similarly, we say that ϕ is negative in X (or
X-negative) if all occurrences of X in ϕ are negative.

For every r ≥ 0, we let dist≤r(x,y) be an FO(τ)-formula
expressing that the distance between x and y is at most
r. We often write dist(x,y) ≤ r instead of dist≤r(x,y) and
dist(x,y) > r or dist>r(x,y) instead of ¬dist≤r(x,y).

The r-relativisation of a formula ϕ(x) is the formula
ϕr(x) obtained from ϕ by first renaming all bound variables
so that they are different from x and then replacing each sub-
formula of the form ∃yψ by ∃y

(
dist(x,y)≤ r∧ψ

)
and each

subformula of the form ∀yψ by ∀y
(
dist(x,y) ≤ r → ψ

)
.

Clearly, the r-relativisation of every formula ϕ(x) is r-local,
that is, for every τ-structure A and every a ∈ A we have
A |= ϕr(a) ⇐⇒ Nr(a) |= ϕr(a). Note that we also have
A |= ϕr(a) ⇐⇒ Nr(a) |= ϕ(a).

A (symmetric) basic local sentence (with parameters
k,r,q) is a sentence of the form

∃x1 · · ·∃xk

( ∧
1≤i< j≤k

dist(xi,x j) > 2r ∧
∧

1≤i≤k

ψ(xi)
)
,

where k,r ≥ 1 and ψ(x) is r-local and of quantifier rank q
(here, the adjective “symmetric” emphasises that the same
formula ψ is used for each of the variables xi).

Theorem 3 (Gaifman [12]). Every first-order sentence
over a relational vocabulary is equivalent to a Boolean
combination of basic local sentences.

3. A positive locality theorem

In this section we present a proof of the version of Gaif-
man’s theorem for formulae positive in a unary relation
symbol, stated in Theorem 2. From now on, fix a rela-
tional vocabulary τ and a unary relation symbol X �∈ τ . For
proving Theorem 2 we adopt the approach of [15] of using
asymmetric basic local formulae in an intermediate step.

An asymmetric basic local sentence with parameters
k,κ ,r,q is a sentence of the form

∃x1 . . .∃xk

( ∧
1≤i< j≤k

dist(xi,x j) > κ ·2r∧
k∧

i=1

ψi(xi)
)
,

where ψi(xi) is r-local and of quantifier rank at most q. We
denote the set of all asymmetric basic local sentences with
parameters k′ ≤ k, κ , r′ ≤ r, and q′ ≤ q by ABL(k,κ ,r,q).
By ABL+(k,κ ,r,q) (respectively, ABL−(k,κ ,r,q)) we de-
note the set of all sentences in ABL(k,κ ,r,q) that are posi-
tive (respectively, negative) in X .

Similarly, we write BL(k,r,q), BL+(k,r,q), and
BL−(k,r,q) for, respectively, the set of all, all X-positive,
and all X-negative symmetric basic local sentences with pa-
rameters k′ ≤ k, r′ ≤ r, and q′ ≤ q.

For a sentence ϕ ∈ ABL(k,κ ,r,q) of the form

∃x1 . . .∃xk

( ∧
1≤i< j≤k

dist(xi,x j) > κ ·2r∧
k∧

i=1

ψi(xi)
)

we write ϕ[1/κ ] to denote the sentence

∃x1 . . .∃xk

( ∧
1≤i< j≤k

dist(xi,x j) > 2r∧
k∧

i=1

ψi(xi)
)

(in particular, ϕ[1/κ ] ∈ ABL(k,1,r,q)).
The two major steps in proving Theorem 2 consist of

showing the following two technical lemmas:

Lemma 4. Let K,Q,R ≥ 2 and let κ := 2K2−1. Suppose
A and B are τ ∪{X}-structures such that every X-positive
(resp. X-negative) basic local sentence in BL(K,κ ·2R,Q)
that holds in A also holds in B. Then we have for every
X-positive (resp. X-negative) sentence ϕ ∈ABL(K,κ ,R,Q)
that A |= ϕ implies B |= ϕ[1/κ ].

We omit the proof of Lemma 4 since it is virtually identical
to the proof of Lemma 4 in [15]. We will use Lemma 4 as
an intermediate step in proving the following:

Lemma 5. For every q ≥ 0 there exist K,R,Q ≥ 2 such that
for all τ ∪{X}-structures A ,B the following holds: If for
every ϕ ∈ BL+(K,R,Q), A |= ϕ implies B |= ϕ , and for
every ϕ ∈ BL−(K,R,Q), B |= ϕ implies A |= ϕ , then we
have for every X-positive FO(τ ∪{X})-sentence ζ of quan-
tifier rank at most q that A |= ζ implies B |= ζ .

Note that by using Lemma 5 one easily obtains a proof of
Theorem 2 (details of this will be given in the full version
of the paper).

The remainder of Section 3 is devoted to the proof of
Lemma 5. To prove Lemma 5, we use the following “X-
positive” variant of the classical Ehrenfeucht-Fraı̈ssé game
(EF-game, for short) for first-order logic.

