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Abstract

Unions of conjunctive queries, also known as select-project-join-union queries, are the most fre-
quently asked queries in relational database systems. These queries are definable by existential positive
first-order formulas and are preserved under homomorphisms. A classical result of mathematical logic
asserts that the existential positive formulas are the only first-order formulas (up to logical equivalence)
that are preserved under homomorphisms on all structures, finite and infinite. After resisting resolu-
tion for a long time, it was eventually shown that, unlike other classical preservation theorems, the
homomorphism-preservation theorem holds for the class of all finite structures. In this paper, we show
that the homomorphism-preservation theorem holds also for several restricted classes of finite structures
of interest in graph theory and database theory. Specifically, we show that this result holds for all classes
of finite structures of bounded degree, all classes of finite structures of bounded treewidth, and, more
generally, all classes of finite structures whose cores exclude at least one minor.

1 Introduction

It is well known that the most frequently asked queries in databases are expressible in theselect-project-
join-union (SPJU) fragment of relational algebra (see [1]). From the point of view of relational calculus
or first-order logic, the class of SPJU queries corresponds to the class of queries definable byexistential
positiveformulas of first-order logic, that is, formulas built from atomic formulas using conjunction, dis-
junction, and existential quantification only. By distributing conjunctions and existential quantifiers over
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disjunctions, every existential positive formula can be written as a disjunction of existential formulas in
which the quantifier-free part is a conjunction of atomic formulas. It is for this reason that SPJU queries
are also known asunions of conjunctive queries. Starting with the work of Chandra and Merlin [7], the
study of conjunctive queries and their unions has occupied a central place in database theory; in particular,
researchers have investigated in depth certain fundamental algorithmic problems about (unions of) conjunc-
tive queries, such as the containment and the evaluation problem for these queries.

Let A = (A,RA
1 , . . . , RA

m) andB = (B,RB
1 , . . . , RB

m) be two relational structures over the same
vocabulary (database schema)R1, . . . , Rm. Recall that ahomomorphism fromA to B is a maph : A → B
such that for every relation symbolRi and every tuplea = (a1, . . . , ar) from A, if a ∈ RA

i thenh(a) =
(h(a1), . . . , h(ar)) ∈ RB

i . As already realized by Chandra and Merlin [7], the study of conjunctive queries
is intimately connected to homomorphisms. In particular, unions of conjunctive queries are preserved under
homomorphisms, where a queryq is said to bepreserved under homomorphismsif whenevera ∈ q(A)
andh is a homomorphism fromA to B, thenh(a) ∈ q(B). Note that if a queryq is preserved under
homomorphisms, then it is also preserved underextensions, which means that wheneverA is an induced
substructure ofB anda ∈ q(A), thena ∈ q(B). In addition, such a queryq is monotone, which means
that whenevera ∈ q(A) andB is obtained fromA by adding tuples to some of the relations ofA, then
a ∈ q(B). These preservation properties can be thought of as asserting that the query satisfies a strong form
of the open world assumption, in that a tuple in the result of the query will remain so under the addition of
new facts to the databases, such as the introduction of new elements and new tuples in the relations.

Classicalpreservation theoremsof model theory are results that match semantic properties of first-order
formulas with syntactic properties of first-order formulas. Specifically, the Łoś-Tarski Theorem asserts that
a first-order formula is preserved under extensions on all structures (finite and infinite) if and only if it is
logically equivalent to an existential formula (see [26]). Another classical preservation theorem in model
theory, known as Lyndon’s Positivity Theorem, states that a first-order formula is monotone on all structures
(finite and infinite) if and only if it is logically equivalent to a positive first-order formula. The non-trivial
part in these results is to show that if a first-order formula has the semantic property stated, then it is
logically equivalent to a first-order formula that has the corresponding syntactic property. The proofs make
an essential use of the Compactness Theorem of first-order logic (and, hence, of infinite structures). The
same technique can also be used to show that the followinghomomorphism-preservationtheorem holds: a
first-order formula is preserved under homomorphisms on all structures (finite and infinite) if and only if it
is logically equivalent to an existential positive first-order formula.

The aforementioned classical preservation theorems are about the class of all structures (finite and infi-
nite) over some fixed vocabulary. It is natural to ask whether these preservation theoremsrelativize, that is,
whether they hold on restricted classes of structures. Note that if a preservation theorem holds for a classC
of structures, then restricting the statement of the theorem to a subclassC′ of C weakens both the hypoth-
esis and the conclusion of the theorem. Thus, unlike many other results of model theorem, a preservation
theorem may hold for a classC of structures, but may fail for some subclassC′ of C.

Research in finite model theory addressed the question of whether classical preservation theorems about
the class of all structures hold for the class of all finite structures. As it turned out, classical preservation
theorems tend to fail when we restrict ourselves to finite structures. In particular, the Łoś-Tarski Theo-
rem fails in the finite, that is, there is a first-order formula that is preserved under extensions on the class
of all finite structures, but is not equivalent to any existential formula [36, 23]. Similarly, Lyndon’s Pos-
itivity Theorem is also known to fail in the finite [2, 35]. As for the homomorphism-preservation theo-
rem, its status in the finite had remained unsettled for quite a long time. In fact, the finite version of the
homomorphism-preservation theorem had received considerable attention by the finite model theory com-
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munity and had been singled out as a central problem (Problem 5.9 on the finite model theory website
at http://www-mgi.informatik.rwth-aachen.de/FMT/ ). Moreover, it motivated a lot of re-
lated research in this area, including [4, 16, 24, 32]. Eventually, in an important breakthrough, Rossman
[33] proved that the homomorphism-preservation theoremdoeshold in the finite. In other words, Rossman
proved that if a first-order formula is preserved under homomorphisms on the class of all finite structures,
then it is equivalent, on finite structures, to an existential positive first-order formula. In particular, suppose
that some arbitrary relational algebra query which may also involve theset-theoretic differenceoperator
is preserved under homomorphisms on all finite structures; Rossman’s result shows that this query can be
transformed to an equivalent SPJU query.

In this paper, we show that the homomorphism-preservation theorem holds for numerous restricted
classes of finite structures of interest in graph theory and database theory. It should be noted that our results
were established and published in preliminary form [6] before Rossman proved that the homomorphism-
preservation theorem holds for the class of all finite structures. It should also be pointed out that our results
are not implied by Rossman’s theorem, since, as explained earlier, preservation theorems about a class
of structures need not relativize to a subclass of that class. In its full generality, our main result asserts
that the homomorphism-preservation theorem holds for every classC of finite structures that is closed under
substructures and disjoint unions, and has the property that the Gaifman graphs of the structures inC exclude
at least one minor. This result contains as special cases the homomorphism-preservation theorem for the
classes of all structures of bounded treewidth, and the classes of all structures that exclude at least one
minor; in particular, the homomorphism-preservation theorem holds for the class of all planar graphs. If
we restrict attention to Boolean queries, we are able to further extend the classes of structures on which the
homomorphism preservation theorem holds. In particular, we can show that the theorem for Boolean queries
holds on every classC of finite structures that is closed under substructures and disjoint unions, and such that
thecoresof the structures inC exclude at least one minor. To put these results in perspective, let us briefly
comment on some of the key notions.Treewidthis a measure of how tree-like a graph (or, more generally,
a relational structure) is. It has played a key role in Robertson and Seymour’s celebrated work on graph
minors (see [12]). Moreover, classes of structures of bounded treewidth have turned out to possess good
algorithmic properties, in the sense that various NP-complete problems, including constraint satisfaction
problems and database query evaluation problems, are solvable in polynomial-time when restricted to inputs
of bounded treewidth [10, 12, 21, 22]. Thecoreof a structureA is a substructureB of A such that there is a
homomorphism fromA to B, but there is no homomorphism fromA to a proper substructureB′ of B. This
concept originated in graph theory (see [25]), but has found applications in conjunctive query processing
and optimization [7] and, more recently, in data exchange [15].

The proofs of our results combine earlier work about preservation properties in the finite with some
heavy combinatorial machinery. Ajtai and Gurevich [3] showed that if a queryq on the class of all finite
structures is expressible in both Datalog and first-order logic, then it is also definable by an existential
positive formula; furthermore, every Datalog program definingq must be bounded. This is an important
result about Datalog programs in its own right, but it is also a partial result towards the homomorphism-
preservation theorem in the finite because all Datalog queries are preserved under homomorphisms (since
such queries are infinitary unions of conjunctive queries). At a high level, the proof of the Ajtai-Gurevich
theorem can be decomposed into two modular parts. The first is a combinatorial lemma to the effect that
if q is a first-order query that is preserved under homomorphisms on finite structures, then theminimal
models ofq satisfy a certain “density” condition (incidentally, the minimal models of a Boolean query that
is preserved under homomorphisms are cores). The second part shows that if all minimal models of a
Datalog query satisfy the “density” condition, then there are only finitely many of them. This means thatq
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has finitely many minimal models, which easily implies thatq is definable by a union of conjunctive queries.
To obtain our main theorem, we use the same architecture in the proof, but, in place of the second part, we
essentially show that ifC is a class of finite structures satisfying the hypothesis of the theorem (such as
having bounded treewidth or excluding a minor), then every collection of structures inC that satisfies the
“density” condition must be finite. In turn, this requires the use of the Sunflower Lemma of Erdös and Rado,
as well as Ramsey’s Theorem.

Furthermore, equipped with this new machinery, we obtain a different and perhaps more transparent
proof of the Ajtai-Gurevich Theorem. Actually, we show that the Ajtai-Gurevich Theorem can be extended
to a family of finite-variable infinitary logics that taken together are strictly more expressive than Datalog.
This is obtained by using tight connections between number of variables, treewidth, and minimal models.

In Section 2, we review some basic notions from logic and graph theory that we will need in the se-
quel. Section 3 contains certain combinatorial facts about the minimal models of a first-order query that
is preserved under homomorphisms. In Sections 4 and 5, we establish the main results regarding classes
of bounded treewidth and classes with excluded minors respectively. In Section 6 we discuss the relation-
ship between peservation for Boolean and non-Boolean queries. We show that the preservation results for
Boolean queries can be established for larger classes of structures. Finally, in Section 7 we obtain the
aforementioned extension of the Ajtai-Gurevich Theorem.

2 Preliminaries

This section contains the definitions of some basic notions and a minimum amount of background material.

2.1 Relational Structures and Graphs

A relational vocabularyσ is a finite set ofrelation symbols, each with a specifiedarity. A σ-structureA
consists of auniverseA, or domain, and aninterpretationwhich associates to each relation symbolR ∈ σ
of some arityr, a relationRA ⊆ Ar. A graph is a structureG = (V, E), whereE is a binary relation that
is symmetric and irreflexive. Thus, our graphs are undirected, loopless, and without parallel edges.

