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Abstract. Although Cai, Fürer and Immerman have shown that fixed-
point logic with counting (IFP + C) does not express all polynomial-
time properties of finite structures, there have been a number of results
demonstrating that the logic does capture P on specific classes of struc-
tures. Grohe and Mariño showed that IFP + C captures P on classes
of structures of bounded treewidth, and Grohe showed that IFP + C
captures P on planar graphs. We show that the first of these results is
optimal in two senses. We show that on the class of graphs defined by a
non-constant bound on the tree-width of the graph, IFP + C fails to cap-
ture P. We also show that on the class of graphs whose local tree-width
is bounded by a non-constant function, IFP + C fails to capture P. Both
these results are obtained by an analysis of the Cai–Fürer–Immerman
(CFI) construction in terms of the treewidth of graphs, and cops and
robber games; we present some other implications of this analysis. We
then demonstrate the limits of this method by showing that the CFI
construction cannot be used to show that IFP + C fails to capture P on
proper minor-closed classes.

1 Introduction

The central open problem in descriptive complexity theory is whether there ex-
ists a logic that can express exactly the polynomial-time decidable properties
of unordered structures. For some time it was conjectured that the extension of
fixed-point logic with counting (IFP + C) would be such a logic, but this was
shown not to be the case by a construction due to Cai, Fürer and Immerman
[4], which we refer to below as the CFI construction. Nonetheless, IFP + C pro-
vides a natural level of expressiveness within the complexity class P which has
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been explored in its own right [20]. It has also been shown that, on certain re-
stricted classes of structures, IFP + C is indeed powerful enough to express all
polynomial-time properties. In particular, Immerman and Lander have shown
that IFP + C defines exactly the polynomial-time properties of trees [16] and
Grohe and Mariño [14] extended this to show that on any class of structures
of bounded tree-width, IFP + C captures P. Grohe also showed that IFP + C
captures P on the class of planar graphs [12] and, more generally, on classes
of embeddable graphs [13]. In particular, these results imply that the CFI con-
struction cannot be carried out when restricting ourselves to such classes of
structures.

There is a growing body of work studying the finite model theory of restricted
classes of structures, where the restrictions are essentially borrowed from graph
structure theory. Such graph-theoretic restrictions, such as bounding the tree-
width of a graph or restricting to planar graphs (or, more generally, proper
minor-closed classes of graphs), often yield classes with good algorithmic prop-
erties and there has been an effort to explore whether these also correspond to
interesting model-theoretic properties which may be tied to the good algorith-
mic behaviour. In many cases, the logical or model-theoretic view provides a
clean general “explanation” of the algorithmic properties of a class. Examples of
such meta-theorems are Courcelle’s theorem [5], which shows that any property
definable in monadic second-order logic is decidable in linear time on classes
of bounded tree-width, and the result of Dawar et al. [7] that first-order defin-
able optimization problems admit polynomial-time approximation schemes on
proper minor-closed classes. At the same time, ever more expansive (i.e., less re-
stricted) classes of structures have been studied such as classes of bounded local
tree-width [11], classes that locally exclude a minor [6] and classes of bounded
expansion [18]. Our aim in this paper is to explore the boundary of the classes
where IFP + C captures P. In particular, we wish to determine on which of these
various classes the CFI construction can be carried out.

The CFI construction relies on the fact that every formula of IFP + C is
equivalent to one of Cω

∞ω, the infinitary logic with counting. A separator of a
graph G = (V,E) is a set S ⊆ V of vertices whose deletion from the graph leaves
no connected component with more than |V |/2 vertices. Cai et al. show that

for each graph G, we can construct two graphs X(G) and X̃(G) such that, if

G has no separator of size k, then X(G) and X̃(G) cannot be distinguished by

any formula of Ck
∞ω, the k-variable fragment of Cω

∞ω. Since X(G) and X̃(G) are
distinguished by a polynomial-time algorithm, it follows that IFP + C does not
capture P on any class of graphs that includes both X(G) and X̃(G) for graphs
G with arbitrarily large minimal size separators. As Cai et al. already noted, this
includes the class of graphs with degree bounded by 3. We show (in Section 3)
that the assumption that G has no separator of size k can be replaced by the
weaker requirement that the tree-width of G is at least k. This is established by
a game construction that combines the cops-and-robber game of Seymour and
Thomas [24] with the bijection game of Hella [15] (see [1] for another application
of the same idea).