3.1. The X-positive EF-game.
The rules of this game are the same as for the “classical”
EF-game for first-order logic (cf., e.g. [9]), the winning
condition, however, is slightly different. To be precise, the
“X-positive” EF-game is defined as follows:
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Let q be a positive integer. The q-round X-positive EF-
game is played by two players, the spoiler and the dupli-
cator, on two τ ∪{X}-structures A and B. The spoiler’s
intention is to show a difference between the two structures,
while the duplicator tries to make them look alike. There
is a fixed number q of rounds. Each round i ∈ {1, . . ,q}
is played as follows: First, the spoiler chooses either an
element ai in A or an element bi in B. Next, the dupli-
cator chooses an element in the other structure. I.e., she
chooses an element bi in B if the spoiler’s move was in A,
or an element ai in A if the spoiler’s move was in B. After
q rounds the game ends with elements a1, . . ,aq chosen in
A and b1, . . ,bq chosen in B. The duplicator has won the
game iff the mapping f defined via

(
a j �→ b j

)
j=1,. . ,q is an

X-positive partial isomorphism from A to B, i.e.,

(i) for any tuple of elements (v1, . . ,vs) within the domain
of f and any relation symbol R ∈ τ of arity s, we have(
v1, . . ,vs

) ∈ RA ⇐⇒ (
f (v1), . . , f (vs)

) ∈ RB, and

(ii) for any element v within the domain of f and for the
particular unary relation symbol X , we have v ∈ XA

=⇒ f (v) ∈ XB.

Otherwise, the spoiler has won the game. Since the game
is finite, one of the two players must have a winning strat-
egy, i.e., he or she can always win the game, no matter how
the other player plays. We write A �X-pos

q B to denote
that the duplicator has a winning strategy in the q-round
X-positive EF-game on A and B. Note that the relation
defined by �X-pos on the class of all τ ∪{X}-structures is
reflexive and transitive, but not symmetric.

The fundamental use of the q-round X-positive EF-game
comes from the fact that it characterises definability by X-
positive first-order sentences in the following sense:

Proposition 6. Let A and B be τ ∪{X}-structures and let
q be a positive integer. If A �X-pos

q B, then we have for
every X-positive FO(τ ∪{X})-sentence ζ of quantifier rank
at most q, that A |= ζ implies B |= ζ .

The proof is straightforward.
Now, note that Lemma 5 is an immediate consequence

of Proposition 6 and the following lemma.

Lemma 7. For every q ≥ 0 there exist K,R,Q ≥ 2 such
that for all τ ∪ {X}-structures A ,B: If for every ϕ ∈
BL+(K,R,Q), A |= ϕ implies B |= ϕ , and for every ϕ ∈
BL−(K,R,Q), B |= ϕ implies A |= ϕ , then A �X-pos

q B.

Subsection 3.2 below is devoted to the proof of Lemma 7.

3.2. Proof of Lemma 7.
Before describing the duplicator’s winning strategy we need
some preparation.

Let r,q ≥ 0, A a τ ∪{X}-structure and a ∈ A. The full
(r,q)-type of a in A is the set full-(r,q)-typeA (a) :=

{
ϕr(x) | ϕ ∈ FO(τ ∪{X}), qr(ϕ) ≤ q, A |= ϕr(a)

}
.

Note that there is a formula

θ(r,q,A ,a)(x) :=
∧

ϕ∈full-(r,q)-typeA (a)

ϕ(x),

defining an element’s full (r,q)-type and for all τ ∪ {X}-
structures B and all b ∈ B we have B |= θ(r,q,A ,a)(b) ⇐⇒
full-(r,q)-typeB(b) = full-(r,q)-typeA (a). Also, all the for-
mulae θ(r,q,A ,a) are r-local and of quantifier rank at most q̃
(where q̃ ≥ q only depends on r, q, and τ ∪ {X}). In the
following, we often identify the types with these formulae.
We denote the set of all full (r,q)-types by Θ(r,q).
A type θ (x) is realised in a structure A if there is an ele-
ment a ∈ A such that A |= θ (a). The element a is called a
realisation of θ in A .

Let A be a structure, let C ⊆ A, let θ ∈ Θ(r,q) be a full
(r,q)-type, and let R,K ≥ 0. We say that

θ is R-covered by C

if for all realisations a of θ in A we have a ∈ NR(C). We
say that

θ is (R,K)-free over C

if there are realisations a1, . . . ,aK of θ in A such that ai �∈
NR(C) for all i ∈ {1, . . ,K} and dist(ai,a j) > R for all i, j ∈
{1, . . ,K} with i �= j.

The next lemma analyses the spatial distribution of the
types occurring in a structure.

Lemma 8. For all k,r,q ≥ 0 there are K̂ ≥ k and R̂ ≥ r,
such that for all τ ∪{X}-structures A and B there are K,R
with k ≤K ≤ K̂ and r ≤R≤ R̂ and sets CA ⊆A and CB ⊆B
such that for κ := 2K2−1 and each D ∈ {A ,B}, the follow-
ing properties are satisfied:

(1) |CD | ≤ K;

(2) dist(c,c′) > κ ·10R, for all c,c′ ∈CD with c �= c′;

(3) each θ ∈ Θ(r,q) realised in D is either R-covered by
CD or (κ ·10R,10K)-free over CD .

Due to lack of space, we defer the proof of Lemma 8 to the
full version of the paper. For the proof of Lemma 7 we also
need the notions of positive types and negative types of an
element a in a τ ∪{X}-structure A . The positive (r,q)-type
of a is the set

pos-(r,q)-typeA (a) :=
{

ϕr(x) :

ϕ ∈ FO(τ ∪{X}) positive in X , qr(ϕ) ≤ q, A |= ϕr(a)
}
.
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Similarly, the negative (r,q)-type of a is the set

neg-(r,q)-typeA (a) :=
{

ϕr(x) :

ϕ ∈ FO(τ ∪{X}) negative in X ,qr(ϕ) ≤ q, A |= ϕr(a)
}
.