A σ-structureB is called asubstructureof A if B ⊆ A andRB ⊆ RA for everyR ∈ σ. It is called
an induced substructureif RB = RA ∩ Br for every R ∈ σ of arity r. Notice the analogy with the
graph-theoretical concept ofsubgraphandinduced subgraph. A substructureB of A is proper ifA 6= B.

A homomorphismfrom A to B is a mappingh : A → B from the universe ofA to the universe of
B that preserves the relations, that is if(a1, . . . , ar) ∈ RA, then(h(a1), . . . , h(ar)) ∈ RB. We say that
two structuresA andB arehomomorphically equivalentif there is a homomorphism fromA to B and
a homomorphism fromB to A. Note that, ifA is a substructure ofB, then the injection mapping is a
homomorphism fromA to B

TheGaifman graphof aσ-structureA, denoted byG(A), is the (undirected) graph whose set of nodes
is the universe ofA, and whose set of edges consists of all pairs(a, a′) of distinct elements ofA such thata
anda′ appear together in some tuple of a relation inA. Thedegreeof a structure is the degree of its Gaifman
graph, that is, the maximum number of neighbours of nodes of the Gaifman graph.

Let G = (V, E) be a graph. Moreover, letu ∈ V be a vertex and letd ≥ 0 be an integer. The
d-neighborhoodof u in G, denoted byNG

d (u), is defined inductively as follows:

1. NG
0 (u) = {u};

2. NG
d+1(u) = NG

d (u) ∪ {v ∈ V : (v, w) ∈ E for somew ∈ NG
d (u)}.
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A tree is an acyclic connected graph. Atree-decompositionof G is a labeled treeT such that

1. each node ofT is labeled by a non-empty subset ofV ;

2. for every edge{u, v} ∈ E, there is a node ofT whose label contains{u, v};
3. for everyu ∈ V , the setX of nodes ofT whose labels includeu forms a connected subtree ofT.

Thewidth of a tree-decomposition is the maximum cardinality of a label inT minus one. Thetreewidthof
G is the smallestk for whichG has a tree-decomposition of widthk. Thetreewidthof a σ-structure is the
treewidth of its Gaifman graph. Note that trees have treewidth one.

For every positive integerk ≥ 2, we writeT (k) to denote the class of allσ-structures of treewidth less
thank. In the sequel, whenever we say that a collectionC of σ-structures hasbounded treewidth, we mean
that there is a positive integerk such thatC ⊆ T (k).

We say that a graphG is aminorof H if G can be obtained from a subgraph ofH by contracting edges.
The contraction of an edge consists in identifying its two endpoints into a single node, and removing the
resulting loop. An equivalent characterization (see [11]) states thatG is a minor ofH if there is a map
that associates to each vertexv of G a non-emptyconnectedsubgraphHv of H such thatHu andHv are
disjoint for u 6= v and if there is an edge betweenu andv in G then there is an edge inH between some
node inHu and some node inHv. We will sometimes refer to the subgraphsHv as theconnected patches
that witness thatG is a minor ofH.

It is not hard to see thatT (k) is closed under taking minors, that is, ifG is a minor ofH and the
treewidth ofH is less thank, then the treewidth ofG is also less thank. Since the treewidth ofKk, the
complete graph onk vertices, isk − 1, it follows thatKk+1 is not a minor of any graph inT (k). Finally,
we will make use of the fact thatKk is a minor ofKk−1,k−1, the complete bipartite graph on two sets of
k− 1 nodes. To see this, contract the edges of a perfect matching of sizek− 2 sitting insideKk−1,k−1. The
result is a complete graph onk − 2 nodes, which, together with the remaining two nodes ofKk−1,k−1 and
all remaining edges, gives aKk.

2.2 First-order Logic and Conjunctive Queries

Let σ be a relational vocabulary. Theatomic formulasof σ are those of the formR(x1, . . . , xr), where
R ∈ σ is a relation symbol of arityr, andx1, . . . , xr are first-order variables that are not necessarily distinct.
Formulas of the formx = y are also atomic formulas, and we refer to them asequalities. The collection
of first-order formulasis obtained by closing the atomic formulas under negation, conjunction, disjunction,
universal and existential first-order quantification. The semantics of first-order logic is standard. IfA is
a σ-structure andϕ is a first-order formula, we use the notationA |= ϕ to denote the fact thatϕ is true
in A. The collection ofexistential-positivefirst-order formulas is obtained by closing the atomic formulas
under conjunction, disjunction, and existential quantification. By substituting variables, it is easy to see that
equalities can be eliminated from existential-positive formulas.

An important fragment of existential-positive formulas is formed by the collection of sentences of the
form ∃x1 . . . ∃xnθ, whereθ is a conjunction of atomic formulas with variables amongx1, . . . , xn. These
formulas define the class of Booleanconjunctivequeries (also known asselect-project-joinqueries or, in
short, SPJ-queries). In the sequel, we will occasionally use the termconjunctive queryto denote both a
formula ∃x1 . . .∃xnθ as above and the query defined by that formula. Every finite structureA with n
elements gives rise to acanonical conjunctive queryϕA, which is obtained by first associating a different
variablexi with every elementai of A, 1 ≤ i ≤ n, then forming the conjunction of all atomic facts
true inA, and finally existentially quantifying all variablesxi, 1 ≤ i ≤ n. In other words, the formula
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ϕA is the existential closure of thepositive diagramof A (see [26]). Conversely, every conjunctive query
∃x1 . . .∃xnθ gives rise to acanonical structureA with n elements, where the elements ofA are the variables
x1, . . . , xn and the relations ofA consist of the tuples of variables in the conjucts ofθ. Chandra and Merlin
[7] showed the following basic result, which has found many uses in database theory and the theory of
constraint satisfaction problems.

Theorem 1 (Chandra-Merlin Theorem). LetA andB be two finite structures. The following statements
are equivalent.

1. There is a homomorphism fromA to B.

2. B |= ϕA.

3. ϕB logically impliesϕA.

2.3 Inductive Definitions and Datalog

Let σ be a relational vocabulary. Aninductive systemof first-order formulas is a finite sequence

ϕ1(x1, . . . , xk1 , S1, . . . , Sr), . . . , ϕr(x1, . . . , xkr , S1, . . . , Sr)

of first-order formulas such that eachSi is a relation symbol of arityki, not already inσ. Every such system
gives rise to an operatorΦ on sequences of relations of aσ-structure. More precisely, ifA is aσ-structure
with universeA andRi ⊆ Aki is a relation for everyi ∈ {1, . . . , r}, we define

Φi(R1, . . . , Rr) = {(a1, . . . , aki
) ∈ Aki : A |= ϕi(a1, . . . , aki

, R1, . . . , Rr)},

andΦ(R1, . . . , Rr) = (Φ1(R1, . . . , Rr), . . . ,Φr(R1, . . . , Rr)). The stagesΦm = (Φm
1 , . . . , Φm

r ) of Φ are
defined by the inductionΦ0

i = (∅, . . . , ∅), andΦm+1
i = Φi(Φm

1 , . . . , Φm
r ). If each formulaϕi is positive

in the relation symbolsS1, . . . , Sr, then the associated operatorΦ is monotone in each of its arguments. In
such a case, the sequence of stagesΦ0, Φ1, . . . converges to the least fixed-pointΦ∞ = (Φ∞1 , . . . ,Φ∞r ) of
the operatorΦ. Moreover, ifA is finite, then there exists a finitem0 such thatΦ∞ = Φm0 .

A Datalog programis a finite set of rules of the formT0 ← T1, . . . , Tm, where eachTi is an atomic
formula. The left-hand side of each rule is called theheadof the rule, while the right-hand side is called the
body. The relation symbols that occur in the heads are theintensionaldatabase predicates (IDBs), while all
others are theextensionaldatabase predicates (EDBs). Note that IDBs may occur in the bodies too, thus, a
Datalog program is a recursive specification of the IDBs with semantics obtained via least fixed-points of
monotone operators (see [37]). For example, the following Datalog program defines thetransitive closure
of the edge relationE of a graphG = (V, E):

T (x, y) ← E(x, y);
T (x, y) ← E(x, z), T (z, y).

A key parameter in analyzing Datalog programs is the number of variables used. We writek-Datalog for the
collection of all Datalog programs with at mostk variables in total. For instance, the above is a 3-Datalog
program. A Datalog program can be read as an inductive system of first-order formulas (as above) where
each formula is existential positive.

Let C be a class ofσ-structures. A queryq onC of arity n is a map that associates to each structureA in
C ann-ary relationq(A) on the domain ofA that is preserved under isomorphisms between structures. Let
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L be some logic. We say thatq is L-definable onC if there exists a formulaϕ of L such that ifA is in C,
thena ∈ q(A) if and only if A,a |= ϕ. A Boolean query is a query of arity 0, which can be identified with
an isomorphism-closed subclass ofC. Equivalently, a Boolean query is a mappingq from C to {0, 1} that is
invariant under isomorphisms. We say that a Boolean queryq is L-definable onC if there is a sentenceψ of
L such that for everyA ∈ C, we have thatq(A) = 1 if and only if A |= ψ.

3 Preservation under Homomorphisms and Minimal Models

For the purpose of the constructions in this paper, we shall restrict our attention specifically to Boolean
queries. The reason for restricting ourselves to Boolean queries is that the notion ofminimal model, which
we rely on, is more naturally defined for Boolean queries. In Section 6 we return to non-Boolean queries
and explain why the results apply equally well to these.

For a Boolean queryq, we say that aσ-structureA in C is aminimal model ofq in C if q(A) = 1 and
there is no proper substructureB of A in C such thatq(B) = 1. Recall from Section 2 that substructures
are not necessarily induced.

The following characterization is part of the folklore, a proof for the class of all finiteσ-structures can
be found in [4]. Here, we state it in a more general form for classes of finiteσ-structures that are closed
under substructures, and sketch a proof.

Theorem 2. LetC be a class of finiteσ-structures that is closed under substructures, and letq be a Boolean
query onC that is preserved under homomorphisms onC. The following are equivalent:

1. q has finitely many minimal models inC.

2. q is definable onC by an existential-positive first-order sentence.

Proof (sketch).The direction (1)⇒(2) is established by constructing, for each finite structureA, acanonical
conjunctive queryϕA, as described earlier. The required existential positive formula definingq is now
obtained as the disjunction ofϕA over all minimal modelsA of q. This follows from the preservation ofq
under homomorphisms and the fact that, by Theorem 1, a structureB satisfiesϕA if and only if there is a
homomorphism fromA to B.

