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Abstract. Gaifman’s locality theorem states that every first-order sentence is
equivalent to a local sentence. We show that there is no elementary bound on
the length of the local sentence in terms of the original.
The classical Łoś-Tarski theorem states that every first-order sentence preserved
under extensions is equivalent to an existential sentence.We show that there is no
elementary bound on the length of the existential sentence in terms of the orig-
inal. Recently, variants of the Łoś-Tarski theorem have been proved for certain
classes of finite structures, among them the class of finite acyclic structures and
more generally classes of structures of bounded tree width.Our lower bound also
applies to these variants.
We further prove that a version of the Feferman-Vaught theorem based on a re-
striction by formula length necessarily entails a non-elementary blow-up in for-
mula size.
All these results are based on a similar technique of encoding large numbers by
trees of small height in such a way that small formulas can speak about these
numbers. Notably, our lower bounds do not apply to restrictions of the results
to structures of bounded degree. For such structures, we obtain elementary upper
bounds in all cases. However, even there we can prove at leastdoubly exponential
lower bounds.

1 Introduction

Classical results of model theory provide syntactical normal forms for various seman-
tical properties of structures. For example, the Łoś-Tarski theorem states that every
first-order definable property that is preserved under extensions of structures is actually
definable by an existential first-order sentence. Gaifman’slocality theorem provides a
normal form for all properties definable in first-order logic. It states that each first-order
definable property is definable by a local sentence, that is, asentence where quantifica-
tion is basically restricted to local neighbourhoods of elements.

Gaifman’s theorem has found various applications in algorithms and complexity [9,
4, 16, 17]. In particular, there are very general algorithmic meta-theorems stating that
first-order model-checking is fixed-parameter tractable for various classes of structures,
such as planar graphs or graphs with excluded minors, and that first-order definable
optimisation problems on such classes have polynomial timeapproximation schemes.
These algorithms are heavily based on (an effective versionof) Gaifman’s theorem:
First-order formulas are first translated into local formulas, and then these local formu-
las are algorithmically evaluated.



While it is known that the Łoś-Tarski theorem fails when restricted to all finite struc-
tures, it has recently been proved [1] that the theorem does still hold when restricted to
specific “well-behaved” classes of finite structures such asacyclic structures, structures
of bounded tree width, and structures of bounded degree.

In the context of algorithms, complexity, and finite model theory, questions about
the efficiency of the normal forms, which are usually neglected in classical model the-
ory, are of fundamental importance. These are the questionswe address. By efficiency
we mean the size of the formulas in normal form (succinctness) and the existence of
efficient algorithms that translate formulas into their normal forms (complexity of the
translation). We shall prove nonelementary lower bounds for the succinctness — ob-
viously, this implies nonelementary lower bounds on the complexity of the translation.
Specifically, we prove that there is no elementary functionf such that every first-order
sentenceϕ is equivalent to a local first-order sentenceϕ̃ of length ||ϕ̃|| ≤ f(||ϕ||),
not even on the class of all finite trees. Similarly, we prove that there is no elemen-
tary functionf such that every first-order sentenceϕ that is preserved under extensions
(on arbitrary structures) is equivalent to an existential first-order sentencẽϕ of length
||ϕ̃|| ≤ f(||ϕ||), not even on the class of all finite trees. This provides a succinctness
lower bound for both the classical Łoś-Tarski theorem and its variants for classes of
finite forests and all classes of finite structures that contain all trees (but not for classes
of finite structures of bounded degree).

We prove a further lower bound that is concerned with the classical Feferman-
Vaught theorem. The classical theorem states that for certain forms of compositions
of structures the theory of a structure composed from simpler structures is determined
by the theories of the simpler structures. In particular, there is a functionf such that
if structuresAi andBi (for i = 1, 2) satisfy the same first-order sentences of length at
mostf(ℓ), then the disjoint union ofA1 andA2 satisfies the same first-order sentences
of sizeℓ as the disjoint union ofB1 andB2. We prove a lower bound on the growth rate
of f showing thatf is not bounded above by an elementary function.

