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Abstract. We study the logical definablity of the winning regions of
parity games. For games with a bounded number of priorities, it is well-
known that the winning regions are definable in the modal µ-calculus.
Here we investigate the case of an unbounded number of priorities, both
for finite game graphs and for arbitrary ones. In the general case, winning
regions are definable in guarded second-order logic (GSO), but not in
least-fixed point logic (LFP). On finite game graphs, winning regions are
LFP-definable if, and only if, they are computable in polynomial time,
and this result extends to any class of finite games that is closed under
taking bisimulation quotients.

1 Introduction

The question whether the winning regions (i.e. the set of positions from which
a particular player has a winning strategy) in parity games can be computed
efficiently is one of the most important open problems in the field of infinite
games. It is equivalent to the model checking problem for the modal μ-calculus.
It is known that the problem is in NP ∩ Co-NP, which is a simple consequence of
the fact that parity games admit memoryless winning strategies. Much effort has
also been put into identifying and classifying special cases of parity games which
admit tractable solutions. For instance, there are deterministic polynomial-time
algorithms for any class of parity games with a bounded number of priorities,
and for parity games with certain restrictions on the underlying game graph,
such as bounded tree width, bounded DAG-width, and others.

In this paper we investigate the descriptive complexity of parity games, i.e. we
ask by what logical means the winning regions of parity games are definable. The
descriptive complexity of a problem provides an insight into the structure of the
problem, and the sources of algorithmic difficulty, as the logical resources needed
to specify the problem are closely tied to its structure. In the case of parity games,
the questions that naturally arise are whether the problem is definable in least
fixed-point logic (LFP) and in monadic second-order logic (MSO), as these are
logics with which it is closely associated. Again, the problem can be considered
as solved when we just consider games with a bounded number of priorities.
In that case, the winning regions are definable in the modal μ-calculus, and
therefore also in monadic second-order logic MSO and in least fixed-point logic

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 353–367, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



354 A. Dawar and E. Grädel

LFP. However, the descriptive complexity of parity games with an unbounded
number of priorities has not been settled in a satisfactory way. While it can be
shown that in this case winning regions are no longer definable in the μ-calculus,
the question arises whether they are definable in LFP and/or MSO.

It turns out that the descriptive complexity of parity games on finite game
graphs is different from that on arbitrary ones. By making use of the strictness
of the alternation hierarchy of LFP on arithmetic, together with an interpreta-
tion argument for model checking games, we are able to show that in general,
winning regions of parity games are not LFP-definable. On finite game graphs,
however, this may well be different. Indeed we prove that the winning regions
are LFP-definable if, and only if, they are computable in polynomial-time (de-
spite the fact that, on unordered finite structures, LFP is weaker than Ptime).
Our arguments are based on bisimulation quotients of the relational structures
that represent parity games and on Otto’s result that the bisimulation-invariant
fragment of Ptime can be captured by a multi-dimensional variant of the μ-
calculus. Our analysis in fact shows that winning regions are LFP-definable on
any class of finite parity games for which we have polynomial-time algorithms
on their bisimulation quotients. As a consequence, we obtain LFP-definitions for
the winning regions of parity games with bounded entanglement. We also show
that winning regions are definable, on the class of finite game graphs in stronger
fixed-point logics such as NFP and PFP.

A significant open question that remains unanswered is whether winning re-
gions of parity games are MSO-definable. We have not been able to settle this
question either on finite game graphs or on arbitrary ones. However, it is not
difficult to prove definability in guarded second-order logic (GSO, which allows
quantification over sets of edges in addition to sets of vertices) and in Δ1

2 (and
even Δ1

1 on finite graphs).
We assume that the reader is familiar with the most important logics used

in descriptive complexity theory and verification, such as monadic second-order
logic MSO, the modal μ-calculus Lμ and the least fixed-point logic LFP. However,
we will survey in Section 2 the facts about the logics that we will use.

2 Background from Logic

We assume that the reader is familiar with first-order logic (FO), second-order
logic (SO) and monadic second-order logic (MSO), the extension of first-order
logic by second-order quantification ∃X and ∀X over sets of elements of the
structure, on which the formula is evaluated. In contrast to SO where quan-
tification over arbitrary relations (or functions) is admitted, MSO is a much
more manageable formalism; in particular it is decidable on many interesting
classes of structures (on trees, in particular) and amenable to automata-based
methods. We also refer below to fragments of SO defined by bounded quantifer-
alternation. In particular, Σ1

i consists of those formulae of SO in prenex-normal
form with i alternations of second-order quantifiers, so that the first quantifier
is existential. Π1

i is defined analogously, for formulae starting with a universal
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quantifier. Finally, Δ1
i (which is not defined syntactically) is the class of those

properties that are definabable by both a Σ1
i and a Π1

i formula.