An immediate consequence is that IFP + C does not capture P on any class
of graphs that includes X(G) and X̃(G) for graphs of unbounded tree-width.
As a corollary, we show that the result of Grohe and Mariño is, in a sense,
optimal. For a function f : N → N, let TWf be the class of all graphs G such
that the tree-width of G is at most f(|G|). Grohe and Mariño show that, if
f is bounded above by a constant, then IFP + C captures P on TWf . On the
other hand, we show that, no matter how slowly f grows, if it is unbounded,
then IFP + C does not capture P on TWf . Note that this does not show that
IFP + C fails to capture P on any class of graphs of unbounded tree-width.
Indeed, planar graphs have unbounded tree-width but IFP + C capture P on
this class. However, if the class contains all graphs of tree-width bounded by f ,
we show that the CFI construction applies.

Instead of restricting tree-width as a function of the order of the graph, we
can consider graphs where tree-width grows as a function of the diameter. Recall
that the r-neighbourhood of a vertex v in a graph is the subgraph induced by
the vertices within distance r of v. For a non-decreasing function f : N → N,
let LTWf be the class of graphs G such that, for all r > 1, the r-neighbourhood
of every vertex in G has tree-width at most f(r). (Eppstein introduces these
classes as graphs with the ‘diameter-treewidth property’ [10] and the restriction
is termed bounded local tree-width in [11]). For any such graph, we have tw(G) 6

f(|G|) so LTWf ⊆ TWf . We show, in Section 4 that, analogous to the case for
global tree-width, IFP + C captures P on LTWf if, and only if, f = O(1). Thus,
the result of Grohe and Mariño is optimal in a stronger sense.

Grohe [13] has conjectured that IFP + C captures P on any proper minor-
closed class of finite graphs. We show, in Section 5 that the CFI construction
cannot be used to refute this conjecture. That is, we show that for any graph G
and any graph H of sufficient tree-width G is a minor of both X(H) and X̃(H).

Thus, if a class of graphs forbids G as a minor, it excludes X(H) and X̃(H) for
all graphs H except those of some fixed tree-width.

There are several generalizations of the concept of tree-width to directed
graphs including that of directed tree-width [17], DAG-width [2, 19] and en-
tanglement [3]. In each of these measures, the class of directed acyclic graphs
(DAGs) has width 1. Since the CFI construction works in the class of DAGs (see
Section 3) it follows that our results do not extend to these measures.

Acknowledgment. We would like to thank Stephan Kreutzer for fruitful
discussions, especially in connection with the construction in Section 5.

2 Background

The notion of a relational structure A = (A,RA
1 , . . . , R

A
s ) over vocabulary σ =

(Rr1

1 , . . . , R
rs

s ) is standard. All structures and graphs in this paper are finite; we
treat graphs as structures with a single binary relation symbol E, interpreted by
an irreflexive relation that, in the case of undirected graphs, is also symmetric.
All graphs mentioned in this paper are undirected unless specifically stated to
be directed.



2.1 Counting logics

IFP + C is the extension of first-order logic with inflationary fixed-points and
a mechanism for counting. For formal definitions, which we will not need in
this paper, we refer the reader to [9]. It is known that every class of structures
definable in IFP + C is decidable in polynomial time.

The formulas of the logic C∞ω are obtained from the atomic formulas using
negation, infinitary conjunction and disjunction, and counting quantifiers (∃ixϕ
for every integer i > 0). The fragment Ck

∞ω consists of those formulas of C∞ω in
which only k distinct variables appear and Cω

∞ω =
⋃

k∈ω Ck
∞ω. The significance

of Cω
∞ω for our purposes is every formula of IFP + C is equivalent to one of Cω

∞ω.
Hella shows that definability in Ck

∞ω is characterized by the k-pebble bijection

game [15]. The game is played on structures A and B by two players, the spoiler
and the duplicator, using pebbles a1, . . . , ak on A and b1, . . . , bk on B. If |A| 6=
|B|, the spoiler wins immediately; otherwise, each move is made as follows:

– the spoiler chooses a pair of pebbles ai and bi;
– the duplicator chooses a bijection h : A → B such that for pebbles aj and
bj (j 6= i), h(aj) = bj ; and

– the spoiler chooses a ∈ A and places ai on a and bi on h(a).

If, after this move, the map a1 . . . ak 7→ b1 . . . bk is not a partial isomorphism
A → B, the game is over and the spoiler wins; the duplicator wins all infinite
plays. Hella shows that the duplicator has a winning strategy in the k-pebble
bijection game on A and B if, and only if, the two structures agree on every

formula of Ck
∞ω, in which case, we write A≡Ck

∞ω B. In order to show that a class
Q of structures is not definable in Cω

∞ω (and, hence, not definable in IFP + C),
it suffices to demonstrate, for each k > 1, structures Ak ∈ Q and Bk /∈ Q on
which the duplicator has a winning strategy in the k-pebble bijection game.