Technically, all our lower bound proofs rely on a suitable encoding of large natural
numbers by trees of small height that can be controlled by small first-order formulas. In
fact, we show — and use — that full arithmetic on a large initial segment of the positive
integers can be simulated by comparably small first-order formulas that operate on the
tree encodings of the numbers. It is worth mentioning that this approach can be applied
in various other contexts. For example, concerning the classical decision problem, it is
known that the first-order theory (and actually also the monadic second-order theory) of
trees is decidable [23, 19]; and in [2] (see also [7] for related results) it has been shown
that there is noelementarydecision algorithm. A simple proof of this non-elementary
lower bound can easily be obtained using the methods in the present paper (details of
this can be found in the full version of this paper).

A point to note, however, is that all our non-elementary lower bounds heavily rely
on the fact that the degree of the underlying structures is unbounded. In fact, when
restricting attention to classes of structures of bounded degree, we can show elemen-
tary upper bounds as counterparts of the non-elementary lower bounds on classes of
structures of unbounded degree. In particular, in the bounded degree case we obtain a
4-fold exponential upper bound for Gaifman’s locality theorem; and we get a 5-fold ex-



ponential upper bound for the variant of the Łoś-Tarski theorem on the class of acyclic
structures of bounded degree.

As far as we know, techniques similar to those applied here goback to Stockmeyer
and Meyer [21]. Much later, such techniques have been employed in [10, 18, 12, 13] to
prove lower bounds in parameterised complexity, respectively, on the succinctness of
monadic logics. A related succinctness lower bound deserves mention. It has recently
been proved by Rossman [20] that the homomorphism preservation theorem (in con-
trast with the Łoś-Tarski theorem) holds in the class of allfinite structures. Here, it is
known that there is no elementary bound on the length of the existential positive formula
obtained.3

The rest of the paper is structured as follows. Section 2 establishes some definitions
and notation and Section 3 presents the encoding of numbers by trees that is then used to
prove lower bounds on the size of formulas in Gaifman normal form (Section 4) and the
failure of the Feferman-Vaught theorem for formula length (Section 5). Section 6 then
establishes the lower bound for the Łoś-Tarski theorem, which is based on a different
encoding of numbers by trees. Finally, Section 7 contains the elementary upper bounds
on classes of structures of bounded degree. Due to space limitations, many technical
details of the proofs are deferred to the full version of thispaper.

Acknowledgements:We would like to thank an anonymous referee for pointing us
to the references [2, 7]. We gratefully acknowledge the support of the Isaac Newton In-
stitute through its 2006 programme on Logic and Algorithms.The opportunity afforded
by this programme greatly aided our collaboration.

2 Preliminaries

We useR to denote the set of reals andN to denote the set of natural numbers, i.e., the
set of nonnegative integers. For natural numbersm < n we write [m,n] to denote the
set{m,m+1, . . . , n}.

We say that a functionf : N → R is (1-fold) exponentialif there is some polynomial
p such thatf(n) is eventually bounded by2p(n). For anyk ≥ 2, a functionf is called
k-fold exponentialif there is some(k−1)-fold exponential functiong such thatf(n)
is eventually bounded by2g(n). A function f : N → R is calledelementaryif it can
be formed from the successor function, addition, subtraction, and multiplication using
compositions, projections, bounded additions, and bounded multiplications (of the form∑

z≤y g(x, z) andΠz≤yg(x, z)). The crucial fact for us is that a functionf is bounded
by an elementary function if, and only if, there exists ak ≥ 1 such thatf is bounded by
ak-fold exponential function (see, e.g., [3]).

One function of particular interest for the present paper isthe functionTower :
N → N, defined viaTower(0) := 1 and, for allh ≥ 1, Tower(h) := 2Tower(h−1). I.e.,
Tower(h) is a tower of2s of heighth. Note that, e.g., none of the functionsTower(h),
Tower( 4

√
h), Tower(log h) is bounded by an elementary function.