Guarded second-order logic. An interesting extension of MSO is guarded
second-order logic (GSO), which admits second-order quantification on relations
of any arity, provided that they are guarded. Informally, a relation is guarded on
a structure A if it only consists of tuples whose elements co-exist in some atomic
fact of A. On graphs (V,E), possibly with colourings of nodes and edges, the
guarded relations are precisely the relations R ⊆ V k that only contain tuples
(a1, . . . , ak), for which either a1 = a2 = · · · = ak, or {a1, . . . , ak} = {u, v} for
some edge (u, v) ∈ E. It is not difficult to see that GSO on (coloured) graphs is
equivalent to the variant of monadic second-order logic that admits second-order
quantification not only over sets of nodes, but also over sets of edges. Further,
guarded second-order logic, on any class of structures, is equivalent to monadic
second-order logic on the associated incidence graphs [13].

An example showing that GSO is indeed more expressive than MSO, is Hamil-
tonicity. It is well-known (see e.g. [10]) that Hamiltonicity is not MSO-definable,
but it is GSO-definable by the formula

(∃H ⊆ E)
(∀x (∃=1y Hxy ∧ ∃=1y Hyx)∧
∀X [(∃xXx ∧ ∀x∀y(Hxy ∧Xx→ Xy)

) → ∀xXx])

which, evaluated on a graph G = (V,E) says that there exists an H ⊆ E with
unique successors and predecessors such that (V,H) is connected. This means
that G has a Hamilton cycle.

Least fixed point logic. Least fixed-point logic, denoted LFP, extends first
order logic by least and greatest fixed points of definable relational operators. We
will briefly recall some basic definitions here. For a more extensive introduction
to LFP, we refer to [12].

Every formula ψ(R, x), where R is a relation symbol of arity k and x is a
tuple of k variables, defines, for any structure A of appropriate vocabulary, an
update operator F : P(Ak) → P(Ak) on the class of k-ary relations over the
universe A of A, namely F : R 	→ {a : (A, R) |= ψ(R, a)}. If ψ is positive in R,
that is, if every occurrence of R falls under an even number of negations, this
operator is monotone in the sense that R ⊆ R′ implies F (R) ⊆ F (R′). It is well
known that every monotone operator has a least fixed point and a greatest fixed
point, which can be defined as the intersection and union, respectively, of all
fixed points, but which can also be constructed by transfinite induction.

LFP is defined by adding to the syntax of first order logic the following fixed
point formation rule: If ψ(R, x) is a formula with a relational variableR occurring
only positively and a tuple of first-order variables x, and if t is a tuple of terms
(such that the lengths of x and t match the arity of R), then [lfpRx .ψ](t) and
gfpRx .ψ](t) are also formulae, binding the occurrences of the variables R and
x in ψ.

The semantics of least fixed-point formulae in a structure A, providing inter-
pretations for all free variables in the formula, is the following: A |= [lfpRx .ψ](t)
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if tA belongs to the least fixed point of the update operator defined by ψ on A.
Similarly for greatest fixed points.

Note that in formulae [lfpRx .ψ](t) one may allow ψ to have other free vari-
ables besides x.

The duality between least and greatest fixed point implies that for any ψ,

[gfpRx .ψ](t) ≡ ¬[lfpRx .¬ψ[R/¬R]](t).

Using this duality together with de Morgan’s laws, every LFP-formula can be
brought into negation normal form, where negation applies to atoms only.

Other fixed-point logics. We briefly consider two other fixed-point logics
that have been studied in the context of finite model theory: PFP, the logic of
partial fixed points and NFP, the logic of nondeterministic fixed points. We omit
a detailed account of their syntax and semantics here and refer the interested
reader to [9]. Here we just note the following facts that will be useful. In terms
of expressive power on finite structures, PFP subsumes NFP, which in turn
subsumes LFP. On finite ordered structures, PFP captures exactly the properties
decidable in Pspace and NFP captures the polynomial hierarchy, just as LFP
captures Ptime. In the absence of order, it is known that the logics are strictly
weaker than the corresponding complexity classes. However, it is also known
that the question of the separation of the expressive power of these logics is still
equivalent to the separation of the corresponding complexity classes (see [2,1]).