By a result of Otto [20, Theorem 4.22] we have the following:

Theorem 1 (Otto). If IFP + C captures P on a class C of structures that is

closed under disjoint unions, then there is a k such that ≡Ck
∞ω coincides with

isomorphism on C.

Thus, to show that IFP + C does not capture P on a class of structures C, it
suffices to show that for every k C contains a pair of non-isomorpic structures

H and H ′, such that H ≡Ck
∞ω H ′.

2.2 Tree-width

Tree-width was introduced by Robertson and Seymour [21] as a key component
of the proof of the Graph Minor Theorem. A tree decomposition of a graph
G = (V,E) is a pair (T, {Bt : t ∈ T }), where T is a tree, Bt ⊆ V and

–
⋃

t∈T Bt = V ;
– if there is an edge uv ∈ E then { u, v } ⊆ Bt for some t; and
– for each v ∈ V , the set { t : v ∈ Bt } is connected in T .



The width of a tree decomposition is max { |Bt| : t ∈ T } − 1 and the tree-width

of G is tw(G), the least k for which G has a tree decomposition of width k.
We will use the following game-theoretic characterization of tree width, due

to Seymour and Thomas [24]. The k cops and robber game is played by two
players, the cops and the robber, on a graph G = (V,E). At each move, the cops
player either removes a cop from the graph or takes a cop not currently on the
graph and places him on some vertex v. The robber may then move along any
cop-free path in the graph. If the cops’ move was to place a cop on v, that vertex
counts as cop-free for this turn. If a cop moves to the vertex occupied by the
robber and the robber has no non-trivial legal move, the cops win; the robber
wins if he can stay on the run indefinitely. Seymour and Thomas show that the
cops have a winning strategy in the k cops and robber game on G if, and only
if, tw(G) 6 k − 1.

For a positive integer k, we write TWk for the class of graphs of tree width
at most k. For a function f : N → N, TWf denotes the class of all graphs G such
that the tree-width of G is at most f(|G|).

Given a graph G and r > 0, for each vertex v ∈ G, let N r
G(x) be the subgraph

of G induced by the vertices at distance at most r from v. The local tree-width

of a graph [11] is the function

ltwG(r) = max { tw(N r
G(v)) : v ∈ G } .

A class G of graphs is said to have bounded local tree-width if there is a (non-
decreasing) function f : N → N such that, for all G ∈ G and all r > 0, ltwG(r) 6

f(r). Classes of graphs of bounded local tree-width are introduced by Eppstein
[10], who refers to such classes as having the ‘diameter-treewidth property’.

2.3 Graph Minors

We say that a graph G is a minor of H , and write G 4 H , if there is a map that
associates with each vertex v of G a non-empty, connected subgraph Hv of H
such that Hu and Hv are disjoint for u 6= v and if there is an edge between u and
v in G then there is an edge in H between some vertex in Hu and some vertex in
Hv. We refer to the sets Hv as the branch sets witnessing that G is a minor of H .
An equivalent characterization (see [8]) states that G is a minor of H if G can
be obtained from a subgraph of H by contracting edges. The contraction of an
edge consists of identifying its two endpoints into a single vertex and removing
the resulting loop.

We collect here a few facts about graph minors that we will need. All of
these can be found in [8]. Note that if G 4 H then tw(G) 6 tw(H). By the
well-known Kuratowski–Wagner theorem, a graph G is planar if, and only if,
neither K5 nor K3,3 is a minor of G. Robertson and Seymour [23] showed that
any class of graphs that is closed under taking minors and is not the class of all
graphs is characterized by a finite set of forbidden minors. We call such a class
of graphs a proper minor-closed class.

For any n > 1, let Gn be the n×n grid graph, i.e., the graph with vertex set
{ 1, . . . , n }2 and all edges of the form { (i, j), (i+ 1, j) } and { (i, j), (i, j + 1) }.



∆(Gn) = 4 (where ∆(G) denotes the maximum degree of any vertex in G) and
it is easy to see from the cops and robber game that tw(Gn) = n. Also, it can
be shown that for any planar graph G, there is an n such that G 4 Gn.

2.4 CFI graphs

The graphs we describe in this section are a minor variation on the graphs used
by Cai et al. to separate IFP + C from P [4] and proofs of all the results we
quote here can be found there. The difference is that Cai et al. do not have the
‘c’ and ‘d’ vertices but, instead, colour the vertices on the understanding that
the colours can be replaced by appropriate gadgets. The gadgets are simple and
we will use some of their properties later on so we prefer to make them explicit.