For the direction (2)⇒(1), we first use the fact that every existential positive formula is equivalent to a
finite disjunction

∨m
i=1 ψi, where eachψi is a conjunctive query. For each such conjunctive queryψi, let

Ai be thecanonicalfinite structure associated withψi, 1 ≤ i ≤ m. Note that such a canonical structure
Ai need not be a member ofC. Nonetheless, it is not hard to show that every minimal modelB of q in C
is equal to a homomorphic imageh(Ai) of one of the canonical finite structuresAi, 1 ≤ i ≤ m. Thus,
the cardinality of every minimal model ofq in C is less than or equal to the maximum cardinality of the
canonical finite structuresAi, 1 ≤ i ≤ m, which implies thatq has finitely many minimal models inC.

By Theorem 2, to establish the homomorphism-preservation theorem for the class of all finite struc-
tures, we would need to show that any first-order definable query preserved under homomorphisms has only
finitely many minimal models. Equivalently, it would suffice to show that for any such query there is a
bound on the size of the minimal models. Ajtai and Gurevich [3], in comparing the expressive power of
Datalog and first-order logic, showed that the minimal models of every first-order sentence preserved under
homomorphisms satisfy an interesting combinatorial property. Intuitively speaking, they aredense. More
precisely, if there are arbitrarily large minimal models, then they cannot be very thinly spread out, which
means that they do not contain a large set of elements all far away from each other. Furthermore, one cannot
remove a small number of elements from a large minimal model to create such a scattered set.

7



The Ajtai-Gurevich proof of this property is based on Gaifman’s Locality Theorem for first-order logic
[18]. Before we state the precise result, we need a definition and a piece of notation. LetG = (V,E) be
a graph. Recall the definition ofd-neighborhoodNG

d (u) in Section 2. We say that a subsetA ⊆ V of the
nodes isd-scatteredif NG

d (u) ∩NG
d (v) = ∅ for every two distinctu, v ∈ A. For a graphG = (V,E) and

a setB ⊆ V , we writeG− B for the graph obtained fromG by removing all nodes inB and the edges to
which they are incident. This is a notation we will use repeatedly in the sequel. We are ready for the result
of Ajtai and Gurevich. While they proved this for the class of all finite structures, it is easy to see that the
proof relativizes to classes satisfying some simple restrictions. This observation follows from the fact that
disjoint union and taking a substructure are the only constructions used in the proof in [3].

Theorem 3. Let C be a class of finiteσ-structures that is closed under substructures and disjoint unions.
Let q be a Boolean query that is first-order definable and preserved under homomorphisms onC. For every
s ≥ 0, there exist integersd ≥ 0 andm ≥ 0 such that ifA is a minimal model ofq, then there is noB ⊆ A
of size at mosts such thatG(A)−B has ad-scattered set of sizem. In particular, there exist integersd ≥ 0
andm ≥ 0 such that ifA is a minimal model ofq, thenG(A) does not have ad-scattered set of sizem.

Now, letC be a class of finiteσ-structures that is closed under substructures and disjoint unions. With
Theorems 2 and 3 in hand, in order to establish that the homomorphism-preservation theorem holds onC,
it suffices to show that for somes and everyd andm, all sufficiently large structures inC haved-scattered
sets of sizem after removing at mosts elements. We formulate this observation as the following corollary,
which we will use repeatedly in what follows.

Corollary 1. LetC be a class of finiteσ-structures having the following properties:

1. C is closed under substructures and disjoint unions;

2. for somes and for alld andm, there is anN so that ifA ∈ C has more thanN elements, then there
is a setB of at mosts elements such thatG(A)−B has ad-scattered set of sizem.

On the classC, every Boolean query that is first-order definable and preserved under homomorphisms is
definable by an existential positive first-order formula.

There is a case that is particularly easy in which we can takes = 0.

Lemma 1. For everyk ≥ 0, d ≥ 0, andm ≥ 0, there exists anN ≥ 0 such that for all graphsG = (V, EG)
with |V | > N and degree at mostk, the graphG has ad-scattered set of sizem.

Proof. Fix d ≥ 0 andm ≥ 0, let N = mkd, and letG = (V, EG) be a graph with|V | > N . The size of
thed-neighborhood of every node inG is bounded bykd. Therefore, there are at leastm nodes inG with
disjointd-neighborhoods.

As an immediate corollary we obtain the homomorphism-preservation result for classes of structures of
bounded-degree.

Theorem 4. LetC be a class of finiteσ-structures that is closed under substructures and disjoint unions, and
such that the structures inC have bounded degree. On the classC, every query that is first-order definable
and is preserved under homomorphisms is also definable by an existential-positive first-order formula.
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4 Classes of Bounded Treewidth

In this section we establish the homomorphism-preservation theorem for classes of bounded treewidth. Our
aim is to show a combinatorial result to the effect that if we have a bound on the treewidth of structures
in a class, then every sufficiently large structure will contain a large scattered set, after we have removed
a small number of elements. The results in this section are subsumed by those in Section 5, since a class
of structures of bounded treewidth excludes at least one minor (namely, some clique). However, the proof
method for classes of bounded treewidth is simpler than the one presented in Section 5 and also yields better
bounds on the maximum size of minimal models, so we present it separately.

Unlike for Lemma 1, it is no longer sufficient to takes = 0. To gain some intuition, consider the treeSn

which consists of a single root withn children. Since every pair of nodes is at most at distance 2, it is clear
thatSn does not contain ad-scattered set ford > 1, yet the tree can be arbitrarily large. However, removing
the root leaves a graph where the remaining nodes are scattered as no edges are left. This idea generalizes to
arbitrary trees, in the sense that in every sufficiently large tree, we need to removeat most onenode in order
to create a large scattered set. For, either the tree has a node of large degree or a long path. In the first case,
we remove a node of large degree and get a large number of disconnected components, hence a scattered
set. In the second case, along the long path, we can select a set of elements that are pairwise far away from
each other and thus form a scattered set. We generalize this idea to graphs of small treewidth. It turns out
that the maximum number of nodes we need to remove to create any desired scattered set is bounded by the
treewidth. This is proved using the Sunflower Lemma of Erdös and Rado [14].

Theorem 5 (Sunflower Lemma).LetF be a collection ofk-element subsets of a setA. If |F | > k!(p−1)k,
thenF contains a sunflower withp petals, that is, a subcollectionF ′ ⊆ F of sizep for which there exists a
setB such that every pair of distinct setsX andY in F ′ satisfyB = X ∩ Y .

Here is the promised combinatorial result:

Lemma 2. For everyk ≥ 1, d ≥ 0, andm ≥ 0, there exists anN ≥ 0 such that for all graphsG = (V, EG)
with |V | > N and treewidth less thank, there existsB ⊆ V of size at mostk such thatG − B has ad-
scattered set of sizem.

Proof. Let k ≥ 1, d ≥ 0, andm ≥ 0 be fixed. Definep = (m − 1)(2d + 1) + 1, M = k!(p − 1)k, and
N = k(m− 1)M . Let G = (V, EG) be a graph with|V | > N , and let us assume its treewidth is less than
k. Let (T, {Sv : v ∈ T}) be a tree-decomposition ofG with setsSv ⊆ V of size at mostk. By standard
manipulation on tree-decompositions, we may assume that for every pair of distinct nodesu, v ∈ T , both
Su − Sv andSv − Su are non-empty. Observe that the size ofT is at leastN/k + 1. We distinguish two
cases:

Case 1: There is a node inT of degree at leastm. Let v be such a node andB = Sv. Note that|B| ≤ k.
By our assumption on the tree-decomposition, we know thatSu−Sv is non-empty for every neighbouru of
v. Therefore, the graphG−B contains at leastm disconnected components, so ad-scattered set of sizem.

Case 2: There is no node inT of degree at leastm. In this case, since the size ofT is more than
N/k = (m − 1)M , there must exist a path inT of length at leastM . Since eachSv on this path has
size at mostk, and since the length of the path is at leastM = k!(p − 1)k, by the Sunflower Lemma,
there must existp = (m − 1)(2d + 1) + 1 setsSu1 , . . . , Sup on this path with a common intersectionB.
Clearly |B| ≤ k, and allTi = Sui − B are pairwise disjoint and non-empty by our assumption on the
tree-decomposition. We claim that choosing an arbitrary element inT1+i(2d+1) for eachi ∈ {0, . . . , m− 1}
produces ad-scattered subset inG−B. To see this, we need some notation. LetR =

⋃p
i=1 Ti be the union

9



of petals. Fora, b ∈ R, let d(a, b) denote the distance betweena andb in G − B. For every pointa ∈ R,
let P (a) = {v ∈ T : a ∈ Sv}. Note that everyP (a) is a connected subtree ofT by the third clause of the
definition of tree-decomposition. Moreover, since theTi’s are pairwise disjoint, eachP (a) contains at most
one of the nodesu1, . . . , up of the sunflower. Consider the shortest path inT going from a node inP (a) to
a node inP (b). We letm(a, b) denote the number of nodes of the sunflower that appear in this path.

Claim 1. If a andb belong toR, thenm(a, b) ≤ d(a, b).

Proof. Supposea and b are points inR. We proceed by induction on the lengthn of the shortest path
betweena andb in G − B. The base casen = 0 is obvious since thenm(a, b) = d(a, b) = 0. We are
ready for the inductive case. Leta = a0, a1, . . . , an+1 = b be a shortest path of lengthn + 1 in G−B and
assume the claim is true for shorter path-lengths. We need to prove thatm(a, b) ≤ n + 1. If m(a, b) = 0,
there is nothing to prove. Suppose then thatm(a, b) > 0 and letuj be a node of the sunflower that appears
in the shortest path of the tree betweenP (a) andP (b) and is closest toP (b). By the second property of
tree-decomposition, any path inG−B from a to b must go through some point inTj . So letk ∈ {1, . . . , n}
be such thatak belongs toTj . Let c = ak, note thatc ∈ R, and that the length of the shortest path between
a andc in G−B is k ≤ n. By induction hypothesis,m(a, c) ≤ d(a, c). But alsom(c, b) = 0 by the choice
of j andc in Tj . Thusm(a, b) ≤ m(a, c) + 1 becauseP (c) contains at most one node of the sunflower. It
follows thatm(a, b) ≤ d(a, c) + 1 ≤ d(a, b) and we are done.

Consider choosing one elementai in T1+i(2d+1) for eachi ∈ {0, . . . , m− 1}. Thenm(ai, aj) > 2d for
i 6= j. The lemma follows from the claim.

An immediate consequence of Lemma 2 and Corollary 1 is that the homomorphism-preservation theo-
rem holds for classes of structures of bounded treewidth.