3 Parity Games

Basic definitions. A parity game is specified by a directed graph G = (V,E),
with a partition V = V0∪V1 of the nodes into positions of Player 0 and positions
of Player 1, and a priority function Ω : V → ω. In case (v, w) ∈ E we call w
a successor of v and we denote the set of all successors of v by vE. A play in
G is an infinite path v0v1 . . . formed by the two players starting from a given
initial position v0. Whenever the current position vi belongs to V0, then Player 0
chooses a successor vi+1 ∈ viE, if vi ∈ V1, then vi+1 ∈ viE is selected by Player 1.
An infinite play π = v0v1 . . . is won by Player 0 if the least priority appearing
infinitely often in π is even or no priority appears infinitely often (which may
only happen if the range of Ω is infinite). A finite play π = v0v1 . . . vn is won by
Player 0 iff vn ∈ V1.

A (deterministic) strategy for Player σ is a partial function f : V ∗Vσ → V
that assigns to finite paths through G ending in a position v ∈ Vσ a successor
w ∈ vE. A play v0v1 · · · ∈ V ω is consistent with f if, for each initial segment
v0 . . . vi with vi ∈ Vσ, we have that vi+1 = f(v0 . . . vi). We say that such a
strategy f is winning from position v0 if every play that starts at v0 and that is
consistent with f is won by Player σ. The winning region of Player σ, denoted
Wσ, is the set of positions from which Player σ has a winning strategy. A game
G is determined if W0∪W1 = V , i.e., if from each position one of the two players
has a winning strategy.
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Positional determinacy and complexity. Winning strategies can be rather
complicated. However, for certain games, including parity games, it suffices to
consider positional strategies, which are strategies that depend only on the cur-
rent position, not on the history of the play. A game is positionally determined,
if it is determined, and each player has a positional winning strategy on his
winning region.

It has been proved independently in [11] and [19] that parity games with a
finite game graph are positionally determined. The result is extended to infinite
game graphs with finitely many priorities in [25]. This has been further extended
in [14] to parity games with rng(Ω) = ω.

Theorem 1. Every parity game is positionally determined.

In a parity game G = (V, V0, V1, E,Ω), a positional strategy for Player σ, defined
on W ⊆ V , can be represented by a subgraph H = (W,S) ⊆ (V,E) such that
there is precisely one outgoing S-edge from each node v ∈ Vσ ∩W and vS = vE
for each node v ∈ V1−σ ∩W . On a finite game graph, such a strategy is winning
on W if, and only if, the least priority on every cycle in (W,S) has the same
parity as σ.

Hence, given a finite parity game G and a positional strategy (W,S) it can be
decided in polynomial time, whether the strategy is winning on W . To decide
winning regions we can therefore just guess winning strategies, and verify them
in polynomial time.

Corollary 2. Winning regions of parity games (on finite game graphs) can be
decided in NP ∩ Co-NP.

In fact, Jurdziński [16] proved that the problem is in UP ∩ Co-UP, where UP
denotes the class of NP-problems with unique witnesses. The best known deter-
ministic algorithm has complexity nO(

√
n)) [18]. For parity games with a number

d of priorities Jurdziński’s progress measure lifting algorithm [17] computes win-
ning regions in time O(dm · (2n/d)d/2), where m is the number of edges, giving
a polynomial-time algorithm when d is bounded.

Parity games as relational structures. To represent parity games as rela-
tional structures, so as to make them amenable to a study of logical definability,
we consider two different conventions.

For fixed d, we consider the class of parity games with rng(Ω) ⊆ {0, . . . , d−1},
to be given as structures

(V, V0, V1, E, P0, . . . , Pd−1)

where E is a binary relation and V0, V1, P0, . . . , Pd−1 are all unary, with V =
V0 ∪ V1 =

⋃
i Pi, V0 disjoint from V1 and the Pi pairwise disjoint. Note that this

class of structures (denoted PGd) is axiomatisable in first-order logic.
On the other hand, to consider the class of parity games with an unbounded

number of priorities, we consider them as structures

(V, V0, V1, E,≺,Odd)
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where E, V0 and V1 are as before, where u ≺ v means that u has a smaller
priority than v, and Odd is the set of nodes with an odd priority. We denote this
class of structures by PG.

Lemma 3. The class PG is axiomatisable in LFP, but not in first-order logic.

Proof. To verify that a structure G = (V, V0, V1, E,≺,Odd) is a parity game, we
have to check that

(1) V is the disjoint union of V0 and V1,
(2) ≺ is a pre-order on V ,
(3) Odd is a union of equivalence classes with respect to the equivalence

relation ≈ associated with ≺ (with u ≈ v if u �≺ v and v �≺ u),
(4) the linear order induced by ≺ on the equivalence classes has some order

type α ≤ ω.