Note that pos-(r,q)-typeA (a) ⊆ full-(r,q)-typeA (a) and
neg-(r,q)-typeA (a) ⊆ full-(r,q)-typeA (a). The formula

θ+
(r,q,A ,a)(x) :=

∧
ϕ∈pos-(r,q)-typeA (a)

ϕ(x),

defines the positive (q,r)-type, in the sense that for all
(τ∪{X})-structures B and all b∈ B with B |= θ+

(r,q,A ,a)(b)

we have pos-(r,q)-typeB(b) ⊇ pos-(r,q)-typeA (a). Anal-
ogously, one obtains a formula θ−

(r,q,A ,a)(x) that defines

the negative (q,r)-type of a in A . Note that the for-
mulae θ+

(r,q,A ,a) and θ−
(r,q,A ,a) are r-local and of quanti-

fier rank at most q̃ (where q̃ ≥ q only depends on q,r,
and τ ∪ {X}). Furthermore, θ+

(r,q,A ,a)(x) is positive in X ,

whereas θ−
(r,q,A ,a)(x) is negative in X . In the following, we

often identify the types with these formulae.
We denote the set of all positive and negative (r,q)-types

by Θ+
(r,q) and Θ−

(r,q), respectively. A (positive or negative)

type θ (x) is realised in a structure A if there is an a ∈ A
such that A |= θ (a). We call a a realisation of θ in A .

Proof of Lemma 7:
We fix q ≥ 0 and let k := q, r := 3q, and Q := q̃+1. Let
K̂, R̂ be chosen according to Lemma 8. Now let A and B
be τ ∪{X}-structures such that

(∗) for every ϕ ∈ BL+(K̂,2K̂2−1·10R̂,Q), A |= ϕ implies
B |= ϕ , and for every ϕ ∈ BL−(K̂,2K̂2−1·10R̂,Q),
B |= ϕ implies A |= ϕ .

Before we can describe the duplicator’s winning strategy
in the q-round X-positive EF-game on A and B, we first
need to explore the “playing fields” A and B. To this end,
we first apply Lemma 8 to A and B (with k,r,q) to obtain
numbers K ≤ K̂,R ≤ R̂ and sets C := CA ⊆ A and D :=
CB ⊆ B such that for κ := 2K2−1 and for each D ∈ {A ,B}
the properties (1)–(3) of Lemma 8 are satisfied.

Note that, since K ≤ K̂ and R ≤ R̂, (∗) in particular holds
when replacing K̂ with K and R̂ with R. Thus, by applying
Lemma 4 (both the X-positive and the X-negative version,
while interchanging the roles of A and B when applying
the X-negative version), we obtain

(∗∗) for every ϕ ∈ ABL+(K,κ ,5R,Q), A |= ϕ implies
B |= ϕ[1/κ ] and for every ϕ ∈ ABL−(K,κ ,5R,Q),
B |= ϕ implies A |= ϕ[1/κ ].

Let us proceed with fixing some more notation. We call a
full (r,q)-type θ ∈ Θ(r,q) rare in A (in B) if it is R-covered
by C (by D, respectively); otherwise, we call θ frequent.

A positive (r,q)-type π ∈ Θ+
(r,q) is called saturated if

there is a full type θ ∈ Θ(r,q) that is frequent in B such that
π ⊆ θ . Similarly, a negative (r,q)-type ν ∈ Θ−

(r,q) is called
saturated if there is a full type θ ∈ Θ(r,q) that is frequent in
A such that ν ⊆ θ .

We define a bipartite Graph G on C∪D by drawing an
edge from c ∈ C to d ∈ D if there are a c′ ∈ N2R(c) and
a d′ ∈ N2R(d) such that the positive (4R,q+1)-type of c′ is
contained in the positive (4R,q+1)-type of d′ and hence the
negative (4R,q+1)-type of d′ is contained in the negative
(4R,q+1)-type of c′.

We call an element c ∈C special if there is an a ∈ NR(c)
such that the positive (r,q)-type of a is not saturated (i.e.,
every full (r,q)-type θ ⊇ pos-(r,q)-typeA (a) is rare in B,
i.e., realised only by elements in NR(D)). Similarly, an el-
ement d ∈ D is called special if there is a b ∈ NR(d) such
that the negative (r,q)-type of b is not saturated.

Let CS ⊆C and DS ⊆ D be the sets of all special vertices.

Claim 9. The bipartite graph G has a matching M such
that each special element of C and D is an endpoint of an
edge in M.

Proof of Claim 9: Let � = |CS| and CS = {c1, . . . ,c�}.
For every i ∈ {1, . . , �} let πi(x) be the positive (4R,q+1)-
type of ci. Then A satisfies the X-positive asymmetric

basic local sentence ϕ := ∃x1 . . .∃x�

(∧
1≤i< j≤� d(xi,x j) >

κ ·10R∧∧�
i=1 πi(xi)

)
. Thus B satisfies the sentence ϕ[1/κ ]

(to see this, recall the assumption (∗∗) on A and B on
the sentences in ABL+(K,κ ,5R,Q), note that � ≤ K since
CS ⊆C and |C| ≤K, and recall from Lemma 8 that elements
in C have pairwise distance > κ ·10R). Hence we can find
b1, . . . ,b� ∈ B of pairwise distance greater than 10R such
that B |= πi(bi) for every i ∈ {1, . . , �}.

Let us next note that each of the bi belongs to N2R(D).
This can be seen as follows. Since ci is special, there
exists an ai ∈ NR(ci) whose positive (r,q)-type π ′ is not
saturated, i.e., each full (r,q)-type that contains π ′ is re-
alised in B only by elements in NR(D). Since the posi-
tive (4R,q+1)-type of bi contains the positive (4R,q+1)-
type πi of ci and N4R(ci) satisfies the X-positive formula
∃y

(
dist(ci,y)≤ R ∧ π ′(y)

)
, we know that also N4R(bi) sat-

isfies this formula, and thus there exists an element b′i with
dist(bi,b′i) ≤ R whose full (r,q)-type contains π ′. Since π ′
is not saturated, we conclude that b′i ∈ NR(D) and hence
bi ∈ N2R(D).