A vocabularyis a finite set of relation symbols and constant symbols. Associated
with every relation symbolR is a positive integer called thearity ofR. In the following,

3 This is mentioned by Rossman citing unpublished work of Gurevich and Shelah. As far as we
are aware, a proof of this lower bound has not yet been published.



τ always denotes a vocabulary. A vocabularyτ is calledrelational if it does not contain
any constant symbol. Aτ -structureA consists of a non-empty setA, called theuniverse
of A, an elementcA ∈ A for each constant symbolc ∈ τ , and a relationRA ⊆ Ar for
eachr-ary relation symbolR ∈ τ . A is called aninduced substructureof a τ -structure
B if A ⊆ B, RA = RB ∩Ar, for each relation symbolR ∈ τ of arity r, andcA = cB

for each constant symbolc ∈ τ .
TheGaifman graphof aτ -structureA is the (undirected, loop-free) graphGA with

vertex setA and an edge between two verticesa, b ∈ A iff there exists anR ∈ τ

and a tuple(a1, . . , ar) ∈ RA such thata, b ∈ {a1, . . , ar}. Thedistancebetween two
elementsa, b ∈ A in A, denoted bydistA(a, b), is defined to be the length (that is,
number of edges) of the shortest path froma to b in the Gaifman graph ofA. Forr ≥ 0
anda ∈ A, ther-neighbourhood ofa in A is the setNA

r (a) = {b ∈ A : distA(a, b) ≤
r}. The induced substructure ofA with universeNA

r (a) is denoted byNA
r (a). We omit

superscriptsA if A is clear from the context.
We write FO(τ) to denote the class of all formulae of first-order logic over the

vocabularyτ , and we writeqr (ϕ) to denote thequantifier rankof an FO(τ)-formula
ϕ. In a natural way, we view formulas as trees (to be precise, astheir syntax trees),
where leaves correspond to the atoms of the formulas, and inner vertices correspond to
Boolean connectives or quantifiers. We define thesize(or, length) ||ϕ|| of a first-order
formulaϕ as the number of vertices in the syntax tree ofϕ.

Whenever we writeE, it denotes a binary relation symbol. We view{E}-structures
as directed graphs. For a directed graphA = (A,EA) and ana ∈ A, we letAa be
the set of all verticesb such there is a path froma to b (this includesa), and we let
Aa be the induced substructure ofA with universeAa. Unless we explicitly call them
undirected, we view trees as being directed from the root to the leaves. Aforest is a
directed graph in which every vertex has indegree at most1. Vertices of indegree0 are
calledrootsof the forest. Atree is a forest with exactly one root. The class of all finite
forests is denoted byF and the class of all finite trees byT. Theheightof a treeT is
the length of the longest path inT .

3 Encoding numbers by trees

In this section we introduce the technical machinery that isused for proving our main
theorems in sections 4 and 5. We use the following encoding ofnatural numbers by
trees, introduced in [8].

Definition 3.1 (Encoding numbers by trees).Fori, n ∈ N we write bit(i, n) to denote
the i-th bit in the binary representation ofn. I.e., bit(i, n) = 0 if

⌊
n
2i

⌋
is even, and

bit(i, n) = 1 if
⌊

n
2i

⌋
is odd. Inductively we define a treeT (n) for each natural number

n as follows:T (0) is the one-node tree. Forn ≥ 1 the treeT (n) is obtained by creating
a new root and attaching to it all treesT (i) for all i such that bit(i, n) = 1.

Illustrations of these trees can be found in [8]. It is straightforward to see (cf. [8,
Lemma 10.20]) that for allh, n ≥ 0, height(T (n)) ≤ h ⇐⇒ n < Tower(h) .
The next lemma from [8] shows that the tree encodings of numbers can be “controlled”
by small first-order formulas. (In [8], the statement of the lemma is formulated for trees



instead of general structures. The proof given there, however, also holds for general
structures and thus leads to the following lemma.)