Clearly, (1) – (3) are first-order properties, and it is well-known that order
types α ≤ ω can be distinguished from other order types in LFP, but not in
first-order logic. ��
In each case, when we say that winning regions are definable in a logic L, we
mean that there is a formula ϕ of L such that for any structure G ∈ PG (resp.
PGd), ϕ is true in exactly those nodes in G from which Player 0 has a winning
strategy.

Parity Games and LFP. Consider a structure A and an LFP-sentence ψ
which we may assume to be in negation normal form, without parameters, and
well-named, in the sense that every fixed-point variable is bound only once. The
model checking game G(A, ψ) is a parity game whose positions are formulae
ϕ(a) such that ϕ(x) is a subformula of ψ, and a is a tuple of elements of A,
interpreting the free variables of ϕ. The initial position is ψ.

Player 0 (Verifier) moves at positions associated to disjunctions and to for-
mulae starting with an existential quantifier. From a position ϕ ∨ ϑ she moves
to either ϕ or ϑ and from a position ∃y ϕ(a, y) she can move to any position
ϕ(a, b) for b ∈ A. In addition, Verifier is supposed to move at atomic false po-
sitions, i.e., at positions ϕ of form a = a′, a �= a′, Ra, or ¬Ra (where R is not
a fixed-point variable) such that A |= ¬ϕ. However, positions associated with
these atoms do not have successors, so Verifier loses at atomic false positions.
Dually, Player 1 (Falsifier) moves at conjunctions and universal quantifications,
and loses at atomic true positions. In addition, there are positions associated
with fixed-point formulae [fpTx . ϕ(T, x)](a) and with fixed-points atoms Tx,
for fixed-point variables T . At these positions there is a unique move (by Falsi-
fier, say) to the formula defining the fixed point. For a more formal definition,
recall that as ψ is well-named, for any fixed-point variable T in ψ there is a unique
subformula [fpTx . ϕ(T, x)](a). From position [fpTx . ϕ(T, x)](a) Falsifier moves
to ϕ(T, a), and from Tb he moves to ϕ(T, b).

The priority labelling assigns even priorities to gfp-atoms and odd priorities
to lfp-atoms. Further, if T, T ′ are fixed-point variables of different kind with
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T ′ depending on T (which means that T occurs free in the formula defining
T ′), then T -atoms get lower priority than T ′-atoms. All remaining positions, not
associated with fixed-point variables, receive the least important priority (i.e. the
one with the highest value) As a result, the number of priorities in the model
checking games equals the alternation depth of the fixed-point formula plus one.
For more details and explanations, and for the proof that the construction is
correct, see e.g. [12,24].

Theorem 4. Let ψ be an LFP-sentence and A a relational structure. Then,
A |= ψ if, and only if, Player 0 has a winning strategy for the parity game
G(A, ψ).

Moreover, for every structure A with at least two elements, and every formula
ϕ(x) ∈ LFP the model checking game G(A, ϕ) is first-order interpretable in A.

Parity games and the modal μ-calculus. It is well-known that there is a
very close relationship between parity games and the modal μ-calculus Lμ. First
of all, parity games are the model checking games for Lμ. This means that given
any formula ψ ∈ Lμ and a transition system K, one can build a parity game
G(K, ψ) which is essentially the product of K and ψ, such that ψ is true in K at
node v if, and only if, Player 0 has a winning strategy for G(K, ψ) starting from
the position (v, ψ).

In the other direction, for any fixed d, the winning regions of parity games in
PGd are definable by a μ-calculus formula

Wind = νX0μX1νX2 . . . λXd−1

d−1∨

j=0

(
(V0 ∧ Pj ∧ �Xj) ∨ (V1 ∧ Pj ∧ �Xj)

)
.

In this formula, the fixed-point operators alternate between ν and μ, and hence
λ = ν if d is odd, and λ = μ if d is even.

As a consequence, an efficient algorithm for solving parity games would also
solve the model-checking problem for Lμ.

Theorem 5. For every d ∈ N, the formula Wind defines the winning region of
Player 0 in parity games with priorities 0, . . . , d− 1.