Let G = (V,E) be a graph in which every vertex has degree at least two. In
the following discussion, we will assume that G is connected but there are easy
component-wise extensions in the case where G is not connected. For each v ∈ V
let Γ (v) = { u : uv ∈ E } and let v̂ be the set of new vertices,

v̂ = { avw, bvw, cvw, dvw : w ∈ Γ (v) }

∪
{
vX : X ⊆ Γ (v) and |X | ≡ 0 (mod 2)

}
.

Call the vX inner vertices and the other members of v̂ outer vertices. Let
X∅(G) be the graph with vertices

⋃
v∈V v̂ and edges as follows:

– edges avwcvw, bvwcvw and cvwdvw for each edge vw ∈ E;
– an edge avwv

X whenever w ∈ X ;
– an edge bvwv

X whenever w ∈ Γ (v) \X ; and
– edges avwawv and bvwbwv for each edge vw ∈ E.

The subgraph of X∅(G) induced by v̂ for a vertex v of G with three neigh-
bours w1, w2, w3 is illustrated in Fig. 1, where the dashed lines indicate edges
connecting this subgraph to the rest of X∅(G).

For any S ⊆ E, let XS(G) be X∅(G) with the edges avwawv and bvwbwv

deleted and edges avwbwv and bvwawv added, for every edge vw ∈ S. We say
that the edges in S have been twisted. Cai et al. show that XS(G) ∼= XT (G) if,
and only if, |S| ≡ |T | (mod 2). This being the case, we write X(G) for the graph

X∅(G) and write X̃(G) for X{ e }(G) for any edge e and call these, respectively,
the untwisted and twisted CFI graphs of G.

For distinct edges e and f of G, we can obtain an isomorphism between
X{ e }(G) and X{ f }(G) as follows. Note that, for each v ∈ V and N ⊆ Γ (v)
with |N | ≡ 0 (mod 2), there is an automorphism ηv,N of the subgraph of XS(G)
induced by v̂ that exchanges avw and bvw, for each w ∈ N (and there is no such
automorphism if |N | ≡ 1 (mod 2)). Let e be the edge uv and f be the edge xy.
If v = x, then the required isomorphism is just the map ηv,{u,y }. Otherwise, if
the four vertices are distinct then, by the assumption that G is connected, there
is a simple path from one endpoint of e to an endpoint of f that does not pass
through the other endpoints. Without loss of generality let v1 . . . vℓ be a simple
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Fig. 1. The graph on the vertices bv in X∅(G).

path with v = v1 and x = vℓ such that neither u nor y occurs on the path. Then,
the required isomorphism from X{ e }(G) to X{ f }(G) is

η = ηv1,{u,v2 } ◦ ηv2,{ v1,v3 } ◦ · · · ◦ ηvℓ−1,{ vℓ−2,vk } ◦ ηvℓ,{ vℓ−1,y } .

3 Tree-width

A separator of a graph G = (V,E) is a set S ⊆ V such that every connected
component of G−S has at most |V |/2 vertices. Cai, Fürer and Immerman prove
that, if G is connected, has minimal degree δ(G) > 2 and has no separator

of size k, then X(G)≡Ck
∞ω X̃(G). It follows that IFP + C does not define all

polynomial-time queries on graphs, for instance by Theorem 1.
The following lemma on the relationship between separators and tree-width

is a special case of [21, Theorem 2.5].

Lemma 2. Every graph G of tree-width k has a separator of size at most k+1.

So, any graph that has no separator of size k must have tree-width at least
k. On the other hand, for all k there are connected graphs of tree-width k that
have separators of size one (and, of course, disconnected graphs of tree-width
k with ∅ as a separator): take any order-n graph G of tree-width k, choose a
vertex v ∈ G and add n new vertices and an edge from each new vertex to v.
The resulting graph still has tree-width k but { v } is a separator. Therefore,
requiring that G have tree-width at least k − 1 is weaker than requiring it to
have no separator of size k.



Theorem 3. Let G be any connected graph with δ(G) > 2 and tw(G) > k.

X(G)≡Ck
∞ω X̃(G).

Proof. We exhibit a winning strategy for the duplicator in the k-pebble bijection
game on X(G) and X̃(G).

Given u, v ∈ V (G), let σ[u, v] be the permutation of V (G) that exchanges u
and v and fixes every other vertex. For a vertex u of G, we say that a bijection
h : X(G) → X̃(G) is good except at u if it satisfies the following conditions:

– for every vertex v of G, hv̂ = v̂;
– h maps inner vertices to inner vertices and outer vertices to outer vertices;
– h is an isomorphism between the graphs X(G) \ uI and X̃(G) \ uI, where uI

is the set of inner vertices in û; and
– for every pair auv, buv in û, h ◦ σ[auv, buv] is an isomorphism from X(G)[û]

to X̃(G)[û], where X(G)[û] is the subgraph of X(G) induced by û.