Theorem 6. LetC be a class of finiteσ-structures that is closed under substructures and disjoint unions, and
such that the structures inC have bounded treewidth. On the classC, every query that is first-order definable
and is preserved under homomorphisms is also definable by an existential-positive first-order formula.

Many interesting classes have bounded treewidth. Among others, we find the class of all trees, the class
of all unicyclic graphs, and the class of all outerplanar graphs.

5 Classes with Excluded Minors

In this section we extend the combinatorial results from the previous section to classes of graphs which
exclude a minor. We say a class of graphsC excludes a graphG as a minorif no graph inC hasG as a
minor. Note that, every graphG is a minor ofKk, wherek is the number of nodes inG. Thus, ifC excludes
G as a minor, it also excludesKk because the graph minor relation is transitive. It therefore suffices to
establish our result for classes of structures that excludeKk as a minor for somek.

We aim to show that in the class of graphs that excludeKk as a minor, every sufficiently large graph
will contain large scattered sets after the removal of a small number of elements. Intuitively, if a graph does
not contain such a scattered set, then there is a large number of elements with short paths between each pair.
Either various paths must pass through a small number of elements or they are nearly disjoint. In the former
case, we can remove the elements to get a scattered set; in the latter, we can findKk as a minor in the graph.
It turns out, again, thatk provides a bound on the number of elements we need to remove.
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The formal proof of this intuitive idea is inspired by a construction due to Kreidler and Seese [30], which
establishes a result closely related to Theorem 8 below (see also [29]). Before the main result, we establish
a lemma on bipartite graphs. The proof relies on Ramsey’s Theorem (see [19]).

Theorem 7 (Ramsey’s Theorem).For everyl ≥ 0, k ≥ 0 andm ≥ 0, there is anN ≥ 0 such that ifA is a
set with|A| > N andf : [A]k → {1, . . . , l} a function on thek-element subsets ofA, there is a setI ⊆ A
with |I| > m such thatf is constant on[I]k, thek-element subsets ofI.

For later use, we writer(l, k, m) for the boundN obtained in Ramsey’s Theorem. Although we will
need it in its full generality, let us briefly comment on the particular caser(2, 2,m). This is a bound for
the graph version of Ramsey’s Theorem: every graph with more thanr(2, 2,m) vertices contains either an
independent set with more thanm elements or a clique with more thanm elements.

The following lemma will be a key stepping stone towards the main result. The lemma says, roughly,
that every large bipartite graphH = (A ∪B, E ⊆ A×B) that excludesKk as a minor contains a large set
of pointsA′ ⊆ A without common neighbours inB, except for a small set of exceptional pointsB′ ⊆ B
that are indeed common neighbours of all points inA′. The fact thatH excludesKk as a minor guarantees
that the set of exceptional pointsB′ is kept small.

Lemma 3. For everyk ≥ 1 andm ≥ 0, there is anN ≥ 0 such that ifH = (A ∪ B,E ⊆ A × B) is a
bipartite graph such thatKk is not a minor ofH and |A| > N , then there are setsA′ ⊆ A andB′ ⊆ B
with |A′| > m and|B′| < k − 1 such thatA′ ×B′ ⊆ E andA′ is 1-scattered inH−B′.

Proof. The casek ≤ 2 is trivial as, ifK2 is not a minor ofH, thenH contains no edges and takingN = m
suffices. We will therefore assume thatk ≥ 3 below. Furthermore, if the lemma is true for some value ofm
it is also true for allm′ ≤ m. Thus, it suffices to prove it for all large enoughm. In what follows we assume
thatm ≥ k2. Define the function

b(n) = r(k + 1, k, (k − 2)n + k − 2),

wherer is the Ramsey function. Defineb0(m) = m andbi+1(m) = b(bi(m)), and letN = bk−2(m). We
construct the setsA′ andB′ in a series of stages:

A0 ⊇ A1 ⊇ · · · ⊇ A′

B0 ⊆ B1 ⊆ · · · ⊆ B′.

The number of stages of this construction will be less thank − 1. Begin withA0 = A andB0 = ∅. Now,
suppose at stager < k − 2 we have setsAr ⊆ A andBr ⊆ B, with |Br| ≤ r and |Ar| > bk−2−r(m),
and such thatAr × Br ⊆ E. We defineAr+1 andBr+1. Let < be an arbitrary linear ordering ofAr. Let
f : [Ar]k → {0, . . . , k} be the function that assigns to eachk-element subsetx1 < x2 < · · · < xk of Ar

the maximumj ∈ {0, . . . , k} such that allx1, . . . , xj have a common neighbour inB − Br. By Ramsey’s
Theorem, there is a setI ⊆ Ar, with

|I| > (k − 2)bk−2−(r+1)(m) + k − 2

such thatf is constant on[I]k. We consider three cases:
Case 1:f([I]k) ≤ 1. Let C denote the lastk − 2 elements ofI under the order<. Then,I − C is

1-scattered inH − Br as every pair of elements inI − C forms the first two elements of some ordered
k-element subset ofI and therefore cannot have a common neighbour. Note also, that

|I − C| ≥ (k − 2)bk−2−(r+1)(m).
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Sincer < k − 2, this means|I − C| ≥ (k − 2)m ≥ m ask ≥ 3. Thus, takingA′ = Ar+1 = I − C and
B′ = Br+1 = Br, we are done.

Case 2:1 < f([I]k) < k. We will argue that, indeed, this case cannot occur. Letf([I]k) = t. If C
denotes the lastk − t elements ofI under the order<, then everyt-element subset ofI −C has a common
neighbour inB − Br, as it is the initial segment of sizet of somek-element subset ofI. Furthermore, no
(t + 1)-element subset ofI − C has a common neighbour inB − Br, from which we conclude that the
maximal degree of any element inB −Br (with respect toI − C) is t. Now, letX1, . . . , Xk ⊆ I − C be a
collection ofk pairwise disjoint sets, each with exactlyt elements. Such a collection exists, since

|I − C| > (k − 2)bk−2−(r+1)(m) ≥ m ≥ k2.

Then, by the argument above, for eachXi, there is aui ∈ B − Br which is a common neighbour of all
elements inXi, andui has no other neighbours. Thus, the setXi ∪ {ui} forms a connected patch in the
graphH−Br. Similarly, for eachi andj with 1 ≤ i < j ≤ k, we can find an elementuij ∈ B −Br such
that, if N(uij) denotes the set of neighbours ofuij in I, then:

1. N(uij) ⊆ Xi ∪Xj

2. N(uij) ∩Xi 6= ∅
3. N(uij) ∩Xj 6= ∅.

This is possible asXi andXj are disjoint and each hast > 1 elements. Thus, we can choose a subset of
Xi∪Xj that meets both sets and has exactlyt elements. Any common neighbour of this subset would serve
asuij . Again,uij cannot have any other neighbours inI − C, as no(t + 1)-element subset ofI − C has
a common neighbour. Thus, in particular,uij has no neighbours in anyXl for l different fromi andj. We
have thus foundk distinct connected patchesXi ∪ {ui} and pairwise disjoint paths (of length 2) between
any pair of them. ThusKk is a minor ofH, a contradiction.

Case 3:f([I]k) = k. This means that everyk-element subset ofI has a common neighbour inB −Br.
Let X = {x1, . . . , xk−1} be a collection ofk − 1 distinct vertices inI. As everyk-element subset ofI has
a common neighbour, there is a functionh : (I −X) → (B − Br) such thath(y) is a common neighbour
of X ∪ {y}. If the range ofh containsk − 1 distinct elements,H containsKk−1,k−1 as a subgraph and
thereforeKk as a minor. We may, therefore, assume that the range ofh has fewer thank − 1 elements.
Thus, there is aJ ⊆ I −X with |J | ≥ |I −X|/(k − 2) on whichh is constant. Letz ∈ B be the element
to whichh mapsJ . We letAr+1 = J ∪X andBr+1 = Br ∪ {z}. Observe thatz is a common neighbour
of all elements inAr+1, and that

|Ar+1| ≥ |X|+ |I −X|/(k − 2),

which is at least

(k − 1) + bk−2−(r+1)(m)− 1 > bk−2−(r+1)(m)

as required.
To complete the proof, we need to verify that the number of iterations does not reachk − 1. Note that

the iteration is repeated only in case 3, and in this caseBr+1 contains one more element thanBr. If the set
were to containk− 1 elements, as all these elements are neighbours of all elements inA′, which has at least
m ≥ k elements, we would have thatH containsKk−1,k−1, and thereforeKk as a minor. This establishes
that|B′| < k − 1.
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The main combinatorial result of this paper can now be proved by a construction that iterates Lemma 3.
For a fixed large graphG = (V, EG), we proceed inductively and generate two sequences of sets of vertices

V = S0 ⊇ S1 ⊇ · · · ⊇ Si

∅ = Z0 ⊆ Z1 ⊆ · · · ⊆ Zi,

whereSi is ani-scattered set inG−Zi. Once we haveSi, we can produce an(i+1)-scattered setSi+1 ⊆ Si

by viewing thei-neighborhoods of a certain subset ofSi on one side of a bipartite graph, and the vertices of
G− Zi that are adjacent to those neighborhoods on the other. Lemma 3 guarantees a large enough(i + 1)-
scattered set after removing a few more points which are then added toZi to obtainZi+1. Choosing which
points ofSi to put on the bipartite graph requires one more application of Ramsey’s Theorem. The technical
details follow.

Theorem 8. For everyk ≥ 1, d ≥ 0, andm ≥ 0, there is anN ≥ 0 such that ifG = (V, EG) is a graph
such thatKk is not a minor ofG and |V | > N , then there are setsS ⊆ V andZ ⊆ V with |S| > m and
|Z| < k − 1 such thatS is d-scattered inG− Z.

Proof. Once again, we prove the statement fork ≥ 2, as the casek = 1 is trivial. Define the function

c(n) = r(2, 2, bk−2(n)),

whereb is the function defined in the proof of Lemma 3 andr is the Ramsey function. LetN = cd(m). We
constructZ andS in d stages:

S0 ⊇ S1 ⊇ · · · ⊇ S

Z0 ⊆ Z1 ⊆ · · · ⊆ Z,

The setsZi andSi at stagei will be such that|Zi| < k − 1 andSi is i-scattered inG − Zi. Moreover,
|Si| > cd−i(m). Start withS0 = V andZ0 = ∅.

Suppose thatZi andSi have already been constructed. We constructZi+1 andSi+1. For everyu ∈ Si,
let Ni(u) be thei-neighborhood ofu in G − Zi. Consider the graph whose set of vertices is the set of
neighborhoods{Ni(u) : u ∈ Si}, and whose edges connect two different neighborhoodsNi(u) andNi(v)
if there existu′ ∈ Ni(u) andv′ ∈ Ni(v) such that{u′, v′} is an edge inG− Zi. The number of vertices of
this graph is

|Si| > cd−i(m) = r(2, 2, bk−2(cd−i−1(m))).