In general, formulae of Lμ are hard to read, especially if they have many alterna-
tions between least and greatest fixed points, but here we have an elegant argu-
ment based on model checking games. Indeed, given any parity game G ∈ PGd,
with initial position v, let G∗ be the model-checking game for the formula Wind

on G so that Player 0 has a winning strategy for G∗ if, and only if, G, v |= Wind.
It turns out that the game G∗ is essentially the same as the original game G.
More precisely, G∗ reduces to G if we eliminate, for each player, certain moves
that would give the opponent the opportunity to win immediately, and if we
contract successive moves of the same player into a single move. In particular,
Player 0 wins G if and only if she wins G∗, which is the case if, and only if, the
formula Wind is true at G, v. We refer to [12, Section 3.3.6] for details.
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The formulae Wind also play an important role in the study of the alternation
hierarchy of the modal μ-calculus. Clearly, Wind has alternation depth d and it
has been shown that this can not be avoided. As a consequence the alternation
hierarchy of the μ-calculus is strict [7,3]. We will need a slightly stronger formu-
lation of this result, for parity games on finite and strongly connected graphs.
This easily follows from the general result by the finite model property of the
μ-calculus and by a straightforward reduction to strongly connected games.

Theorem 6. Winning regions in parity games in PGd are not definable by
formula in the μ-calculus with alternation depth < d, even under the assumption
that the game graphs are finite and strongly connected.

4 Definability of Parity Games on Arbitrary Game
Graphs

4.1 Definability in Fragments of Second-Order Logic

Which fragments of second-order logic winning are powerful enough to define the
winning regions of parity games? In particular, are winning regions definable in
monadic second-order logic? While we cannot answer this question in general,
we show that it is a direct consequence of positional determinacy that winning
regions are GSO-definable. By means of results due to Courcelle, this implies
MSO-definability on a number of interesting classes of parity games.

Theorem 7. Winning regions in PG are definable in GSO, and also in Δ1
2

Proof. The same formula can be used to demonstrate both results. Let z ≡ p
stand for ¬(z ≺ p) ∧ ¬(p ≺ z) which says that z and p have the same priority
Given a binary relation S, we let

ϕ(S,w, p) := gfpXx . lfpY y . gfpZz .

⎡

⎣
(z ≺ p ∧ ∀u(Szu→ Xu))∨
(z ≡ p ∧ ∀u(Szu→ Y u))∨
(p ≺ z ∧ ∀u(Szu→ Zu))

⎤

⎦ (w)(x)(y)

We claim that this formula defines the set of pairs (w, p) such that every infinite
S-path from w either contains infinitely many nodes z with z ≺ p, or only finitely
many nodes with z ≡ p.

To see this, consider the model checking game for this formula, played on a
graph (V, S,≺) with fixed nodes w and p. Let α(z) be the subformula inside the
fixed point definitions. At position α(z) in the model checking game, Player 0
chooses the right disjunct, according to the priority of z, and then Player 1
takes the game from z to an S-successor u of z; via Xu, Y u or Zu the play then
proceeds to position α(u).

Thus a play in the model checking game essentially amounts to the choice of
an S-path from w by Player 1. Such a play is won by Player 0 if the outermost
fixed point variable seen infinitely often is either X or Z. But this is the case if



The Descriptive Complexity of Parity Games 361

either a priority y ≺ p is seen infinitely often or, if this is not the case, priority
p occurs only finitely often on the path.

Thus, the formula

ψ(S,w) := ∀p(Odd(p) → ϕ(S,w, p))

defines those elements w such that on every infinite S-path from w the lowest
priority occurring infinitely often is even. We are now ready to write a formula
that defines winning regions of Player 0 for games in PG:

(∃S ⊆ E)[∀u(V0u→ ∃vSuv) ∧ ∀u∀v(V1u ∧ Euv → Suv) ∧ ψ(S,w)]

This asserts the existence of a set S of edges which includes at least one outgoing
edge for every vertex in V0 and all the outgoing edges for every vertex in V1 and
such that for this set S, w satisfies ψ. In other words, this formula is true at a
vertex w just in case Player 0 has a positional winning strategy from w. Since
we know that Player 0 has a positional winning strategy whenever she has any
strategy, this is sufficient.

It is easily seen that this formula is in GSO as the binary second-order quanti-
fier on the outside is explicitly guarded and the three occurrences of a fixed-point
operator are all monadic and could be therefore replaced by monadic quantifiers.