Since each bi belongs to N2R(D), there are d1, . . . ,d� ∈
D such that dist(di,bi) ≤ 2R, for every i ∈ {1, . . , �}. The
vertices d1, . . ,d� are pairwise distinct, since dist(bi,b j) >
10R and thus dist(di,d j) > 6R, for all i, j ∈ {1, . . , �} with
i �= j. Furthermore, by the definition of the graph G , there
is an edge between ci and di, for every i ∈ {1, . . , �} (to see
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this, note that c′i := ci ∈ N2R(ci) has the positive (4R,q+1)-
type πi, and d′

i := bi ∈ N2R(di) has a positive (4R,q+1)-type
that contains πi). It follows that each set C′ ⊆CS of special
vertices has at least |C′| neighbours in D.

Analogously, we can show that each set D′ ⊆ DS of spe-
cial vertices has at least |D′| neighbours in C.

Now Claim 9 immediately follows from the following
purely combinatorial lemma, which may be viewed as an
extension of Hall’s well known marriage theorem. Let us a
say that a vertex is covered by a matching if it is an endpoint
of an edge in the matching.

Lemma 10. Let G be a bipartite graph with bipartition
C,D of the vertex set. Let CS ⊆C and DS ⊆ D, and suppose
that each C′ ⊆CS has at least |C′| neighbours in D and each
D′ ⊆ DS has at least |D′| neighbours in C. Then there is a
matching M of G that covers each vertex in CS ∪DS.

The proof of Lemma 10 can be found in the full version
of this paper. To proceed with the proof of Lemma 7 let
us now fix a matching M that covers all special vertices
(such a matching exists by Claim 9). Let c1, . . . ,cm ∈C and
d1, . . . ,dm ∈ D be the vertices covered by M via an edge be-
tween ci and di, for each i ∈ {1, . . ,m}. By the definition of
the graph G , for i∈ {1, . . ,m}, there are vertices c′i ∈N2R(ci)
and d′

i ∈ N2R(di) such that the positive (4R,q+1)-type of d′
i

contains the positive (4R,q+1)-type of c′i. In particular, the
duplicator has a winning strategy for the q-round X-positive
EF-game on N4R(c′i) and N4R(d′

i).
Recall that, by the definition of special vertices, every

a ∈ A whose positive (r,q)-type is not saturated is in the
R-neighbourhood of some special vertex of C and hence,
in particular, in NR(ci) ⊆ N2R(c′i), for some i ∈ {1, . . ,m}
(to see this, note that (1) a has to belong to NR(C) due
to Lemma 8, and (2) the vertex from C in whose R-
neighbourhood a lies has to be special). Similarly, every
b∈ B whose negative (r,q)-type is not saturated is in NR(di)
and hence in N2R(d′

i) for some i ∈ {1, . . ,m}.

Now it is easy to define a winning strategy for the du-
plicator in the q-round X-positive EF-game on A and B:
If the spoiler plays near a vertex c′i or d′

i , the duplicator an-
swers according to the local strategy there. If the spoiler
plays near a vertex played before, the duplicator answers
according to the local strategy there. Otherwise, the spoiler
plays a saturated vertex far away from everything, and the
duplicator can always find an answer. The meaning of
“near” varies with the number j of moves remaining in the
game. The duplicator seeks to preserve neighbourhoods
of radius 3 j around previously played elements or 2R + 3 j

around c′i or d′
i .

This finally completes the proof of Lemma 7 and thus,
altogether, the proof of Theorem 2. �

4. Graph Decompositions

In this section we fix some notation and briefly present the
basic notions from graph minor theory used later on. See
the last chapter of [8] or the survey [24].

The vertex set of a graph G is denoted by VG and its
edge set is denoted by EG . For U ⊆VG we write 〈U〉 for the
subgraph of G induced by V . A tree is an acyclic, connected
graph. We usually use rooted directed trees where edges are
directed from the root towards the leaves.

A minor of a graph G is a graph H that can be obtained
from a subgraph of G by contracting edges. We write H �
G to denote that H is a minor of G . A class C of graphs is
minor closed if, and only if, for all G ∈ C and H � G also
H ∈ C . A class C of graphs is H -free if H �� G for all
G ∈ C . We then call H an excluded minor of C .

A tree-decomposition of a graph G is a pair (T,(Bt)t∈V t ),
where T is a directed tree and Bt ⊆ VG for all t ∈ V T such
that

⋃
t∈V T 〈Bt〉= G and for every v ∈V G the set {t : v ∈ Bt}

is connected. The sets Bt are called blocks of the decompo-
sition. The width of (T,(Bt)t∈V T ) is max{|Bt | : t ∈V T }−1
and the tree-width tw(G ) of a graph G is the minimal width
of any of its tree-decompositions. A class C of graphs has
bounded tree-width, if there is a constant k bounding the
tree-width of all members of G .

For a tree-decomposition (T,(Bt)t∈V T ) and t ∈ V T with
parent s ∈ V T we let At := Bt ∩Bs. For the root r of T we
let At := /0. The adhesion of (T,(Bt)t∈V T ) is the number
ad(T,(Bt)t∈V T ) := max{|At | : t ∈ V T}. The torso [Bt ] of
(T,(Bt)t∈V T ) at t ∈ V T is the graph with vertex set Bt and
with an edge between u,v ∈ Bt if (u,v) ∈ EG or u,v both
belong to a block Bs with s �= t.

A tree-decomposition of a graph G over a class B of
graphs is a tree-decomposition (T,(Bt)t∈V T ) whose torsi
[Bt ] are contained in B.