Lemma 3.2 ([8, Lemma 10.21]).For everyh ≥ 0 there is anFO(E)-formula eqh(x, y)
of lengthO(h) such that for all structuresA = (A,EA) andt, u ∈ A we have: If there
arem,n < Tower(h) such that the structuresAt andAu are isomorphic toT (m) and
T (n), resp., then A |= eqh(t, u) ⇐⇒ m = n .

Using this, one easily obtains the following two lemmas which provide formulas of
length polynomial inh that recognise tree encodings and define arithmetic on the tree
encodings of numbers of size up toTower(h).

Lemma 3.3. For everyh ≥ 0 there is aFO(E)-formula encodingh(x) of lengthO(h2)
such that for all structuresA = (T,EA) andt ∈ Awe have:A |= encodingh(t) ⇐⇒
there is ani ∈ {0, . . ,Tower(h)−1} such thatAt is isomorphic toT (i) .

Lemma 3.4. For everyh ≥ 0 there areFO(E)-formulas bith(x, y) of sizeO(h),
lessh(x, y) of sizeO(h2), min(x) of constant size (not depending onh), succh(x, y)
of sizeO(h3), and maxh(x) of sizeO(h4) such that for all structuresA = (A,EA)
and t, u ∈ A we have: If there arem,n < Tower(h) such that the structuresAt and
Au are isomorphic toT (m) andT (n), respectively, then we have:

(a) A |= bith(t, u) ⇐⇒ bit(m,n) = 1
(b) A |= lessh(t, u) ⇐⇒ m < n

(c) A |= min(t) ⇐⇒ At is isomorphic toT (0)
(d) A |= succh(t, u) ⇐⇒ m+ 1 = n

(e) A |= maxh(t) ⇐⇒ At is isomorphic toT (Tower(h)−1) .

4 Lower bounds for the size of formulas in Gaifman normal form

The aim of this section is to prove a non-elementary succinctness gap for Gaifman’s
theorem. To give a precise formulation of Gaifman’s theoremand our new bounds on
formula length, we need to fix some (standard) notation.

For everyr ≥ 0, we let dist≤r(x, y) be an FO(τ)-formula expressing that the
distance betweenx and y is at mostr. We often writedist(x, y) ≤ r instead of
dist≤r(x, y) anddist(x, y) > r or dist>r(x, y) instead of¬dist≤r(x, y). An FO(τ)-
formulaψ(x) is calledr-local if for every τ -structureA and everya ∈ A we have
A |= ψ(a) ⇐⇒ NA

r (a) |= ψ(a). A basic local sentence(with parametersk, r) is a
sentence of the form

∃x1 · · · ∃xk

( ∧

1≤i<j≤k

dist(xi, xj) > 2r ∧
∧

1≤i≤k

ψ(xi)
)
,

whereψ(x) is r-local.
For an FO(τ)-sentenceϕ we say thatϕ is in Gaifman normal formif ϕ is a Boolean

combination of basic local sentences. Gaifman’s well-known theorem [11] states that
every first-order sentence over a relational vocabulary is equivalent to a first-order sen-
tence in Gaifman normal form. The proof in [11] proceeds by induction on the length



of the given first-order sentenceϕ and leads to an effective algorithm that transforms a
givenϕ into an equivalent sentenceψ in Gaifman normal form. A closer look at Gaif-
man’s proof shows that the size of the constructed sentenceψ may be non-elementary in
the size of the original sentenceϕ. The main result of the present section shows that this
huge increase in formula size is not just an artifact of Gaifman’s proof, but that indeed
there are first-order formulasϕ for which the shortest equivalent formula in Gaifman
normal form is non-elementarily larger thanϕ.

Theorem 4.1. For everyh ≥ 1 there is anFO(E)-sentenceϕh of sizeO(h4) such that
everyFO(E)-sentence in Gaifman normal form that is equivalent toϕh on the classT
of finite trees has size at least Tower(h).