For concreteness, say X̃(G) is the graphX{uv }(G). Then σ[auv, buv] is a bijection
that is good except at u; similarly, σ[avu, bvu] is good except at v. Note that if

η is an automorphism of X̃(G) that fixes v̂ (set-wise) for every v ∈ G and h is a
bijection that is good except at u, then h ◦ η is also good except at u. We claim
that, if h is a bijection that is good except at u and there is a simple path P
from u to v, then there is a bijection h′ that is good except at v such that for
all vertices w not in P and all x ∈ ŵ, h′(x) = h(x).

To prove the claim, let the path P be v1 . . . vℓ with u = v1 and v = vℓ. Let
ηP be the permutation

ηP = σ[auv1
, buv1

] ◦ ηv2,{ v1,v3 } ◦ · · · ◦ ηvl−1,{ vl−2,vl } ◦ σ[av,vl−1
, bv,vl−1

] .

The properties of the graphsX(G) and X̃(G) then ensure that taking h′ = h◦ηP

satisfies the claim.
The duplicator’s strategy can now be described as always playing a bijection

that is good except at u for some u. The vertex u is given by the position of the
robber in the cops and robber game played on G where the positions of the cops
are v1 . . . vk when the pebbles in the bijection game are in the sets v̂1 . . . v̂k.

Initially, the duplicator plays a bijection that is good except at u for one of
the endpoints u of the twisted edge in X̃(G). At the same time, she initiates a
cops and robber game on G with the robber initially at u. At each subsequent
move, when the spoiler moves one of the pebbles, the duplicator moves the
corresponding cop in the cops and robber game. This yields a path P for the
robber to move along to a vertex v. By the claim, this yields a bijection h′ that
the duplicator can play. Since P , by definition, does not go through any of the
cop positions, this means that h′ agrees with h on all currently pebbled positions
in the bijection game as required. Also, since h is, at all times, an isomorphism
everywhere except at the inner vertices of v̂, for the current robber position
v, it follows that it must be a partial isomorphism on the pebbled vertices, as
required. ⊓⊔



The following corollary is immediate from Theorem 3 and Theorem 1.

Corollary 4. IFP + C does not capture P on any class of graphs containing

X(G) and X̃(G) for graphs G of unbounded tree width.

Let ∆(G) be the maximal degree of any vertex in a given graph G. The
following lemma shows that tw(X(G)) can be bounded in terms of tree-width

and maximal degree of G. The same bounds apply to tw(X̃(G)).

Lemma 5. tw(G) 6 tw(X(G)) 6 (4∆(G) + 2∆(G)−1)tw(G).

Proof. The first inequality holds because G 4 X(G): contracting along every
edge in each v̂ in X(G) gives G. The second holds because if (T, {Bt : t ∈ T }) is
a tree decomposition of G then (T, { (

⋃
v∈Bt

v̂) : t ∈ T }) is a tree decomposition
of X(G). ⊓⊔

For any function f : N → N, let TWf = {G : tw(G) 6 f(|G|) }. Grohe and
Mariño show that, if f is any constant function, IFP + C captures P on TWf

[14]. We show that this result is, in a sense, optimal: if f is unbounded then
IFP + C does not capture P on TWf .

Recall that Gn is the n × n grid graph and that tw(Gn) = n. For n > 3,
∆(Gn) = 4.

Theorem 6. IFP + C captures P on TWf if, and only if, f = O(1).

Proof. The ‘if’ direction is the Grohe–Mariño theorem. Conversely, if f 6= O(1)
then, for any n, there is some k > |X(Gn)| such that f(k) > 24n. Since

tw(X(Gn)) 6 24n (Lemma 5), it follows that TWf contains X(G) and X̃(G)
(possibly padded with some number of isolated vertices) for graphs of arbitrary
tree width and so, by Corollary 4, IFP + C does not capture P on TWf . ⊓⊔

Notice that we do not claim that IFP + C fails to capture P on any class of
graphs containing graphs of unbounded tree-width. For example, the complete
graph on n vertices has tree-width n − 1 so the class of all complete graphs
contains graphs of arbitrarily high tree-width but IFP + C does capture P on
this class. Similarly, the class of planar graphs contains graphs of unbounded tree-
width (it contains Gn for all n), but Grohe has shown that IFP + C captures P
on this class [12]. However, if C contains all graphs whose tree-width is bounded
by the function f , then the CFI construction applies.

Lemma 7. If G is bipartite, X(G) and X̃(G) are bipartite.