By the graph version Ramsey’s Theorem discussed before, this graph contains either an independent set or
a clique of more thanbk−2(cd−i−1(m)) elements. The existence of such a clique implies aKk minor inG
since thei-neighborhoods of elements inSi are disjoint and connected inG− Zi. Therefore, there must be
an independent set, say{Ni(u) : u ∈ I}, whereI ⊆ Si and

|I| > bk−2(cd−i−1(m)).

We define a bipartite graphH = (A ∪ B, E ⊆ A × B) on which to apply Lemma 3. LetA = I, and let
B be the set of vertices ofG − Zi that are adjacent to some vertex in

⋃
u∈I Ni(u). By the choice ofI,

the setsA andB are disjoint. The edges ofH connect verticesu ∈ A with those verticesv ∈ B that are
adjacent to some vertex inNi(u). Clearly,H has noKk minor; otherwiseG would also have one since
thei-neighborhoods of elements inI form disjoint connected patches inG − Zi. By Lemma 3, there exist
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A′ ⊆ A andB′ ⊆ B with |A′| > cd−i−1(m) such thatA′ × B′ ⊆ E andA′ is 1-scattered inH − B′. Let
Zi+1 = Zi ∪ B′ andSi+1 = A′, which is(i + 1)-scattered inG − Zi+1. The proof will be complete by
showing that if|Zi+1| ≥ k − 1, thenG has aKk−1,k−1 minor, and thus aKk minor.

Suppose that|Zi+1| ≥ k − 1. By construction,A′ × B′ ⊆ E, which means that, inG, eachb ∈ B′ is
adjacent to some vertex inNi(a) for everya ∈ A′. In fact, the inductive construction guarantees that each
b ∈ Zi is also adjacent, inG, to some vertexNi(a) for everya ∈ A′. Consider eachNi(u), with u ∈ A′,
as a connected patch in the subgraph ofG induced by

⋃
u∈A′ Ni(u) andZi+1. Note that these patches are

disjoint. TheKk−1,k−1 minor is now clear since|A′| ≥ k − 1 and|Zi+1| ≥ k − 1.

Combining this with Corollary 1 we get the following result.

Theorem 9. Let C be a class of finiteσ-structures that is closed under substructures and disjoint unions,
and such that the class of Gaifman graphs of structures inC excludes at least one minor. On the class
C, every query that is first-order definable and is preserved under homomorphisms is also definable by an
existential-positive first-order formula.

We now comment on the relationship between Theorem 9 and the earlier Theorems 6 and 4.
As noted earlier, the classT (k) of graphs of treewidth less thank excludesKk+1 as a minor. Thus,

the homomorphism-preservation theorem for these classes (Theorem 6) is a special case of Theorem 9.
Furthermore, there are many classes characterized by excluded minors that do not have bounded treewidth.
An example is the collection of planar graphs, which, by Kuratowski’s Theorem, excludeK5 andK3,3 as
minor, but have unbounded treewidth. Another example of a class of graphs that exclude some minor are
the graphs of bounded genus. Indeed, any class of graphs closed under taking minors and different from the
class of all finite graphs must exclude some minor; consequently, the preservation-under-homomorphisms
property holds for all these classes.

A more precise relationship between Theorems 6 and 9 can be obtained using certain deep results by
Robertson and Seymour [31] about classes of graphs excluding a minor. Specifically, Robertson and Sey-
mour [31] showed that for every graphH, the class of graphs excludingH as a minor is of bounded treewidth
if and only if H is planar (this result is a consequence of the the Excluded Grid Theorem of Robertson and
Seymour [31] - see also [11, Theorem 12.4.3]). Consequently, for every graphH, the preservation-under-
homomorphisms property for the class of graphs excludingH as a minor can be derived from Theorem 9,
but not from Theorem 6, precisely whenH is a non-planar graph.

It should also be noted that a class of graphs of bounded degree need not exclude any minor. This can
be seen by replacing every node of aKk by a binary tree withk− 1 leaves and connecting different pairs of
trees through disjoint pairs of leaves. The resulting graph has degree 3, but hasKk as a minor. Therefore,
Theorem 4 can not be derived as a consequence of Theorem 9.

6 Boolean Queries and Cores

We stated Theorems 4, 6 and 9 for queries of arbitrary arity even though the proofs were based on notions
of minimal models defined for Boolean queries. In this section we explain why the results extend to non-
Boolean queries. We then show that, if we consider Boolean queries only, the preservation property can be
shown for wider classes of structures than those considered in Theorems 4, 6 and 9.
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6.1 Non-Boolean Queries

SupposeC is a class of finiteσ-structures andq is ann-ary query onC. We say thatq is preserved under
homomorphisms onC if, for any A,B ∈ C and anyn-tuple a of elements fromA if a ∈ q(A) and
h : A → B is a homomorphism, thenh(a) ∈ q(B). In particular, ifq is a Boolean query onC, q is preserved
under homomorphisms onC if for every pair of structuresA andB in C, if there is a homomorphismh from
A to B andq(A) = 1, thenq(B) = 1.

There is a natural way to turn a non-Boolean query into a Boolean query in a vocabulary expanded with
constants. Letσ′ be the vocabulary obtained by extendingσ with n new constant symbolsc1, . . . , cn andC′
be the class of allσ′-structuresA whose restrictionA|σ to the vocabularyσ is in C. Similarly, letq′ be the
Booleanquery onC′ defined byq′(A) = 1 if and only if cA ∈ q(A|σ) wherecA is then-tuple of elements
in A interpreting the constantsc1, . . . , cn.

It is easily verified thatq is preserved under homomorphisms onC if, and only if, q′ is preserved under
homomorphisms onC′ (a homomorphism on structures interpreting constant symbols is also required to
preserve the interpretation of constants, i.e. ifh : A → B is a homomorphism, thenh(cA) = cB). More-
over, for aσ′ structureA, the Gaifman graphG(A|σ) is identical toG(A). Thus,C has bounded degree or
bounded treewidth or excludes a given minor if and only ifC′ does. Moreover, ifq′ is definable onC′ by an
existential positive sentenceψ, then there is an existential positive formula definingq on C. This formula
is obtained by replacing the constantsc1, . . . , cn by new variablesx1, . . . , xn. Thus, if the homomorphism
preservation theorem holds for Boolean queries onC′, it holds forn-ary queries onC. However, in our proofs
above we also require that the classes of structures we consider are closed under taking substructures and
disjoint unions. Unfortunately, these are properties that do not transfer fromC to C′. Due to the additional
constants, the latter may fail to have these closure properties even when the former has them.

To get around this problem, we use the notion of aplebian companionof a structure introduced by Ajtai
and Gurevich in [3]. We give a brief description of their construction. Supposeσ′ is a vocabulary including
the constant symbolsc1, . . . , cn and letA be aσ′-structure. The plebian companion ofA is a structurepA
in a vocabularyρ obtained fromσ′ as follows. Every relation symbolR in σ′ is also inρ but ρ does not
contain any of the constants. In addition, for each relation symbolR of arity r and each non-empty partial
functionm : {1, . . . , r} ⇀ {c1, . . . , cn}, ρ contains a new relation symbolRm whose arity isr− j wherej
is the number of elements of{1, . . . , r} on whichm is defined. In particular, ifm is total,r = j andRm is
then a0-ary relation symbol. That is to say, it is a Boolean symbol that is interpreted as either true or false
in anyρ-structure.

The plebian companionpA of A is aρ-structure whose universe is obtained from that ofA by excluding
the interpretation of the constants. For each relation symbolR in σ′, the interpretation ofR in pA is the
restriction ofRA to the universe ofpA. To define the interpretation ofRm, let a be anr − j tuple of
elements frompA. Let a′ be ther-tuple of elements ofA obtained froma by inserting in positioni the
element interpreting the constantm(i). We say thata ∈ RpA

m if and only if a′ ∈ RA. In the special case
thatRm is 0-ary, we say that it is interpreted as true if and only if the unique empty tuple is inRm by the
above rule.

It is straightforward to show that for anyσ′-formulaϕ there is aρ-formulaψ such thatpA |= ψ if and
only if A |= ϕ. Indeed,ψ is obtained byϕ by replacing each atomic formulaR(t̄) in which the tuple of
termst̄ contains constants, by the formulaRm(x̄) wherex̄ is obtained from̄t by removing the constants
andm is the partial function that mapsi to the constant occurring in positioni in t̄. It is easily seen that if
ϕ is existential positive, then so isψ. There is a similarly straightforward translation in the other direction,
which also preserves existential positive formulas. We can now make three useful observations about plebian
companions.
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Observation 1. The Gaifman graphG(pA) is a subgraph ofG(A).

Indeed,G(pA) is the subgraph ofG(A) induced by the elements that are not named by a constant.
Writing pC′ for the collection of plebian companions of the structures inC′, we see that one consequence
of the above observation is thatpC′ has bounded degree or bounded treewidth or excludes some minor ifC
does.

Observation 2. There is a homomorphism fromA to B if, and only if, there is a homomorphism frompA
to pB.

To see that this holds, leth be a homomorphism frompA to pB. We can extendh to a map̂h from A
to B by letting ĥ(cA) = cB for all constantsc. Clearly, if a is a tuple fromA which does not include the
interpretation of any of the constants, then for any relationR in σ, RA(a) ⇒ RpA(a) ⇒ RpB(h(a)) ⇒
RB(ĥ(a)), sinceĥ(a) = h(a). On the other hand, ifa contains constants, letm be the partial function that
mapsi to the constant occurring in positioni anda′ be the tuple obtained froma by removing the elements
named by constants. Sincêh mapscA to cB for each constantc, it is easily seen that̂h(a) is the tuple
obtained from̂h(a′) by inserting in positioni the element(m(i))B. Since, furthermorêh(a′) is the same as
h(a′), we have the following implications:RA(a) ⇒ RpA

m (a′) ⇒ RpB
m (h(a′)) ⇒ RB(ĥ(a)), establishing

thatĥ is a homomorphism.
For the other direction, supposeg is a homomorphism fromA toB. We wish to show that the restriction

of g to the universe ofpA is a homomorphism frompA to pB. For any relation symbolR in σ, it is obvious
thatRpA(a) ⇒ RpB(g(a)) just by the fact thatg is a homomorphism fromA to B. Now, if Rm is a new
symbol inρ anda is a tuple such thatRpA

m (a), let a′ be the tuple obtained froma by inserting in positioni
the element(m(i))A. Then, we haveRpA

m (a) ⇒ RA(a′) by the definition ofRpA
m , RA(a′) ⇒ RB(g(a′))

by the fact thatg is a homomorphism andRB(g(a′)) ⇒ RpB
m (g(a)) by the definition ofRpB

m and the fact
thatg preserves the interpretation of constants.