We also need the following notion. The local tree-width
of a graph G is the function ltwG : � → � defined as
ltwG (r) := max{tw

(〈NG
r (v)〉) : v ∈ VG }. A class C of

graphs has bounded local tree-width if there is an f :�→�

such that ltwG(r) ≤ f (r) for all G ∈ C and r ∈�.

5. First-order definable optimisation problems

In this section we present a proof of Theorem 1. Here, we
only prove the minimisation version of the theorem. The
maximisation version is proved similarly using techniques
from [14]. We defer the details to the full version of the
paper. We begin with a formal definition. Let Xmin be an
optimal solution for MINϕ(X) on input G . For ε > 0 we
call a solution X , i.e. a set X with (G ,X) |= ϕ , ε-close
if |X | ≤ (1 + ε)|Xmin|. A polynomial-time approximation
scheme (PTAS) for MINϕ(X) is a uniform family (Aε)ε>0

of algorithms, where Aε , given an instance G , computes an
ε-close solution for G in polynomial time. Uniform here
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means that there is an algorithm that, given ε , generates Aε .
A PTAS is called efficient, (or, it is an EPTAS), if the degree
of the polynomial bounding the running time of Aε does not
depend on ε . Our proof of Theorem 1 establishes an EPTAS
for first-order definable optimisation problems.

Example 11. It is well known that the class of planar
graphs excludes a minor. Thus, by Theorem 1, every opti-
misation problem definable by an X-positive or X-negative
first-order formula has a PTAS on the class of planar graphs.

However, the result neither extends to monadic second-
order logic (MSO) nor to first-order formulae which are not
monotone in X . For this, note that 3-colourability is NP-
complete even on the class of planar graphs (see [13]). As
3-colourability can easily be defined by a formula ψ ∈ MSO,
the minimisation problem defined by ϕ(X) := ψ → ∀xXx
cannot have a PTAS (unless P = NP). Similarly, a simple
reduction shows that the 3-colourability problem on planar
graphs can be reduced to a minimisation problem on planar
graphs defined by a non-monotone first-order formula. �

To prove Theorem 1 we first need some preparation.
Let ϕ be a first-order formula positive in X . By The-
orem 2 we can assume that ϕ :=

∨
i
∧

j ψi, j, where each
ψi, j is X-positive and either basic local or the negation
of a basic local formula. To compute a minimal set
X satisfying the formula, it suffices to consider the dis-
juncts

∧
j ψi j separately. Thus we can assume that ϕ :=∧

j ψ j, where each ψ j is either an existential basic lo-
cal formula of the form ∃x1 . . .∃xr j

∧
s �=t dist(as,at) > 2r∧∧r j

s=1 ϑ j(xs) or a universal basic local formula of the form
∀x1 . . .∀xr j

(∧
s �=t dist(as,at) > 2r → ∨r j

s=1 ϑ j(xs)
)
. Here,

the formulae ϑ j are X-positive and restricted to the r-
neighbourhoods of xl . We will transform ϕ even further.
For this, observe that for any fixed graph G := (V,E),
the formula ∃x1 . . .∃xk

∧
s �=t dist(as,at) > 2r ∧ ∧k

s=1 ϑ(xs)
is equivalent to

∨
(a1,...,ak)∈(VG )k

(∧
s �=t dist(as,at) > 2r ∧∧k

s=1 ϑ(as)
)

which can be simplified even further to

∨{ k∧
s=1

ϑ(as) : (a1, . . . ,ak) ∈ (VG )k and
∧
s �=t

dist(as,at)> 2r
}
.

(*)
Here, the elements ai are used as constants in the formu-
lae. A similar, although more complicated, translation can
be given for the universal basic local sentences. Let G be
a graph and ψ(X) := ∀x1 . . .∀xk

(∧
s �=t dist(xs,xt) > 2r →∨k

s=1 ϑ(xs)
)

be a universal basic local sentence. For every
0≤ j ≤ k−1 let π j be the set of functions f : {1, . . . , j}→�

such that ∑ j
i=1 f (i) < k. Let ψ∗(X) be the formula

∨
j<k

( ∨
(a1,...,a j)∈(VG ) j

( ∨
f∈π j

k− j∨
n=0

χ j,a, f ,n
))

(**)

where χ j,a, f ,n :=
∧

1≤l<l′≤ j dist(al,al′) > 5n ·8r ∧
∀x(

∧ j
i=1 dist(x,ai) ≥ 5n ·4r → ϑ(x)

) ∧
∧ j

s=1∀x1 . . .∀x f (s)+1

(∧ f (s)+1
l=1 dist(xl,as) < 5n4r ∧∧

1≤l<l′≤ f (s)+1 dist(xl,x′l) > 2r
)
→ ∨ f (s)+1

l=1 ϑ(xl).

We claim that ψ and ψ∗ are equivalent on G in the fol-
lowing sense. Due to lack of space, we defer the proof to
the full version of the paper.

Lemma 12. For every set X ⊆VG , (G ,X) |= ψ if, and only
if, (G ,X) |= ψ∗.

Lemma 12 implies that for a given graph G we can trans-
late the formula ϕ(X) into a conjunction of formulae of
the form (∗) and (∗∗). By distributivity, we can translate
this into a disjunction of conjunctions of formulae χ j,a, f ,n

and formulae ξ :=
∧k

s=1 ϑ(bl) for tuples of constants ai,bi,
functions f and numbers j and n. As the arity of the tuples
a,b is bounded by a function of ϕ and the ranges of the vari-
ables j,n, and f also only depend on ϕ , the translation can
be done in polynomial time in the size of G .