Here, we show the following variant that speaks about the class of allforestsrather
thantrees. The proof of Theorem 4.2 avoids some of the unpleasant details needed in
the proof of Theorem 4.1 while still exposing the main ideas that are crucial for the
proof of Theorem 4.1. The proof of Theorem 4.1 can be found in the full version of this
paper.

Theorem 4.2. For everyh ≥ 1 there is anFO(E)-sentenceϕh of sizeO(h4) such that
everyFO(E)-sentence in Gaifman normal form that is equivalent toϕh on the class
F≤h of finite forests of height≤ h has size at least Tower(h).

Proof. We use the tree encodings of natural numbers introduced in Section 3. Forh ≥ 1
we define the structureFh to be the forest that consists of the disjoint union of all trees
T (j) for all j ∈ {0, . . ,Tower(h)−1}. Furthermore, for everyi ∈ {0, . . ,Tower(h)−1},
we letF−i

h be the forest that consists of the disjoint union of all treesT (j) for all j with
j 6= i andj ∈ {0, . . ,Tower(h)−1}.

We let root(x) be a formula which expresses that a nodex has in-degree0, i.e.,
root(x) := ¬∃y E(y, x) . We choose the FO(E)-sentenceϕh as follows: ϕh :=

∃x
(
root(x)∧min(x)

)
∧ ∀y

((
root(y)∧¬maxh(y)

)
→ ∃z

(
root(z)∧succh(y, z)

)))
.

Using Lemma 3.4, it is straightforward to see that||ϕh|| = O(h4) and

Fh |= ϕh and, for eachi < Tower(h), F−i
h 6|= ϕh . (1)

Now letψ be an FO(E)-sentence inGaifman normal formthat is equivalent toϕh

on the classF≤h. In particular, sinceFh as well as all theF−i
h belong toF≤h, we obtain

from (1) that

Fh |= ψ and, for eachi < Tower(h), F−i
h 6|= ψ . (2)

Our aim is to show thatH := ||ψ|| ≥ Tower(h). Aiming at a contradiction, let us now
assume thatH < Tower(h).

Sinceψ is in Gaifman normal form, it is a Boolean combination ofbasic local
sentencesχ1, . . , χL, where eachχℓ (for ℓ ∈ {1, . . , L}) is of the form

χℓ := ∃x1 · · · ∃xkℓ

( ∧

1≤i<j≤kℓ

dist(xi, xj) > 2rℓ ∧
∧

1≤i≤kℓ

ψℓ(xi)
)
,



with kℓ, rℓ ≥ 1 andψℓ(x) a formula that isrℓ-local. In particular,

H := ||ψ|| ≥ k1 + · · · + kL . (3)

We can assume w.l.o.g. that there exists anL̃ with 0 ≤ L̃ ≤ L such that

for eachℓ ≤ L̃, Fh |= χℓ , and for eachℓ > L̃, Fh 6|= χℓ . (4)

For all ℓ ≤ L̃ we know thatFh |= χℓ, i.e., there are nodest(ℓ)1 , . . . , t
(ℓ)
kℓ

in Fh such that
the formula ∧

1≤i<j≤kℓ

dist(xi, xj) > 2rℓ ∧
∧

1≤i≤kℓ

ψℓ(xi) (5)

is satisfied inFh when interpreting each variablexi with the nodet(ℓ)i . The set{ t(ℓ)i :
ℓ ≤ L̃ andi ≤ kℓ } consists of at mostk1 + · · · + kL̃ ≤ H nodes (see (3)). Since
we assume thatH < Tower(h), and sinceFh consists ofTower(h) disjoint trees, there

must be at least one componentT of Fh in which none of the nodes from{ t(ℓ)i : ℓ ≤
L̃ andi ≤ kℓ } is present. Letj ∈ {0, . . ,Tower(h)−1} be such thatT = T (j).

Now, of course, the forestF−j
h , which is obtained fromFh by removing the compo-

nentT (j), still contains all the nodes in{ t(ℓ)i : ℓ ≤ L̃ andi ≤ kℓ }. Considering (5),
note that each formulaψℓ(xi) is rℓ-local aroundxi. Thus, when interpretingxi with

the nodet(ℓ)i , the formula can only “speak” about therℓ-neighbourhood oft(ℓ)i , which
is the same inF−j

h as inFh. We thus obtain from (5) thatF−j
h |= χℓ for eachℓ ≤ L̃.