Proof. Let G = (V,E) with bipartition V0, V1. Then X(G) and X̃(G) have bi-
partition W0,W1, where Wi consists of all inner and ‘c’ vertices corresponding
to elements of Vi and all ‘a’, ‘b’ and ‘d’ vertices from V1−i. ⊓⊔

Corollary 8. IFP + C does not capture P on the class of bipartite graphs.

Proof. For any n, Gn is bipartite so, by Lemmata 5 and 7, the class of bipartite
graphs contains X(G) and X̃(G) for graphs of unbounded tree width. ⊓⊔



Moreover, IFP + C does not capture P on the class of graphs of chromatic
number k, for any fixed k > 2, as the disjoint union of X(Gn) and Kk has

chromatic number k but no formula of IFP + C can distinguish it from X̃(Gn)∪
Kk if n is large enough.

One might hope that Theorem 6 could be extended to measures of graph
connectivity on directed graphs such as directed tree-width [17], DAG-width [2]
or entanglement [3] but this is not the case. All directed acyclic graphs (DAGs)
have low width in all of these measures (directed tree-width zero, DAG-width
one and entanglement zero) but there are polynomial-time queries on DAGs not
definable in IFP + C.

Theorem 9. IFP + C does not capture P on the class of DAGs.

Proof. Let D be a directed graph. Define X ′(D) and X̃ ′(D) in the same way as
for undirected graphs but with the following directions on the edges:

– edges from inner vertices to outer vertices are directed that way;
– edges between outer vertices in the same v̂ are directed ac, bc and dc;
– any edges between auv or buv, and avu or bvu have the same direction as the

corresponding edge in D between u and v.

Note that, if D contains edges uv and vu then û will contain two sets of outer
vertices associated with v: one for each edge. Observe that X ′(D) and X̃ ′(D) are
DAGs. Clearly, there is a polynomial-time algorithm that distinguishes X ′(D)

from X̃ ′(D) — just forget the orientation of the edges and use the algorithm

that distinguishes X(G) from X̃(G). Suppose the query {X ′(D) : D is a DAG }
is defined by some sentence ϕ ∈ IFP + C for DAGs.

Fix any vertex v ∈ Gn. There are no edges in Gn between vertices at the same
distance from v so the orientation D(Gn, v) of Gn that orients every edge from
its end further from v to the end nearer v is a DAG. There is an IFP formula
ψ(xy, v) that, given some vertex v ∈ X(Gn) (respectively, X̃(Gn)) as a parame-

ter, defines the edge relation of X ′(D(Gn, v)) (respectively, X̃ ′(D(Gn, v))). Let
χ ≡ ∃v ϕ[ψ(xy, v)/E(xy)], where ϕ[· · · ] is the result of replacing every subfor-

mula E(xy) with ψ(xy, v). Then χ distinguishes X(Gn) from X̃(Gn) for all n,
contradicting Theorem 3. ⊓⊔

Corollary 8 and Theorem 9 are to be expected. The relation ≡Ck
∞ω can be

tested in polynomial time by means of a colour-refinement algorithm (see, e.g.,
[20]). Therefore, by Theorem 1, it follows that if, IFP + C captures P on a class
of structures C (closed under disjoint unions), then C admits a polynomial-time
isomorphism test. It is not difficult to see that bipartite graphs and DAGs admit
such a test if, and only if, all graphs do. Indeed, given an undirected graph
G = (V,E), let G′ be the directed graph whose vertex set is V ∪ E and with a
directed edge from v ∈ V to e ∈ E exactly when v is one of the ends of e in G.
Clearly, G is acyclic and G ∼= H if, and only if, G′ ∼= H ′. The undirected version
of G′ (known as the incidence graph of G) is bipartite.



4 Bounded local tree-width

Given a non-decreasing function f : N → N, let LTWf be the class of graphs
whose local tree-width is bounded by f . In this section, we extend the results of
Section 3 to show that IFP + C captures P on LTWf if, and only if, f = O(1).

For a graph G = (V,E) and a positive integer r, we define the graph r(G) to
have vertex set V ∪ {(u, v, i) : u, v ∈ V, 1 6 i 6 r} and edges:

– { u, (u, v, 1) } for all u, v ∈ V ;
– { (u, v, i), (u, v, i+ 1) } for all u, v ∈ V and 1 6 i < r; and
– { (u, v, r), (v, u, r) } for all edges uv ∈ E.

Recall that a subdivision of a graph G is any graph H formed by replacing
each edge uv ∈ G with a u–v path, such that the paths in H corresponding to
distinct edges in G are internally disjoint. We can think of r(G) as a graph that
is obtained from a subdivision of G (where each edge is replaced by a path of
length 2r) by further adding, for each pair u, v that is not an edge in G, two
simple paths of length r — one originating at u and one at v — that do not
meet.