To see that this also yields a Δ1
2 definition, we note that any formula of LFP

(and hence, in particular, ψ) can be written both as a Σ1
2 and a Π1

2 formula
(see [9] for a proof). Thus, replacing ψ with its Σ1

2 equivalent we obtain a Σ1
2

definition of the winning regions for Player 0. By symmetry, we can also define
the winning regions for Player 1 in Σ1

2 and thereby obtain a Π1
2 definition for

the winning regions for Player 0. ��
Although GSO is more expressive than MSO in general, there are a number of
classes of graphs where the two logics are equivalent. This collapse occurs in
particular over graphs of bounded degree, graphs of bounded tree-width, pla-
nar graphs and graphs with an excluded minor. A general result covering and
generalising all these graph classes has been proved in [8].

Theorem 8 (Courcelle). GSO collapses to MSO on every class C of graphs
that is closed under taking subgraphs and contains only k-sparse graphs, for some
k ∈ N, (i.e. |E| ≤ k|V | for every graph G = (V,E) ∈ C).

The GSO formula we construct in the proof of Theorem 7 contains monadic
quantifiers and one second-order quantifier that is guarded by the relation E. In
particular, the order ≺ does not appear as a guard. From the proof of Courcelle’s
theorem above, it then follows that this formula is equivalent to an MSO formula
on any class of parity games satisfying the sparsity condition above with respect
to the number of edges of the game. On each such class, winning regions of parity
games are therefore MSO-definable. However, in general, there seems to be no
way to eliminate the quantification over a set of edges and we conjecture that
this winning regions are not MSO definable. It may be noted that it is possible
to reduce parity games on general graphs to games on graphs with outdegree 2
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(see, for instance, [17]). While this reduction can be carried out in polynomial
time, it involves a quadratic blow-up in the number of vertices and it seems
unlikely that it preserves MSO definability.

4.2 Non-definability in Least Fixed-Point Logic

We now show that winning regions of parity games are not definable in LFP
when the game graph may be infinite.

Theorem 9. Winning regions in PG are not definable in LFP, even under the
assumptions that the game graph is countable and the number of priorities is
finite.

Proof. Suppose that Win(x) ∈ LFP defines the winning region of Player 0 on
PG. We use this formula to solve the model checking problem for LFP on N =
(ω,+, · ). Recall that, for any ϕ(x) ∈ LFP, we have a parity game G(N, ϕ) such
that, for all n

N |= ϕ(n) ⇐⇒ G(N, ϕ) |= Win(vn)

(where vn is the initial position associated with ϕ(n))
Further, the model checking game G(N, ϕ) is first-order interpretable in N.

Hence the formula Win(x) is mapped, via a first-order translation Iϕ, into an-
other LFP-formula Winϕ(x) such that

G(N, ϕ) |= Win(vn) ⇐⇒ N |= Winϕ(n).

Note that the first-order translation Win(x) 	→ Winϕ(x) depends on ϕ, but
does not increase the alternation depth. Hence, on arithmetic, every formula
ϕ(x) would be equivalent to one of fixed alternation depth:

N |= ϕ(n) ⇐⇒ N |= Winϕ(n).

However, it is known that the alternation hierarchy of LFP on arithmetic is
strict. ��

5 Definability of Parity Games on Finite Graphs

On finite game graphs, the definability issues are different and closely related to
complexity. First of all, we observe that winning positions in PG are definable in
Δ1

1 rather than justΔ1
2. This is a simple consequence of the fact that the problem

of solving parity games is in NP ∩ Co-NP, combined with Fagin’s characterisation
of NP as the properties that are Σ1

1 definable.
One of the most interesting questions is whether the winning regions are

definable in fixed point logics such as LFP or the μ-calculus. We first observe
that the μ-calculus is not sufficient.
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5.1 Non-definability in the µ-Calculus

There is a little subtlety involved in considering a μ-calculus on PG, since the
priority function is encoded via the pre-order ≺. In modal logics, binary relations
are handled via modal operators, hence a μ-calculus on PG would have, for
instance, formulae of form 〈≺〉ϕ that hold at a node x just in case ϕ is true at
some node y with lower priority than x (we view ≺-edges as going downwards).
Further it would be natural to admit also the reverse modality for � and possibly
others such as �,∼,� or the associated successor relations. In any case, the
precise definition does not really matter, since no formula in any such μ-calculus
can define the winning regions of parity games in PG.

Indeed assume that such a formula ψ exists, and let m be its alternation
level. For any fixed number d, we can translate ψ into a formula ψd of the usual
μ-calculus on structures PGd which is equivalent to ψ on (strongly connected)
parity games with at most d priorities. To define ψd we just replace every sub-
formula of form 〈�〉ϕ by

∨

0≤i<j<d

Pj ∧ μX.((Pi ∧ ϕ) ∨ �X)

which says, for games in PGd, that from the current node, there is a reachable
node of lower priority at which ϕ is true. Similar constructions work for other
modal operators. Note that this translation increases the alternation level of ψ
at most by one.