Let us now consider the formulasχℓ with ℓ > L̃. From (4) we know thatFh 6|= χℓ,
i.e.,Fh |= ¬χℓ, where the formula¬χℓ is of the following form:

¬∃x1 · · · ∃xkℓ

( ∧

1≤i<j≤kℓ

dist(xi, xj) > 2rℓ ∧
∧

1≤i≤kℓ

ψℓ(xi)
)
.

Since the formulaψℓ(xi) is rℓ-local and sinceF−j
h is obtained fromFh by removing

an entire component ofFh, it is straightforward to see that alsoF−j
h |= ¬χℓ. In total,

we now know the following:

for eachℓ ≤ L̃, F−j
h |= χℓ , and for eachℓ > L̃, F−j

h 6|= χℓ . (6)

From (6) and (4) we obtain thatF−j
h satisfies exactly the same basic local sentences

from{χ1, . . . , χL} asFh. Sinceψ is a Boolean combination of the sentencesχ1, . . , χL,
we thus have thatF−j

h |= ψ ⇐⇒ Fh |= ψ . This, however, is a contradiction to (2).
Altogether, the proof of Theorem 4.2 is complete. ⊓⊔

To conclude this section let us mention that an easy reduction shows that Theo-
rem 4.1 and Theorem 4.2 still hold when replacingT andF≤h by the classesTu and
Fu
≤h of undirectedtrees andundirectedforests of height at mosth, respectively.



5 Failure of Feferman-Vaught theorems for formula size

The classical Feferman-Vaught theorem [6] states that for certain forms of compositions
of structures the theory of a structure composed from simpler structures is determined
by the theories of the simpler structures. The plainest formof composition is thedisjoint
union, denoted by⊕ in the following. The Feferman-Vaught theorem for disjointunion
and first-order logic states that for all structuresA1,A2,B1,B2, if the structuresAi and
Bi (for i = 1, 2) satisfy the same first-order sentences, their disjoint unionsA1 ⊕ A2

andB1 ⊕ B2 also satisfy the same first-order sentences. This can be stratified by the
quantifier rank, that is, ifAi andBi satisfy the same first-order sentences of quantifier
rank at mostq, thenA1 ⊕ A2 andB1 ⊕ B2 also satisfy the same first-order sentences
of quantifier rank at mostq. This result is an immensely useful tool in analysing the
expressivity of first order logic, and for deriving bounds onthe quantifier rank.

To derive bounds on the formula size, it would be similarly useful to have an analo-
gous result for formula size instead of quantifier rank. As (for a fixed, finite vocabulary)
there are only finitely many first-order sentences of quantifier rankq, up to logical
equivalence, we immediately get the following: There is a functionf such that if the
structuresAi andBi (for i = 1, 2) satisfy the same first-order sentences of length at
mostf(ℓ), thenA1 ⊕A2 andB1 ⊕ B2 satisfy the same first-order sentences of length
at mostℓ. It is not hard to derive an upper bound ofTower(O(ℓ)) on the functionf .
Maybe surprisingly, this upper bound is essentially tight:

Theorem 5.1. There is no elementary functionf such that the following holds for all
treesA,B, C ∈ T: If A andB satisfy the same first-order sentences of length at most
f(ℓ), thenA⊕ C andB ⊕ C satisfy the same first-order sentences of length at mostℓ.

Proof. We use the encoding and the formulas from Section 3. For everyh ≥ 1, let

ϕh := ∀x
(
encodingh(x) →

(
maxh(x) ∨ ∃y succh(x, y)

))
.

Then there is a constantc ≥ 1 such that||ϕh|| ≤ c · h4 for all h.
Suppose for contradiction thatf is an elementary function with the desired property.