Further, the first line of the formula χ j,a, f ,n only imposes
conditions on the choice of the tuple a. It follows that for
computing an approximation of a set X satisfying ϕ in G it
suffices to compute an approximation of a set X satisfying
the conjunction of formulae

a)
∧k

s=1 ϑ(al) for an r-local formula ϑ and a tuple of con-
stants (a1, . . . ,ak) with dist(as,at) > 2r for all i �= j,

b) ∀x(
∧ j

i=1 dist(x,ai) ≥ q → ϑ(x)
)

for an r-local formula
ϑ , some q > 2r and a tuple of elements (a1, . . . ,a j) of
distance dist(as,at) > 2q for all i �= j, and

c) ∀x1 . . .∀x f (s)+1

(∧ f (s)+1
l=1 dist(xl ,as) < 5n4r ∧

∧
1≤l<l′≤ f (s)+1 dist(xl,x′l) > 2r

)
→ ∨ f (s)+1

l=1 ϑ(xl)
which are q-local around as for some q > 2r only
depending on ϕ .

Note that the formulas in c) are 5n · 4r-local around as.
Hence, Theorem 1 follows from the following lemma.

Lemma 13. Let C ′ be a class of graphs with an excluded
minor and let σ := {a1, . . . ,ak} be a set of constant symbols.
Let q > 0 and let ϕ(X)∈ FO be an X-positive conjunction of
q-local formulae ϕi(a) using only one constant symbol a ∈
σ and formulae ψt := ∀x(

∧kt
s=1 dist(x,as,t) > qt → ϑ(x)

)
,

for an r-local formula ϑ with qt > 2r, using constant sym-
bols at ⊆ σ .

Let C := {(G ,a) : G ∈ C ′ and a ⊆ VG }. Then
MINϕ(X)(C ) has a polynomial time approximation scheme.
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To prove the lemma we use a decomposition theorem for
classes of graphs with an excluded minor that is due to [14].
We first introduce some notation.

For λ ,µ ≥ 0 we let

L (λ ) :=
{

G :
for all H � G , for all r ≥ 0
ltwH (r) ≤ λ · r

}

L (λ ,µ) :=
{

G :
there is X ⊆VG

s.th.
(|X | ≤ µ ∧G \X ∈ L (λ )

) }

Note that L (λ ,µ) is minor closed. The proof of Lemma
13 is based on the following decomposition theorem for
classes of graphs with an excluded minor.

Theorem 14 ([14]). Let C be a class of graphs with an ex-
cluded minor. Then there exist λ ,µ ∈� such that all G ∈C
have a tree-decomposition over L (λ ,µ).

For the approximation algorithms we want to show, we
need an algorithmic version of this theorem.

Theorem 15 ([14]). Let C be a minor closed class of
graphs. Then there is a polynomial-time algorithm that
computes for a given graph G a tree-decomposition of G
over C or rejects G if no such decomposition exists.

We apply this result to the minor closed classes L (λ ,µ).
Let G be a graph. For every vertex v ∈ VG and integers
j ≥ i ≥ 0 we define

LG
v [i, j] := {w ∈V G : i ≤ distG (v,w) ≤ j},

where distG (v,w) denotes the distance between v and w in
G . To simplify notation, we will use LG

v [i, j] for arbitrary in-
tegers i, j and set LG

v [i, j] := /0 if i > j and LG
v [i, j] := LG

v [0, j]
for i ≤ 0. The following lemma follows easily.

Lemma 16. Let λ ∈�. Then tw
(〈LG

v [i, j]〉)≤ λ ·( j− i+1)
for all G ∈ L (λ ), v ∈VG and i, j ∈� with i ≤ j.

Now, let ϕ be as in the hypothesis of Lemma 13 and
let C be a class of graphs with an excluded minor. By
Theorem 14, we can choose λ ,µ ∈ � such that every
graph G ∈ C has a tree-decomposition over L (λ ,µ). Let
ε > 0. We describe a polynomial time algorithm that, on
input G ∈ C and a ∈ VG , computes an ε-close solution for
MINϕ(X)(C ) on (G ,a). To ease notation we will consider
the tuple a as part of the graph and use notation such as
G |= ϕ for (G ,a) |= ϕ .

The proof of Lemma 13 is split into two steps. In the first
step, which we present in the next subsection, we prove the
lemma for the classes L (λ ) and L (λ ,µ) of graphs. Here,
we use the corresponding result for graphs of bounded tree-
width which essentially follows from [2].

Theorem 17 ([2]). Let ϕ(X) be an X-positive formula of
MSO. Then MINϕ(X)(C ) can be solved in linear time on any
class C of graphs of bounded tree-width.

In Section 5.3, we extend the proof to graphs which have
a tree-decomposition over L (λ ,µ), i.e. to all graphs in C .

5.1. The levels of graphs of bounded local tree-width.
In the first step of the proof of Lemma 13 we show that
the restriction of MINϕ(X)(C ) to instances in L (λ ) has a
PTAS. Let ϕ :=

∧
i∈Ie ϕi(ai)∧∧

t∈Iu ψt , where the ϕi(ai) are

r-local formulae and the ψt := ∀x(
∧kt

s=1 dist(x,as,t) > rt →
ϑt(x)

)
, for a q-local formula ϑt with rt > 2q, using constant

symbols at ⊆ σ . For simplicity we assume w.l.o.g. that rt =
rt′ for all t, t ′. Let r := rt .

Let k := � 2r
ε �. Note that k+2r

k ≤ (1+ ε). Let G ∈ L (λ ).
Choose a node v ∈ VG arbitrarily. For 1 ≤ i ≤ k and j ≥ 0
let Li j := LG

v [( j−1) · k− r + i, j · k + r + i]. By Lemma 16,
tw(〈Li j〉) ≤ λ (k + 2r + 1).