Now take any strongly connected parity game G ∈ PG with priorities < d
and let G′ be its presentation as a structure in PGd. Obviously G, v |= ψ if, and
only if G′, v |= ψd. But this means that, for any d, the winning regions of parity
games with d priorities, on strongly connected finite graphs, can be expressed by
a μ-calculus formula with alternation level m+ 1. This contradicts Theorem 6.

Theorem 10. Winning regions of parity games in PG (on finite graphs) are
not definable in the modal μ-calculus.

5.2 Definability in Fixed-Point Logics

We now turn to the least fixed point logic LFP. Clearly, a proof that winning
regions of parity games in PG are LFP-definable would imply that parity games
are solvable in polynomial time. We show that also the converse direction holds,
despite the fact that LFP is weaker than Ptime. To do so, we will use a result due
to Martin Otto [23] that the multi-dimensional μ-calculus, which is a fragment
of LFP, captures precisely the bisimulation-invariant part of Ptime. See also
[12, Section 3.5.3] for an exposition of this result.

Winning positions in parity games are of course invariant under the usual
notion of bisimulation (e.g. as structures in PGd). However, to apply Otto’s
Theorem for parity games with an unbounded number of priorities, we have to
consider bisimulation on structures of the form G = (V, V0, V1, E,≺,Odd). Let
τ = {V0, V1, E,≺,Odd, v} be the vocabulary of parity games with a starting
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node, and let Str(τ) denote the class of all structures of this vocabulary. If we
have two such structures that are indeed parity games, then bisimilarity as τ -
structures coincides with the usual notion of bisimilarity in PGd, for appropriate
d. However, not all structures in Str(τ) are parity games, and the class of par-
ity games is not closed under bisimulation. An efficient procedure for deciding
whether a structure is bisimilar to a parity game is to compute its quotient under
bisimulation and check whether it is a parity game.

For a structure (G, v) ∈ Str(τ) consider the bisimulation relation a ∼ b on
elements of G defined with respect to the binary relations E, ≺ and ≺−1. That
is to say ∼ is the largest relation satisfying:

– if a ∼ b then a and b agree on the unary relations V0, V1 and Odd;
– for every x ∈ aE there is a y ∈ bE such that x ∼ y, and conversely;
– for every x with a ≺ x there is a y with b ≺ y and x ∼ y and conversely; and

finally
– for every x ≺ a there is a y ≺ b such that x ∼ y, and conversely.

We write (G, v)∼ for the bisimulation quotient of (G, v), i.e. the structure whose
elements are the equivalence classes in G with respect to ∼ with the relations
V0, V1, E,≺,Odd defined in the natural way and [v] as the starting vertex.

Lemma 11. A structure (G, v) ∈ Str(τ) is bisimilar to a parity game if, and
only if, its bisimulation quotient is a parity game, i.e. (G, v)∼ ∈ PG.

Proof. The direction from right to left is obvious. For the other direction, it
suffices to establish that the bisimulation quotient of a parity game is itself a
parity game, since the quotient of a structure bisimilar to (G, v) is isomorphic to
the quotient of (G, v). But, it is easily verified that each of the four conditions
given in the proof of Lemma 3 is preserved under taking quotients. ��
Theorem 12. Let C be any class of parity games on finite game graphs, such
that winning positions on its bisimulation quotients are decidable in polynomial
time. Then, on C, winning positions are LFP-definable.

Proof. Let WinC be the class of parity games (G, v), such that (G, v) ∈ C, and
Player 0 wins from initial position v. It suffices to construct a bisimulation-
invariant class X of structures (H, u) such that

(1) X is decidable in polynomial time.
(2) X ∩ C = WinC.

Indeed, by Otto’s Theorem X is then definable by an LFP-formula ψ(x), such
that, given any parity game (G, v) ∈ C we have

G, v ∈ WinC ⇐⇒ G, v ∈ X ⇐⇒ G |= ψ(v).

By assumption, there exists a polynomial time algorithmA which, given a par-
ity game (G, v) ∈ C∼, decides whether Player 0 wins G from v. It is not important
what the algorithm returns for quotients outside C∼, as long as it is isomorphism-
invariant and halts in polynomial time. Finally, letB be the algorithm which, given
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any finite structure in Str(τ), first computes its bisimulation quotient, and then
applies algorithm A.