We may assume thatf(ℓ) ≥ ℓ for all ℓ ≥ 1. As there are only exponentially many first-
order sentencesϕ of a given length, there is anh ≥ 1 such that there are less than
Tower(h−1) first-order sentences of length at mostf(c·h4) (up to equivalence). Let us
fix such anh, and letℓ = c·h4 andn = Tower(h)−1. For everyj ∈ [0, n], letFj denote
the forest consisting of the treesT (j), . . . , T (n), and letUj be the tree obtained from
Fj by connecting a new root with the roots of all trees inFj . Then there are numbers
j, k such that1 ≤ j < k ≤ n, and the treesUj andUk satisfy the same first-order
sentences of length at mostf(ℓ). Observe that

Fj ⊕ T (j−1) |= ϕh and Fk ⊕ T (j−1) 6|= ϕh.

Now letA = Uj , B = Uk, andC = T (j−1). As the new roots ofA,B are not nodes
satisfyingencodingh(x) (becauseA andB are isomorphic to treesT (nA) andT (nB)
with nA, nB ≥ Tower(h)), we haveA ⊕ C |= ϕh andB ⊕ C 6|= ϕh. Since the length
of ϕh is at mostℓ andA,B satisfy the same sentences of length at mostf(ℓ), this is a
contradiction. ⊓⊔



6 Existential preservation on forests

A structureB is called anextensionof A if A is an induced substructure ofB. Let τ
be a vocabulary and letC be a class of finiteτ -structures that is closed under induced
substructures. An FO(τ)-sentenceϕ is preserved under extensions onC if the following
is true for all structuresA,B ∈ C: If A |= ϕ andB is an extension ofA, thenB |= ϕ.

The well-knownŁoś-Tarski Theorem(see e.g. [15]) states that every first-order sen-
tence that is preserved under extensions on the class ofall structures (i.e., finite as well
as infinite structures), is equivalent to anexistentialfirst-order sentence. Here, the class
of existential first-order formulasis obtained by closing the atomic formulas and the
negated atomic formulas under conjunction, disjunction, and existential quantification.
While the Łoś-Tarski theoremfails when shifting the attention from the class ofall
structures to the class of allfinitestructures ([22, 14]), it was shown in [1] that the Łoś-
Tarski theorem holds when restricted to certain “well-behaved” classes of finite struc-
tures, among them the class of all finite acyclic structures.The main result of the present
section, Theorem 6.1, shows that a translation of formulas preserved under extensions
into equivalent existential formulas may increase the formula size non-elementarily.

In the following, we letL andX be two unary relation symbols. An{L,X}-labelled
tree is an{E,L,X}-structureT = (T,ET , LT , XT ) where(T,ET ) is a tree.

Theorem 6.1. Let τ be a vocabulary that consists of a binary relation symbolE and
two unary relation symbolsL andX . For everyh ≥ 1 there is aFO(τ)-sentenceϕh of
size2O(h) with the following properties:

1. ϕh is preserved under extensions on the class of allτ -structures, and

2. every existentialFO(τ)-sentenceψ that is equivalent toϕh on the classT≤h of all
{L,X}-labelled trees of height at mosth is of size at least Tower(h−1).

Using the same approach as in the previous sections, i.e., the encoding of natural
numbers by trees introduced in Section 3, it is not difficult to construct a sentenceϕh

of small size which meets requirement 2. We were, however, unable to find a sentence
based on this encoding which also meets requirement 1 (even when consideringT≤h

instead of the class of allτ -structures). To prove Theorem 6.1, we therefore introduce
the following encoding of numbers by{L,X}-labelled trees. The remainder of this
section is devoted to the proof of Theorem 6.1.

From now on, until the end of this section, we letτ denote a vocabulary that consists
of a binary relation symbolE and two unary relation symbolsL andX .

Definition 6.2. For each natural numberh ≥ 1 and eachn ∈ {0, 1, . . ,Tower(h)−1},
we define the{L,X}-labelled treeT̃h(n) as follows:

– T̃1(0) consists of two nodesu andv such that there is an edge fromu to v, andv
is labelled to be aleaf (which is encoded by “v ∈ L”) andv is labelled0 (which is
encoded by “v 6∈ X”).