Finally, the following observation is straightforward.

Observation 3. If C is closed under disjoint unions and substructures, then so ispC′.
Together these observations imply that if the preservation theorem is proved only with respect to Boolean

queries for all classesC of bounded degree, of bounded treewidth or for classes excluding some minor, it
is also established for all queries over such classes. For instance, letC be a class of structures of bounded
degree and letϕ be a formula, with free variables, that is preserved under homomorphisms onC. Let pC′
be the corresponding class of plebian companions ofC (note that the class depends on the number of free
variables inϕ). Then,pC′ is also of bounded degree and we have asentenceψ such that for any structure
A ∈ C and tuplea of elements fromA, A |= ϕ[a] if and only if pA′ |= ψ whereA′ is the expansion ofA
with constants for all elements ina. Thus,ψ is equivalent to an existential positive sentence onpC′ and by
the arguments above, this implies thatϕ is equivalent to an existential positive sentence onC. This justifies
the statement of Theorems 4, 6 and 9 for queries of arbitrary arity.

6.2 Cores

Let q be a Boolean query that is preserved under homomorphisms on all finiteσ-structures. The key ob-
servation we make is that the minimal models ofq arecores. The concept of core was introduced in the
context of graph theory (see [25]), but it generalizes naturally to relational structures. A substructureB of
A is called acoreof A if there is a homomorphism fromA toB, but, for every proper substructureB′ of B,
there is no homomorphism fromA to B′. It can be seen that every finite structureA has a unique core up
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to isomorphism, denoted bycore(A), and thatA is homomorphically equivalent tocore(A). If a structure
A is its own core, we say thatA is a core. It is now clear from the definitions that ifq is a query that is
preserved under homomorphisms on all finiteσ-structures, then every minimal model ofq is a core. More
generally, ifC is a class of finiteσ-structures closed under substructures, andq is a query preserved under
homomorphisms onC, then every minimal model ofq in C is a core.

Now, combining the above observation with Theorem 3, we can strengthen Corollary 1 so that it is not
the structures in a classC that are required to have the property of low density. It suffices to show that the
collection of Gaifman graphs of cores of the structures inC has this property.

Corollary 2. LetC be a class of finiteσ-structures having the following properties:

1. C is closed under substructures and disjoint unions;

2. for somes and for alld andm, there is anN so that ifA ∈ C andcore(A) has more thanN elements,
then there is a setB of at mosts elements such thatG(core(A))−B has ad-scattered set of sizem.

On the classC, every Boolean query that is first-order definable and preserved under homomorphisms is
definable by an existential positive first-order formula.

Combining this with Lemma 1, we obtain a stronger version of Theorem 4 specifically for Boolean
queries. That is, the following is stronger than Theorem 4 in one direction in that it applies to a wider
collection of classes of structures, but weaker in another in that it only applies to Boolean queries.

Theorem 10. Let C be a class of finiteσ-structures that is closed under substructures and disjoint unions,
and such that the class of cores of structures inC has bounded degree. On the classC, every Boolean query
that is first-order definable and is preserved under homomorphisms is also definable by an existential-
positive first-order formula.

We are able to similarly generalize Theorems 6 and 9 for the specific case of Boolean queries. More
precisely, for every positive integerk ≥ 2, letH(T (k)) be the class of all finiteσ-structuresA such that the
core ofA has treewidth less thank. These classes have been studied in the context of constraint-satisfaction
problems in [9, 20]. It is easy to see that for eachk ≥ 2, the classH(T (k)) coincides with the class of
all finite σ-structures that are homomorphically equivalent to aσ-structure of treewidth less thank. In the
following, when we say that the structures in a classC have cores of bounded treewidth, we mean that there
is a positive integerk such thatC ⊆ H(T (k)).

Theorem 11. Let C be a class of finiteσ-structures that is closed under substructures and disjoint unions,
and such that the structures inC have cores of bounded treewidth. On the classC, every Boolean query that
is first-order definable and is preserved under homomorphisms is also definable by an existential-positive
first-order formula.

In Section 4 we mentioned several natural examples of classes of structures of bounded treewidth.
Classes of structures whose cores have bounded treewidth are even more pervasive. For example, the core
of every non-trivial bipartite graph isK2, the graph consisting of a single edge. Hence, the class of bipartite
graphs is contained inH(T (2)). However, all grids are bipartite and have arbitrarily large treewidth. Thus,
T (2) is properly contained inH(T (2)); in fact, for everyk ≥ 2, we have thatT (k) is properly contained
in H(T (k)). For another example, consider all planar graphs that containK4 as a subgraph. By the Four
Color Theorem for planar graphs, every such graph is4-colorable, hence it is homomorphically equivalent
to K4 and so it is contained inH(T (4)).

Finally, we state the preservation result for Boolean queries and classes of structures whose cores exclude
some minor.
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Theorem 12. Let C be a class of finiteσ-structures that is closed under substructures and disjoint unions,
and such that the class of Gaifman graphs of cores of structures inC excludes at least one minor. On the
classC, every Boolean query that is first-order definable and is preserved under homomorphisms is also
definable by an existential-positive first-order formula.

Theorem 12 subsumes Theorem 11 in the same way as Theorem 9 subsumes Theorem 6, since the Gaif-
man graphs of cores of structures inH(T (k)) excludeKk+1 as a minor. The relationship with Theorem 10
is less clear. At the end of Section 5 above, we presented an example of a class of structures that has bounded
degree but does not exclude any minors. However, the structures involved are not cores. If we could con-
struct a class of cores of bounded degree which nevertheless do not exclude any minor, this would show that
Theorems 10 and 12 are similarly incomparable.

It is not clear whether Theorems 10, 11 and 12 can be extended to non-Boolean queries. All we can
say is that the method of plebian companions (from Section 6.1) does not give the desired outcome. To
understand why this is the case, recall that we define for any classC and anyn the classC′ of expansions
of structures inC by n constants and then the classpC′ of plebian companions of structures inC′. Since
the Gaifman graphs structures inC′ are the same as those of the corresponding graphs inC we know that
restrictions on the latter also apply to the former. However, it is not the case that the cores of structures inC′
are cores of structures inC. It is possible that the cores of structures inC have bounded degree (for instance)
while the cores of structures inC′ do not. This is illustrated by the following example.

Let awheelbe a graphWn (for n ≥ 3) with verticesh, c1, . . . , cn and edges connectingc1, . . . , cn in
a simple cycle along with an edge fromh (the hub) to eachci. It is easily seen that,Wn is 4-colorable
and, ifn is odd,Wn is a core. Let abicyclebe a graph of the formBn = Wn + K4, wheren ≥ 3. That
is, Bn is the disjoint union ofWn andK4 (note that, asK4 is the same asW3, a bicycle consists of two
wheels). From the fact thatWn is 4-colorable, it is clear that the core ofBn is K4. Thus, ifC is the class of
all bicycles, the cores of structures inC have bounded degree. Consider now(Bn, h), the expansion ofBn

with a constant naming the hubh of Wn. Since any homomorphism of this structure must fixh andWn is
itself a core whenn is odd, it follows for oddn ≥ 5, we have that(Bn, h) is itself a core and it contains a
node of degreen. Thus, ifC′ is the class of expansions of structures inC by one constant, the class of cores
of structures inC′ has unbounded degree.

7 Ajtai-Gurevich Theorem Revisited

The Ajtai-Gurevich Theorem [3] asserts that every Datalog program that is first-order definable on finite
structures isbounded, that is, the associated monotone operator reaches its least fixed-point after a uniformly
bounded number of iterations on every finite structure. The aim of this section is to present a proof of this
theorem that is based on the results about treewidth in Section 4. Our proof of the Ajtai-Gurevich Theorem
can be construed as a re-intepreration of the original proof that makes explicit the role of bounded treewidth
and exposes the components of the original argument. Moreover, we obtain a stronger result for a family of
infinitary logics that taken together are strictly more expressive than Datalog. This stronger result, however,
is weaker than the result claimed in the preliminary version of this paper [6], which appeared in the PODS
2004 Proceedings. In this section, we will also spell out the precise differences between what was claimed
in [6] and what is actually established here.
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7.1 Proof of the Ajtai-Gurevich Theorem

The collection ofinfinitary formulasL∞ω is obtained by closing the atomic formulas under negation, infini-
tary conjunctions, infinitary disjunctions, universal quantification, and existential quantification. For every
positive integerk, thek-variable fragment ofL∞ω, denoted byLk∞ω, consists of allL∞ω formulas with
at mostk distinct variables; note that each variable may have an unbounded number of occurrences in a
Lk∞ω-formula. The collection ofexistential positive infinitary formulas∃L+∞ω is obtained by closing the
atomic formulas under infinitary conjunctions, infinitary disjunctions, and existential quantification. The
k-variable fragment of∃L+∞ω is denoted by∃Lk,+∞ω. From Section 2, recall that ak-Datalog program is a
Datalog program in which every rule has at mostk distinct variables. It was shown in [28] that for every
positive integerk, everyk-Datalog query is expressible in∃Lk,+∞ω. As a matter of fact, Theorem 4.3 in [28]
asserts thatk-Datalog is contained in a certain fragment of the existential positive infinitary logic∃L+∞ω that
we describe next.

For every positive integerk, let CQk be the collection of all first-order formulas that have at mostk dis-
tinct variables and are obtained from atomic formulas using conjunction and existential quantification only;
note that each variable may be reused in aCQk-formula, so its number of occurrences may be arbitrarily
large. Clearly, everyCQk-formulaψ defines a conjunctive query, since, by transformingψ to a formula in
prenex normal form, we obtain an expression of the form∃x1 . . . ∃xnθ, wheren ≥ k andθ is a conjunction
of atomic formulas. As an example, the expression

∃x1∃x2(E(x1, x2) ∧ (∃x1(E(x2, x1) ∧ ∃x2E(x1, x2))))

is aCQ2-formula that is logically equivalent to the conjunctive query

∃x1∃x2∃x3∃x4(E(x1, x2) ∧ E(x2, x3) ∧ E(x3, x4)),

which asserts that there is a path of length 4.
Next, let∃FOk,+ be the first-order fragment of∃Lk,+∞ω, that is,∃FOk,+ is the collection of all first-order

formulas that have at mostk distinct variables and are obtained from atomic formulas using conjunction,
disjunction, and existential quantification. Since conjunctions distribute over disjunctions and since existen-
tial quantifiers commute with disjunctions, it is clear that every∃FOk,+-formula is logically equivalent to a
finite disjunction

∨m
i=1 ψm of CQk-formulas.