The properties of the graphs r(G) that we need are established in the follow-
ing lemmata.

Lemma 10. tw(r(G)) = tw(G).

Proof. tw(G) 6 tw(r(G)) because G 4 r(G). For the converse, if tw(G) = 1,
then G is a forest and r(G) is a forest as well, so tw(H) = 1, as required. Now,
suppose tw(G) = k > 1. Let (T, {Bt : t ∈ T }) be a width-k tree decomposition
of G. We construct a width-k tree decomposition of H as follows. For each edge
uv ∈ G there must, by definition, be some t ∈ T such that { u, v } ⊆ Bt. Add
to T a path tt1 . . . t2r and set Bt1 = { u, v, (u, v, 1) }; for 2 6 i 6 r set Bti

=
{ v, (u, v, i− 1), (u, v, i) }; Btr+1

= { v, (u, v, r), (v, u, r) }; and for r + 2 6 i 6 2r
set Bti

= { v, (v, u, 2r − i+ 2), (v, u, 2r − i+ 1) }. Finally, if uv is not an edge
in G, choose any t ∈ T such that u ∈ Bt and add a path tt1 . . . tr−1 to T with
Bti

= { u, (u, v, i), (u, v, i+ 1) }. ⊓⊔

For any vertex w in r(G), we write πw = w, if w ∈ V (G), and π(u, v, i) = u.

Lemma 11. If G≡Ck
∞ω H, then r(G)≡Ck

∞ω r(H).

Proof. By the assumption G≡Ck
∞ω H , the duplicator has a winning strategy in

the k-pebble bijection game played on these two graphs. This winning strategy
is easily adapted to a winning strategy on the pair of graphs r(G) and r(H).
For any bijection h between the vertices of G and the vertices of H , consider the
extension hr of h to the vertices of of r(G) given by

hr(w) =

{
h(w) if w ∈ V G

(h(u), h(v), i) if w = (u, v, i).



The duplicator’s strategy is to maintain the condition that, at any point in the
game, if the pebbles are on the vertices s1, . . . , sk in r(G) and t1, . . . , tk in r(H),
then πs1, . . . , πsk and πt1, . . . , πtk is a winning position in the game played on
G and H . It is now easily verified that, if the duplicator’s strategy called for
playing the bijection h in the latter game, then the bijection hr will maintain
this condition in the game on r(G) and r(H). ⊓⊔

We are now ready to prove the strengthening of Theorem 6.

Theorem 12. Let f : N → N be any non-decreasing function. IFP + C captures

P on LTWf if, and only if, f = O(1).

Proof. LTWf ⊆ TWf so, if f = O(1), then IFP + C defines all polynomial-time
properties over LTWf by the Grohe–Mariño theorem.

Suppose f 6= O(1). For any k, let G by a graph with tw(G) > k and δ(G) > 2.

Now, there is some r such that f(2r) > tw(X(G)) = tw(X̃(G)). Let H =

r(X(G)) and H ′ = r(X̃(G)). By Lemma 10, tw(H) = tw(H ′) = tw(X(G)).
Notice that ltwH and ltwH′ are bounded by the function

h(x) =

{
1 if x < 2r

tw(X(G)) otherwise,

and that this function is, in turn, bounded by f . Therefore, H,H ′ ∈ LTWf .

Since, tw(G) > k we have (by Theorem 3) that H ≡Ck
∞ω H ′. The result now

follows from Theorem 1, ⊓⊔

5 Graph minors

Grohe has conjectured that IFP + C captures P on any proper minor-closed class
of graphs [13], i.e., any minor-closed class except the class of all graphs. In this
section, we show that this conjecture cannot be refuted by the CFI construction.
Specifically, we show that any class C of graphs containing at least one of X(G)

and X̃(G) for graphs G of unbounded tree-width has no forbidden minors. Since
any proper minor-closed class must have at least one forbidden minor, it follows
that C is either the class of all graphs or is not minor-closed. Note that the
requirement that C contain CFI graphs derived from graphs of unbounded tree-
width is crucial here: it does not suffice to require merely that C contain graphs
of unbounded tree-width. For example, the class of planar graphs does not have
bounded tree-width.

We wish to show that, for any graph G, if H is a graph with tw(H) large

enough, relative to G, then X(H) and X̃(H) contain G as a minor. To do this,
we will first produce a planar graph G′ such that G′ 4 H . The graph G′ is
obtained from a plane drawing of G by inserting new vertices at crossing points
of edges. The assumption on the tree-width of H will ensure that any such planar
graph is a minor of H . The paths in G′ corresponding to distinct edges in G will



be edge-disjoint but not necessarily independent: two of the paths may cross at
some vertex. To show that X(H) and X̃(H) contain G as a minor, we need to
show that, even if edge-disjoint paths P1 and P2 meet at a vertex u, X(H) and

X̃(H) contain corresponding independent paths.