Clearly B is a polynomial time algorithm, since bisimulation quotients are
efficiently computable. Further the class X of structures accepted by B is in-
variant under bisimulation. Indeed, let H and H′ be two bisimilar structures.
Then their bisimulation quotients are isomorphic and are therefore either both
accepted or both rejected by A. Finally, X ∩ C = WinC. Indeed, given a parity
game G, v ∈ C, then it has the same winner as its bisimulation quotient which is
therefore correctly decided by the algorithm B. ��
Corollary 13. On the class PG of all finite parity games, winning regions are
LFP-definable if, and only if, they are computable in polynomial time.

We can deduce more from this construction. The proof of Otto’s theorem relies on
an LFP-definable interpretation of an ordered bisimulation quotient G∼ within
G. Now, on ordered structures, every problem decidable in Pspace is definable
in PFP and every problem in NP is definable in NFP. Since winning regions on
the class PG are computable in these complexity classes, we can compose the
formulas of PFP and NFP with the LFP interpretation to obtain formulas which
do not require an order. Thus we have the following theorem.

Theorem 14. On the class PG of all finite parity games, winning regions are
definable in the logics PFP and NFP.

5.3 Restricted Classes

While the question of whether or not winning regions in finite parity games can
be computed in polynomial-time remains open, many restricted classes of games
have been investigated on which polynomial-time algorithms for computing win-
ning regions (and winning strategies) are known. These include parity games
with a bounded number of priorities [17], games where even and odd cycles do
not intersect, solitaire games and nested solitaire games [5], and parity games of
bounded tree width [20], bounded entanglement [6], bounded DAG-width [4,21],
bounded Kelly-width [15], or bounded clique width [22].

In view of Theorem 12 the question arises which of these classes are closed
under taking bisimulation quotients. This is not the case for games of bounded
tree width or of bounded clique width, since one can easily construct trees whose
bisimulation quotients contain arbitrarily large grids.

However, it is the case for games of bounded entanglement, and possibly also
for other classes defined by specific measures for directed graphs.

Entanglement is a parameter for the complexity of finite directed graphs which
measures to what extent the cycles of the graph are intertwined. It is defined
by means of a game played by a thief against k detectives according to the
following rules. Initially the thief selects an arbitrary position v0 of the given
graph G = (V,E) and the detectives are outside of G. In any move the detectives
may either stay where they are, or place one of them on the current position v of
the thief. The thief tries to escape by moving to a successor w ∈ vE that is not
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occupied by a detective. If no such position exists, the thief is caught and the
detectives have won. Note that the thief sees the move of the detectives before
he decides on his own move, and that he has to leave his current position no
matter whether the detectives stay where they are or not. The entanglement
of G, denoted ent(G), is the minimal number k ∈ N such that k detectives have
a strategy to catch the thief on G.

It has been proved in [5] that, for any fixed k, winning positions in parity
games with entanglement at most k are computable in polynomial time. Our
results complement this by showing that on such classes, winning positions are
LFP-definable. By Theorem 12 it suffices to show that the entanglement cannot
increase when we move from a directed graph G to its bisimulation quotient G∼.

Lemma 15. For any directed graph G, ent(G∼) ≤ ent(G).

Proof. We show that whenever the thief has a strategy to escape against k
detectives on G∼, he also has a similar strategy on G, by which he stays clear
of not only the nodes occupied by the detectives, but also all nodes bisimilar to
these. Suppose that the detectives occupy nodes w1, . . . , wk of G and the thief
has to move from his current position u, For the corresponding situation on G∼

the thief can move according to his escaping strategy from the bisimulation class
[u] to a successor [v] ∈ [u]E∼ that is not occupied by any of the detectives, i.e.
[v] �= [wi] for all i. Since there is an edge from [u] to [v] in G∼ there exists a node
v′ ∼ v with (u, v′) ∈ E. In G, the thief moves to any such node v′ ∈ [v] ∩ uE.
Since [v′] = [v] �= [wi] for all i, the thief maintains the property that he avoids
in G all positions bisimilar to those occupied by a detective. ��
Corollary 16. In any class of parity games of bounded entanglement, the win-
ning positions are definable in LFP.

6 Conclusions

While the exact computational complexity of computing winning regions in fi-
nite parity games remains a much studied open question, we have addressed a
related question that has not received much attention—that of the descriptive
complexity of parity games, both on finite and arbitrary structures. While we are
able to settle the definability questions in many interesting cases, a significant
open question that remains is whether winning regions are definable in MSO.
Interestingly, the question of whether winning regions are definable in LFP on
finite game graphs turns out to be equivalent to the long-standing open question
of whether they are computable in Ptime.
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