Finally, let
∨

CQk be the collection of all disjunctions (finite and infinite) ofCQk-formulas, that is,∨
CQk consists of all∃Lk,+∞ω-formulas of the form

∨
Φ, whereΦ is a (possibly infinite) set ofCQk-formulas.

Thus,∃FOk,+ has the same expressive power as the fragment of
∨

CQk consisting of all formulas of the
form

∨
Φ, whereΦ is a finite set ofCQk-formulas.

The connection betweenk-Datalog andk-variable logics can now be stated as follows (see [28, Theo-
rem 4.3]):

Theorem 13. Letk be a positive integer andπ a k-Datalog program.

1. For each positive integerm, them-th stage of the monotone operator associated withπ is definable
by a finite disjunction ofCQk-formulas.

2. The query expressed byπ is
∨

CQk-definable. Specifically, ifθm is a finite disjunction ofCQk-
formulas defining them-th stage of the monotone operator associated withπ, then the query expressed
byπ is definable by the

∨
CQk-formula

∨
m≥1 θm.
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The preceding Theorem 13 implies that, as regards expressive power, Datalog is contained in the family
of infinitary logics

∨
CQk, k ≥ 1. It is easy to see that this containment is a proper one, since every Datalog

query is polynomial-time computable, while even
∨

CQ2 can express non-recursive queries. Specifically,
for everyn ≥ 2, let ψn be aCQ2-sentence asserting that “there is a path of lengthn”. Then, if S is a
non-recursive set of positive integers, the

∨
CQ2-sentence

∨
n∈S ψn defines a Boolean query that is not

expressible in Datalog.
We will also need a connection betweenCQk-sentences and structures of treewidth less thank. This

was first obtained in [28, Remark 5.3] and further refined in [9, Theorem 12]. We state this connection in
the next lemma and include its proof for completeness.

Lemma 4. If k is a positive integer andϕ is anCQk-sentence, then there is a structureD of treewidth less
thank such that the canonical conjunctive queryϕD of D is logically equivalent toϕ.

Proof. Assume thatϕ is anCQk-sentence. Letψ be the result of renaming all occurrences of variables inϕ
so that each existential quantifier bounds a different variable. Repeatedly apply the following rewriting rules
to the subformulas ofψ: replace subformulas of the formψ′∧ (∃x)(ψ′′) by (∃x)(ψ′∧ψ′′), and subformulas
of the form(∃x)(ψ′)∧ψ′′ by (∃x)(ψ′∧ψ′′). Note that these rules preserve equivalence because each variable
is quantified only once inψ. The result is a conjunctive query(∃x1) · · · (∃xn)θ that is equivalent toψ, where
θ is a conjunction of atomic facts. LetD be the canonical structure associated with the conjunctive query
(∃x1) · · · (∃xn)θ, which means that the universe ofD is the set{x1, . . . , xn}, and(xi1 , . . . , xir) ∈ RD if,
and only if, the atomic formulaR(xi1 , . . . , xir) appears inθ. By construction, the canonical conjunctive
queryϕD of D is (∃x1) · · · (∃xn)θ, hence it is logically equivalent toϕ.

It remains to show thatD has treewidth less thank. Let ψ1, ψ2, . . . , ψr be the collection of all subfor-
mulas ofψ. View them as nodes of the parse-tree ofψ. Label each nodeψi of the tree by the set of free
variables ofψi. Sinceϕ hask variables in total, eachψi has at mostk free variables, so each label has size
at mostk. Using the fact that each variable is quantified exactly once inψ and that each atomic fact ofD is
a subformula ofψ, it is not hard to see that the tree and its labeling form a tree-decomposition ofD of width
at mostk − 1. Hence, the treewidth ofD is less thank.

The next lemma establishes a connection between minimal models of
∨

CQk-sentences and structures
of treewidth less thank.

Lemma 5. Letk be a positive integer, letψ be a
∨

CQk-sentence, and letA be a model ofψ. There exists
a structureB having the following properties:

1. B is a minimal model ofψ;

2. the treewidth ofB is less thank;

3. there is a homomorphism fromB to A.

Furthermore, ifA is a minimal model ofψ, then there is a surjective homomorphism fromB to A.

Proof. Let ψ be a
∨

CQk-sentence of the form
∨

Φ, whereΦ is a set ofCQk-sentences. IfA is a model of
ψ, then there is anCQk-sentenceϕ ∈ Φ such thatA |= ϕ. By Lemma 4, there is a structureD of treewidth
less thank such thatϕ is logically equivalent to the canonical conjunctive queryϕD of D. Consequently,
A |= ϕD, which, by Theorem 1, implies that there is a homomorphismh from D to A. SinceD is a model
of ϕ, it is also a model ofψ; consequently, there is a substructureB of D that is a minimal model ofψ. The
treewidth ofB is less thank, sinceB is a substructure ofD and the treewidth ofD is less thank. Moreover,
the restrictionh′ of h onB is a homomorphism fromB to A.
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The imageh′(B) of B underh′ is a substructure ofA; moreover, it is a model ofψ, since
∨

CQk-
formulas are preserved under homomorphisms. It follows that ifA is a minimal model ofψ, thenh′(B) =
A, which means thath′ is an onto homomorphism fromB to A.

The preceding Lemma 5 shows that every minimal model of a
∨

CQk-sentenceψ is the homomorphic
image of a minimal modelψ of treewidth less thank. In the preliminary version of this paper [6, Lemma
4], we asserted thateveryminimal model of a

∨
CQk-sentence has treewidth less thank. This, however,

is not true. As a matter of fact, there areCQk-sentences that have minimal models of treewidth at leastk.
For example, letψ be theCQ2-sentence∃x1∃x2((E(x1, x2)∧ (∃x1(E(x2, x1)∧ (∃x2E(x1, x2))))), which
asserts that there is a path of length three. The directed 3-element cycleC3 is a minimal model ofψ, but has
treewidth2.

We are now ready to state and prove the main result of this section.

Theorem 14. Letk be a positive integer and let
∨

Φ be a
∨

CQk-sentence, whereΦ is a (possibly infinite)
set ofCQk-sentences. The following statements are equivalent:

1. There is a finite subsetΨ of Φ such that
∨

Φ is equivalent to
∨

Ψ on all finite structures.

2.
∨

Φ is equivalent to some∃FOk,+-sentence on all finite structures.

3.
∨

Φ is equivalent to some first-order sentence on all finite structures.

Proof. The implications(1) ⇒ (2) and(2) ⇒ (3) are quite obvious. Towards establishing the implication
(3) ⇒ (1), assume that

∨
Φ is a

∨
CQk-sentence that is equivalent to some first-order sentenceψ on all

finite structures. We claim that
∨

Φ has finitely many non-isomorphic minimal models. Indeed, if
∨

Φ had
arbitrarily large minimal models, then Lemma 5, implies that

∨
Φ has arbitrarily large minimal models of

treewidth less thank. But then, by Lemma 2, for everyd ≥ 0 andm ≥ 0, and for every sufficiently large
minimal modelA of treewidth less thank, there existsB ⊆ A of size at mostk such thatA − B has
a d-scattered set of sizem. Theorem 3 implies immediately that

∨
Φ is not equivalent to any first-order

sentence on finite structures. This establishes that
∨

Φ has finitely many non-isomorphic minimal models.
Let D1, . . . ,Dm be a list of all pairwise non-isomorphic minimal models of

∨
Φ, and, for eachi ≤ m,

let ϕDi be the canonical conjunctive query ofDi. Since
∨

Φ is preserved under homomorphisms, we have
that

∨
Φ is equivalent to

∨m
i=1 ϕDi on finite structures. In particular, we have that

∨m
i=1 ϕDi logically

implies
∨

Φ on finite structures. Since everyCQk-sentence is logically equivalent to a conjunctive query,
the fact that

∨m
i=1 ϕDi logically implies

∨
Φ on finite structures amounts to the union of the conjunctive

queriesϕD1 , . . . , ϕDm logically implying the union of the conjunctive queries inΦ. Sagiv and Yannakakis
[34] have shown that a union of conjunctive queries logically implies another union of conjunctive queries if
and only if every conjunctive query in the first union logically implies some conjunctive query in the second
union. It follows that for everyi ≤ m, there is anCQk-sentenceθi in Φ such thatϕDi logically implies
θi.1 This yields that

∨m
i=1 ϕDi logically implies

∨m
i=1 θi, which, in turn, logically implies

∨
Φ. At the same

time,
∨

Φ is logically equivalent to
∨m

i=1 ϕDi ; consequently,
∨

Φ is also logically equivalent to
∨

Ψ, where
Ψ = {θi : 1 ≤ i ≤ m}.

Although the preceding Theorem 14 was stated and proved for
∨

CQk-sentences, it holds for
∨

CQk-
formulas with free variables. This can be shown using the transformation of non-Boolean queries to Boolean
queries, as described in Section 6.

1This can also be established directly as follows. Fix somei ≤ m. SinceDi |= ϕDi , we have thatDi |=
W

Φ. Consequently,
there is anCQk-sentenceθi in Φ such thatDi |= θi. Sinceθi is logically equivalent to a conjunctive query, Theorem 1 tells that
ϕDi logically impliesθi.
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The Ajtai-Gurevich Theorem [3] can now be obtained easily from Theorems 13 and 14.

Theorem 15 (Ajtai-Gurevich Theorem). Let π be a Datalog program. The following statements are
equivalent:

1. π is bounded, which means that there is a positive integers such that, on every finite structure, the
query expressed byπ can be computed within at mosts iterations of the monotone operator associated
with π.

2. π is first-order definable, which means that there is a first-order formula such that, on every finite
structure, it defines the query expressed byπ.

Proof. The difficult direction is(2) ⇒ (1). Let k be the number of variables of the Datalog programπ. By
Theorem 13, the query expressed byπ is definable by a

∨
CQk-formula

∨
Φ. By Theorem 14, if there is

a first-order formula that defines this query on all finite structures, then there is a finite subsetΨ of Φ such
that

∨
Φ is logically equivalent to

∨
Ψ on finite structures. Consequently, there is a positive integers such

that
∨

Φ is logically equivalent to the formulaθs defining thes-th stage of the monotone operator associated
with π. It follows that, on every finite structure, the query expressed byπ can be computed within at mosts
iterations of the monotone operator associated withπ.

Note that Theorem 14 is a stronger result than Theorem 15, since, as detailed in the remarks following
Theorem 13, the family of infinitary logics

∨
CQk, k ≥ 1, has strictly higher expressive power than Datalog.