Lemma 13. Let u ∈ G be a vertex of degree 4, with neighbours w, x, y, z. For

each v ∈ {w, x, y, z }, choose v′ ∈ { auv, buv }. û contains vertices v1 and v2 such

that X(G) and X̃(G) contain disjoint paths w′v1x
′ and y′v2z

′.

Proof. Note that X(G) and X̃(G) have the same edges within each û. The values
of v1 and v2 are given in the following table.

w′ x′ y′ z′ v1 v2
auw aux auy auz v{w,x } v{ y,z }

auw aux auy buz v
{w,x,y,z } v{x,y }

auw bux auy buz v{w,z } v{x,y }

The other cases are symmetric, either by permutations of {w, x, y, z } or the
automorphisms of û that exchange the ‘a’ and ‘b’ vertices for even-cardinality
subsets of {w, x, y, z }. ⊓⊔

We first restrict attention to minors of CFI graphs of grids. Recall that Gr

is the r × r grid graph.

Theorem 14. Let G be any graph. For sufficiently large grids Gr, G 4 X(Gr)

and G 4 X̃(Gr).

Proof. Let V (G) = { v1, . . . , vn } and E(G) = { e1, . . . , em }. We first produce
a drawing G∗ of G. Choose a set V ∗ = { v∗1 , . . . , v

∗
n } of distinct points in R

2

to represent the vertices of G and a set E∗ = { e∗1, . . . , e
∗
m } of distinct, simple,

piecewise-linear curves to represent the edges, such that:

– if ei = vjvk then the endpoints of e∗i are v∗j and v∗k;
– no e∗i contains any v∗j except its endpoints;
– for i 6= j, e∗i ∩ e

∗
j is finite; and

– no point in R
2 \ V ∗ appears in more than two of the e∗i .

We can now produce a planar graph G′ whose vertices are the points of intersec-
tion of the e∗i (i.e., V (G′) =

⋃
16i<j6m(e∗i ∩ e∗j ), including V ) and whose edges

are precisely those pairs { x, y } such that G∗ contains an x–y curve that passes
through no other points in V (G′).

Since G′ is planar, we have G′ 4 Gr for large enough r. Unless G is, itself,
planar, we cannot have G 4 Gr; however, we claim that G 4 X(Gr) and G 4

X̃(Gr). To this end, let H be X(Gr) or X̃(Gr).
Let {Vx : x ∈ G′ } be the branch sets witnessing that G′ is a minor of Gr.

For each x ∈ G′, let V̂x =
⋃

y∈Vx
ŷ ⊆ V (H). To show that G 4 H , we proceed

as follows. First, for each x ∈ G, contract all the edges in the subgraph induced



by V̂x, calling the resulting vertex vx. We now show that there is a system of
independent paths Pxy, from vx to vy, for each edge xy ∈ G.

For each xy ∈ G, let Qxy be the x–y path in G′ corresponding to the edge
xy ∈ G∗. These paths are not necessarily independent: in particular, they share
the vertices of V (G′) \ V (G). Lemma 13 shows that, even if Qwx and Qyz meet
at vertex u, H contains paths ŵ–x̂ and ŷ–ẑ that are independent. This completes
the proof. ⊓⊔

The significance of grids is given by the following theorem of Robertson and
Seymour. (Note that the tree-width required grows rapidly with r: Diestel shows

that r4r4(r+2) suffices [8].)

Theorem 15 ([22]). For every r > 1, every graph of sufficiently high tree-width

contains Gr as a minor.

Theorem 16. The only minor-closed class of graphs that contains X(G) or

X̃(G) for graphs G of unbounded tree-width is the class of all graphs.

Proof. Let C be a minor-closed class of graphs containing X(G) or X̃(G) for
graphs G of unbounded tree-width and let H be any graph. By Theorem 14,
X(Gr) and X̃(Gr) contain H as a minor, for large enough grids Gr. By Theo-
rem 15, any graph of large enough tree-width contains Gr as a minor. Therefore,
C contains a graph X ∈ {X(G), X̃(G) } for some graph G containing Gr as a
minor, so H 4 X . But C is minor-closed so H ∈ C. ⊓⊔

A consequence of this theorem is that any attempt to refute Grohe’s conjec-
ture that IFP + C captures P on all non-trivial minor-closed classes of graphs
cannot rely on Cai–Fürer–Immerman graphs. For, to use the CFI construction
(in the form in Theorem 3), we need precisely to find for each k, a graph G of

tree-width at least k such that X(G) and X̃(G) are both in the class.
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