For all 1 ≤ i ≤ k, j ≥ 0 let Xi j be a set of minimal cardi-
nality such that

(1)
(〈Li j〉,Xi j

) |= ϕl(al) for all l ∈ Ie such that al and its
r-neighbourhood is contained in Li j and

(2)
(〈Li j〉,Xi j

) |= ψt for all i ∈ Iu.

Note that as ψt := ∀x(
∧kt

s=1 dist(x,as,t) > rt → ϑt(x)
)

also
mentions constants interpreted by vertices outside of Li j,
this is, strictly speaking, not well defined. However, as
the at are constants, we can easily check whether x is
close to any constant interpreted by an element outside of
Li j. For instance, we could colour the r-neighbourhoods of
a1, . . . ,akt and then check in ψt that x is outside a coloured
area. For ease of presentation we will therefore simply write(〈Li j〉,Xi j

) |= ψt even in cases where some or all of the con-
stants are interpreted by elements outside of Li j .

By Theorem 17 the sets Xi j can be computed in linear
time. For 1 ≤ i ≤ s let Xi :=

⋃
j≥0 Xi j. As ϕ is monotone in

X , every Xi is a solution of MINϕ(X)(C ) on G .
Let Xmin be an optimal solution of MINϕ(X)(C ) for G ,

i.e. a set of minimal cardinality such that (G ,Xmin) |= ϕ .
Clearly, Xmin∩Li j satisfies the conditions (1) and (2) above
for all levels Li, j . Hence,

k

∑
i=1

|Xi| ≤
k

∑
i=1

∑
j≥0

|Xi j| ≤
k

∑
i=1

∑
j≥0

|Li j ∩Xmin| ≤ (k + 2r)|Xmin|.

The last inequality follows as every node v ∈ V G can be
contained in at most k +2r levels Li j. Choose m, 1 ≤ m ≤ k
such that |Xm| := min{|X1|, . . . , |Xk|}. Then

|Xm| ≤ (k + 2r)
k

|Xmin| ≤ (1 + ε)|Xmin|.
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Hence, Xm is an ε-close solution of MINϕ(X)(C ) on G . As
every set Xi can be computed in polynomial time, the set Xm

can also be computed in polynomial time.

5.2. Extension to the classes L(λ ,µ).
In a second step we show how this approximation algorithm
can be extended to the classes L (λ ,µ) for constants λ ,µ ≥
0. Let G ∈ L (λ ,µ) and let U ⊆ VG be such that |U | ≤ µ
and G \U ∈ L(λ ). The following extension of Theorem 17
can easily be proved by dynamic programming.

Theorem 18. For every k ≥ 0 and every first-order formula
ϕ(X) which is positive in the set-variable X, the following
problem can be solved in linear time. Given a graph G , a set
U ⊆V G so that tw(G \U)≤ k and a subset Y ⊆U, find a set
X ⊆VG \U of minimal cardinality such that (G ,X ∪Y ) |= ϕ
or determine that no such set exists.

Let again ϕ(X) be an X-positive first-order formula. For
every Y ⊆ U let X(Y ) be a subset of VG \U such that
(G ,X(Y )∪Y ) |= ϕ and

|X(Y )| ≤ (1+ε)min{|X | : X ⊆VG \U and (G ,X∪Y ) |= ϕ}
or X(Y ) :=⊥ if no such set exists. If X(Y )=⊥ for all Y ⊆U
then MINϕ(X)(C ) has no solution on G and we are done.
Otherwise let Y0 ⊆ U be such that |X(Y0)∪Y0| is minimal
among {|X(Y )∪Y | : Y ⊆ U and X(Y ) �= ⊥}. Then clearly,
X(Y0)∪Y0 is an ε-close solution for MINϕ(X)(C ).

Using Theorem 18 instead of Theorem 17, the sets X(Y )
can be computed in polynomial time analogously to the first
step. As there are only 2µ possible subsets of U – recall
that µ is a constant only depending on the class C – and for
each Y ⊆U , X(Y ) can be computed in polynomial time, the
solution X(Y0)∪Y0 can be computed in polynomial time.

5.3. Excluded Minors.
In the last step, we show how the approximation algorithm
can be extended to graphs that have a tree-decomposition
over L (λ ,µ), i.e. to all graphs in C .

Let G ∈ C . We first compute a tree-decomposition
(T,(Bt)t∈V T ) over L (λ ,µ). By Theorem 15, this can be
done in polynomial time. Let r be the root of T and for ev-
ery t ∈ V T with parent s let At := Bt ∩Bs. We set Ar := /0.
Further, for every node t ∈ V T let Tt be the subtree of T
rooted at t and let Bt :=

⋃
s∈Tt

Bs.
In what follows we will construct for subgraphs B of G

sets X such that (〈B〉,X) satisfies

(1)
(〈B〉,X) |= ϕl(al) for all l ∈ Ie such that al and its
r-neighbourhood is contained in B and

(2)
(〈B〉,X) |= ψt for all t ∈ Iu.

(Here, we use the same convention as in Section 5.1 above.)
To simplify the presentation we write (〈B〉,X) |= ϕ to in-
dicate that X satisfies the conditions (1) and (2) in B. The

notation is motivated by the fact that for B =G , (G ,X) |= ϕ
for any set satisfying condition (1) and (2) and vice versa.

Inductively, from the leaves to the root, we compute for
every node t ∈ V T and for every subset Y ⊆ At an X(t,Y )
such that X(t,Y ) ⊆ Bt \At , (〈Bt〉,X(t,Y )∪Y ) |= ϕ and

|X(t,Y )| ≤ (1+ε)min{|X | : (〈Bt〉,X∪Y ) |= ϕ ,X ⊆Bt \At}
or X(Y ) := ⊥ if no such set exists. As tree-decompositions
over L (λ ,µ) have adhesion at most λ + µ + 1, we have
|At | ≤ λ + µ + 1. Hence, we only have to compute a con-
stant number of sets X(t,Y ) for each t. Further, for the root
r we have At = /0 and 〈Bt〉= G . Hence, X(r, /0) is an ε-close
solution for MINϕ(X)(C ) or ⊥ if no solution exists.