7.2 On the Relationship Between the Infinitary Logics
∨

CQk and ∃Lk,+
∞ω

In the remainder of this section, we will examine the relationship between the full existential positive in-
finitary logic∃Lk,+∞ω with k variables and its fragment

∨
CQk, k ≥ 1. In a nutshell, the precise relationship

between∃Lk,+∞ω and
∨

CQk is as follows. On the class of all finite structures, every∃Lk,+∞ω-sentence is
equivalent to an infinitary disjunction of infinitary conjunctions ofCQk-sentences; as we will be seen be-
low, this normal-form theorem for∃Lk,+∞ω can be obtained easily from results in [27]. In the preliminary
version of this paper, we claimed that on the class of all finite structures, every∃Lk,+∞ω-formula is equivalent
to a

∨
CQk-formula. Regrettably, this claim turns out to be false because we will show here that there are

infinitary conjunctions
∧

Φ of CQ2-sentences that are not equivalent to any
∨

CQ2-sentence. Thus, the
aforementioned normal form of∃Lk,+∞ω-sentences as infinitary conjunctions of

∨
CQk-sentences is optimal

and cannot be simplified.
The expressive power of∃Lk,+∞ω is captured by theexistentialk-pebble game, introduced in [27] and

studied further in [28]. This game is played between two players, the Spoiler and the Duplicator, on two
σ-structuresA andB according to the following rules. Each player has a set ofk pebblesα1, . . . , αk

andβ1, . . . , βk respectively. In each round of the game, the Spoiler can make one of two different types
of moves: either he places a free pebbleαi on an element of the domain ofA, or he removes a pebble
αi from a pebbled element ofA. To each move of the Spoiler, the Duplicator must respond by placing
her corresponding pebbleβi over an element ofB, or removing her corresponding pebbleβi from B,
respectively. If the Spoiler has a strategy to reach a round in which the set of pairs of pebbled elements is not
a partial homomorphism betweenA andB, then he wins the game. Otherwise, we say that the Duplicator
wins the game. The following link between existentialk-pebble games and∃Lk,+∞ω was established in [27,
Corollary 4.9 and Remark 4.11].

Theorem 16. Let k be a positive integer, and letA andB be two finiteσ-structures. The following state-
ments are equivalent.
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1. Every∃Lk,+∞ω-sentence that is true onA is also true onB.

2. Every∃FOk,+-sentence that is true onA is also true onB.

3. The Duplicator wins the existentialk-pebble game onA andB.

As explained earlier in this section, every∃FOk,+-formula is equivalent to a finite disjunction
∨m

i=1 ψm

of CQk-formulas. Consequently, the second statement in the preceding Theorem 16 can be replaced by the
seemingly weaker statement

2′. EveryCQk-sentence that is true onA is also true onB.

For every positive integerk and every finiteσ-structureA, let q(A, k) be the query: given a finite
σ-structureB, does the Duplicator win the existentialk-pebble game onA andB?

The next result follows easily from Theorem 16 and the preceding observation about statement2′.

Theorem 17. Letk be a positive integer.

1. For every finiteσ-structureA, the queryq(A, k) is definable by the following infinitary conjunction
of CQk-sentences ∧

{θ : θ is anCQk-sentence andA |= θ}.

2. On the class of all finiteσ-structures, every∃Lk,+∞ω-sentenceϕ is equivalent to the following infinitary
disjunction ∨

{q(A, k) : A is a finiteσ-structure andA |= ϕ}.
Consequently, on the class of all finiteσ-structures, every∃Lk,+∞ω-sentence is equivalent to an infinitary
disjunction of infinitary conjunctions ofCQk-sentences.

In what follows, we show that the above normal form for∃Lk,+∞ω cannot be improved. For this, we need
an auxiliary result concerning the definability of the queryq(A, k).

Proposition 1. Let k be a positive integer and letA be a finiteσ-structure. The following statements are
equivalent.

1. The queryq(A, k) is
∨

CQk-definable on the class of all finiteσ-structures.

2. The queryq(A, k) is CQk-definable on the class of all finite structures.

Proof. The direction(2) ⇒ (1) is obvious. For the direction(1) ⇒ (2), let us assume that, on the class
of all finite σ-structures, the queryq(A, k) is definable by a sentence

∨
Θ, whereΘ is a (possibly infinite)

set ofCQk-sentences. SinceA satisfies the queryq(A, k), there is anCQk-sentenceθ ∈ Θ such that
A |= θ. We now claim thatθ defines the queryq(A, k) on the class of all finiteσ-structures. Indeed, if
B is a finite model ofθ, thenB |= ∨

Θ, henceB satisfies the queryq(A, k). Conversely, ifB is a finite
σ-structure such that the Duplicator wins the existentialk-pebble game onA andB, then, by Theorem 16,
every∃Lk,+∞ω-sentence satisfied byA is also satisfied byB; consequently,B satisfiesθ.

Assume thatk is a positive integer andA is a finite structure whose core has treewidth less thank. In
[9], it was shown that for every finite structureB, the Duplicator wins the existentialk-pebble game onA
andB if and only if there is a homomorphism fromA to B. It follows that, in this case, the queryq(A, k) is
definable by the canonical conjunctive queryϕA of A; furthermore,ϕA is equivalent to anCQk-sentence,
since the core ofA has treewidth less thank. This gives a large collection of structuresA for which the
queryq(A, k) is CQk-definable, hence it is also

∨
CQk-definable. In contrast, the next proposition shows

that this need not always be true.
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Proposition 2. LetC3 be the directed3-element cycle.

1. The queryq(C3, 2) is not first-order definable.

2. The queryq(C3, 2) is
∧

CQ2-definable, but is not
∨

CQ2-definable.

Proof. Let B be a finite directed graph. It is easy to verify that the Duplicator wins the existential2-pebble
game onC3 andB if and only if B contains a cycle. Indeed, in the existential2-pebble game onC3 and
B, the Spoiler can force the Duplicator to play along a path. SinceB is finite, the Duplicator can win the
existential2-pebble game only ifB contains a cycle. Conversely, ifB contains a cycle, then the Duplicator
can win the existential2-pebble game onC3 andB by playing along edges of a fixed cycle.

It is well known that the query “given a finite directed graph, is it acyclic?” is not first-order definable
(this can be shown using Ehrenfeucht-Fraı̈sśe games). Thus, the queryq(C3, 2) is not first-order definable.

By Theorem 17, the queryq(C3, 2) is
∧

CQ2-definable. In contrast, Proposition 1 implies thatq(C3, 2)
is not

∨
CQ2-definable, since, if it were, then it would beCQ2-definable and, hence, first-order definable.

Corollary 3. On the class of all finite directed graphs,
∨

CQ2 is strictly less expressive than∃L2,+∞ω.

As mentioned earlier, Corollary 3 refutes our claim in the preliminary version of this paper ([6, Lemma
5]) to the effect that, on the class of all finite structures, for every positive integerk, every∃Lk,+∞ω-sentence
is equivalent to a

∨
CQk-sentence.

7.3 Extensions to Stronger Infinitary Logics

Since every∃Lk,+∞ω-sentence is preserved under homomorphisms, Rossman’s [33] preservation-under-homomorphisms
theorem implies that if a∃Lk,+∞ω-sentence is equivalent to a first-order sentence on finite structures, then it is
also equivalent to an existential-positive first-order sentence on finite structures [6, Theorem 9]. Moreover,
since

∨
CQk is a fragment of∃Lk,+∞ω, Rossman’s result also implies that if a

∨
CQk-sentence is equivalent

to a first-order sentence on finite structures, then it is also equivalent to an existential-positive first-order sen-
tence. However, Rossman’s proof does not yield the stronger result established in Theorem 14, namely, that
if a

∨
CQk-sentence is equivalent to a first-order sentence on finite structures, then it is equivalent to some

∃FOk,+-sentence (that is, to some existential-positive first-order sentence with at mostk distinct variables).
Indeed, Rossman’s proof produces an equivalent existential-positive first-order sentence with more thank
distinct variables. In turn, this state of affairs gives rise to the following problem, which is open at present.

Problem: Suppose that a∃Lk,+∞ω-sentenceψ is equivalent to a first-order sentence on the class of all finite
structures. Is it true thatψ is equivalent to some∃FOk,+-sentence on the class of all finite structures?

Finally, it is natural to ask whether the Ajtai-Gurevich Theorem and Theorem 14 hold for more expres-
sive logics that allow for some form of negation. Ajtai and Gurevich [3] showed that their theorem fails both
for Datalog programs with negated extensional predicates and for Datalog programs with inequalities6=. It
follows that Theorem 14 fails for extensions of

∨
CQk that allow for negated atoms or for inequalities6=.

Thus, the results presented in this section are very tightly connected to preservation under homomorphisms,
and fail for Datalog extensions and for stronger infinitary logics in which sentences are preserved under
two-way homomorphisms or one-to-one homomorphisms.
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8 Concluding Remarks

We have investigated the homomorphism-preservation theorem for numerous classes of finite structures
of interest in graph theory and database theory. As noted earlier, preservation theorems do not always
relativize to restricted classes of structures, so our results stand by themselves independently of the fact that
the homomorphism-preservation theorem has been shown to hold on the class of all finite structures [33].
Indeed, one can ask the same question for other classes of finite structures. For instance, we could consider
classes of bounded local treewidth [13, 17] or of bounded cliquewidth [8]. The homomorphism-preservation
theorem for these classes does not follow from our results, as these classes are not definable by excluded
minors. Indeed, the classes of bounded local treewidth generalise both bounded treewidth and bounded
degree. Also, the class of all cliques has bounded cliquewidth but does not exclude any minor. However,
it is worth investigating whether the kinds of techniques we have developed could yield results about these
classes.

Another line of investigation would ask similar questions to those studied here for other classical preser-
vation theorems, and in particular, for those that fail on the class of all finite structures, such as the Łoś-Tarski
Theorem and Lyndon’s Positivity Theorem. The first results in this direction have been reported in [5].

It should also be pointed out that our results are effective. More precisely, for the classes of structures
for which we established the homomorphism-preservation theorem, the proofs provide us with a computable
bound on the size of the minimal models of a first-order query preserved under homomorphisms. This yields
an effective procedure to produce a union of conjunctive queries that is equivalent to a given first-order
formula that is preserved under homomorphisms. In turn, for classes of structures whose first-order theory
is decidable, such asT (k), the computable bound can also be used to show that it is decidable whether a
first-order formula is preserved under homomorphisms. This should be contrasted with the undecidability
of the same problem on the class of all finite structures [4]. The exact complexity of these problems on the
classT (k) could be prohibitive, but this remains to be determined.
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