We show next how to compute the sets X(t,Y ). Suppose
t ∈ V T and for every child t ′ of t we have already com-
puted the family X(t ′, ·). Let U ⊆ Bt such that |U | ≤ µ
and [Bt ] \U ∈ L (λ ). (Recall that [Bt ] denotes the torso
of (T,(Bt)t∈V T ) at t.) Let W := U ∪At .

For every Z ⊆ W , let Xmin(Z) be a set of minimal car-
dinality such that Xmin(Z) ⊆ Bt \W and (〈Bt〉,Xmin(Z)∪
Z) |= ϕ or Xmin(Z) := ⊥ if no such set exists.

Claim 19. For every set Z ⊆W we can compute in polyno-
mial time an X(Z) such that X(Z) ⊆ Bt \W, (〈Bt 〉,X(Z)∪
Z) |= ϕ , and |X(Z)| ≤ (1 + ε)|Xmin(Z)| or X(Z) := ⊥ if no
such set exists.

Before we prove Claim 19 let us show how the proof of
Lemma 13 can be completed using the claim. For every
Y ⊆At choose a Z ⊆W such that Z∩At =Y and |X(Z)∪(Z\
Y )|= min{|X(Z′)∪(Z′ \Y )| : Y ⊆ Z′ ⊆W and Z′ ∩At =Y}.
Set X(t,Y ) := X(Z)∪ (Z \Y ). By our choice of Z it follows
that |X(t,Y )| ≤ (1+ε)min{|X | : (〈Bt 〉,X ∪Y ) |= ϕ} which
concludes the proof.

So all that remains is to prove Claim 19. Fix a Z ⊆ W .
We show how to compute X(Z) in polynomial time. If W =
Bt , i.e. Bt :=U∪At , then let X(Z) :=

⋃
(t,t′)∈ET X(t ′,At′ ∩Z).

Otherwise choose an arbitrary v ∈ Bt \W . For 1 ≤ i ≤ k

and j ≥ 0 let Li j := L[Bt ]\W
v [( j − 1) · k + i− r, j · k + i + r].

Then tw(〈Li j〉) ≤ λ (k + 1 + 2r). For every child t ′ of t and
every 1≤ i ≤ k there is at least one j ≥ 0 such that At′ \W ⊆
Li j. This follows from that fact that At′ induces a clique in
[Bt ]. Let jmin(i, t ′) be the least such j and let

L∗
i j := Li j ∪

⋃
{Bt′ \At′ : (t, t ′) ∈ ET and jmin(i, t ′) = j}.

Similarly, for every X ⊆ Li j let

X∗ := X∪
⋃
{X(t ′,(X∪Z)∩At′

)
: (t, t ′)∈ET , jmin(i,t ′)= j}.

We compute an Xi j ⊆ Li j with minimal |X∗
i j| such that(〈Li j〉,Xi j ∪Z

) |= ϕ or set Xi j :=⊥ if no such X exists. This
can be done in polynomial time using the standard dynamic
programming techniques on graphs of bounded tree-width,
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provided that the numbers |X(t ′,Y )| for the children t ′ of t
are given. It is important here that every At′ \W is a clique
in 〈Li j〉, as this implies that it is contained in a single block
of every tree-decomposition of 〈Li j〉.

Let Xi :=
⋃

j≥0 Xi j and X∗
i :=

⋃
j≥0 X∗

i j. Then, by mono-
tonicity of ϕ in X , (〈Bt〉,X∗

i ∪Z) |= ϕ or Xi = ⊥ if no set
satisfying ϕ in 〈Bt 〉 exists. Finally, choose an i ∈ {1, . . . ,k}
such that |X∗

i | := min{|X∗
1 |, . . . , |X∗

k |} and let X(Z) := X∗
i . It

follows that X(Z) can be computed in polynomial time.
Recall that we defined Xmin := Xmin(Z) ⊆ Bt \W to be

a set of minimal order such that (〈Bt 〉,Xmin ∪ Z) |= ϕ or
Xmin := ⊥ if no such set exists. It remains to prove that
|X(Z)| ≤ (1 + ε)|Xmin|.

By hypothesis of the algorithm we have for every child
t ′ of t, |X(t ′,(Xmin ∪Z)∩At′ )| ≤ (1 + ε)|Xmin ∩Bt′ \At′)|.
Further, the construction of Xi j and X∗

i j guarantees that for
1 ≤ i ≤ k and j ≥ 0

|X∗
i j| ≤ |Xmin ∩Li j|+ ∑

(t,t′)∈ET

jmin(i,t′)= j

|X(t ′,(Xmin ∪Z)∩At′)|.

But then

k|X(Z)| ≤
k

∑
i=1

|X∗
i | ≤

k

∑
i=1

∑
j≥0

|X∗
i j|

≤
k

∑
i=1

∑
j≥0

(|Xmin ∩Li j| +

∑
(t,t′)∈ET

jmin(i,t′)= j

|X(t ′,(Xmin ∪Z)∩At′)|
)

≤
k

∑
i=1

∑
j≥0

(|Xmin ∩Li j| +

∑
(t,t′)∈ET

jmin(i,t′)= j

(1 + ε)|Xmin ∩Bt′ \At′)|
)

≤ (k + 2r)|Xmin ∩Bt |+ k(1 + ε)|Xmin∩Bt \Bt |

This implies |X(Z)| ≤ (1 + ε)Xmin and concludes the proof
of Lemma 13 and with it also the proof of Theorem 1.
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