– T̃1(1) consists of two nodesu andv such that there is an edge fromu to v, andv
is labelled to be aleaf (which is encoded by “v ∈ L”) andv is labelled1 (which is
encoded by “v ∈ X”).



– for h ≥ 1 andn ∈ {0, . . ,Tower(h+1)−1} = {0, . . , 2Tower(h)−1}, the{L,X}-
labelled treeT̃h+1(n) is obtained by creating a new root, attaching to it one copy
of T̃h(i), for eachi ∈ {0, . . ,Tower(h)−1}, and labelling the root of̃Th(i) with 1
if bit(i, n) = 1, and0 otherwise.

Note that for every fixedh, the treesT̃h(n) for n < Tower(h) all have the same
shape and only vary in the labelling (w.r.t.0 and1) of the children of the root. Further-
more, each path from the root of̃Th(n) to a leaf has exactly lengthh (i.e., consists ofh
edges), and the nodes that are labelledL are exactly theleavesof T̃h(n).

Unlike in the previous sections, it does not suffice to restrict attention to structures
that are obtained as disjoint unions or similar, easy combinations of the trees̃Th(n).
Instead, we will consider a suitable notion where a nodet in an arbitraryτ -structureA
is called “h-good” if the substructureAt is “sufficiently similar” to the treẽTh(n), for
a numbern < Tower(h). The precise definition of this notion is given below. Before
introducing it, however, we need the following (easy) lemma.

Lemma 6.3. For everyh′ ≥ 1 there is a universalFO(τ)-sentence forest≤h′ of length
O(h′) such that for every finiteτ -structureA = (A,EA, LA, XA) the following is
true: A |= forest≤h′ ⇐⇒ (A,EA) is a disjoint union of trees such that every node in
LA is a leaf, and for every rootr in A (i.e., for every noder in A that has in-degree 0
in EA) the following is true: every path inA that starts inr has length at mosth′.

Definition 6.4 (h-good nodesx, and the numbersRepAh (x) represented by them).
Leth′ ≥ 1 and letA be a structure withA |= forest≤h′ . By induction onh ∈ {1, . . , h′}
we define the following notion:

A nodex of A is called1-good inA iff it has at least one childy with LA(y), and for
all childreny′ of x in A the following is true: ifLA(y′), thenXA(y′) ↔ XA(y).
Every1-good nodex in A represents a numberRepA1 (x) ∈ {0, 1} as follows:

RepA1 (x) = 0 ⇐⇒ x has a child that belongs toLA but not toXA

RepA1 (x) = 1 ⇐⇒ x has a child that belongs toLA and toXA.

Let h < h′ be such that the notion ofh-goodness as well as the numbersRepAh (y), for
all h-good nodesy in A, are already defined. Then, a nodex of A is called(h+1)-good
in A iff the following is true: For each numberi ∈ {0, . . ,Tower(h)−1} there exists a
h-good childyi of x in A with RepAh (yi) = i, and for allh-good childrenz of x in A
with RepAh (z) = i the following is true:XA(z) ↔ XA(yi).
Every(h+1)-good nodex in A represents the (uniquely defined) number

RepAh+1(x) = n ∈ {0, 1, . . , 2Tower(h)−1} = {0, 1, . . ,Tower(h+1)−1}

which satisfies the following: for everyi < Tower(h), bit(i, n) = 1 ⇐⇒ XA(yi).

The following notion ofh-inconsistencycan be viewed as a counterpart to the notion
of h-goodness. Note, however, thath-goodness is a property of anodewhereash-
inconsistency is a property of a whole structure.



Definition 6.5 (h-inconsistency).Let h′ ≥ 1 and letA be a structure withA |=
forest≤h′ . By induction onh ∈ {1, . . , h′}, we define the following notion:

We say thatA is1-inconsistentif there exist nodesx, y, y′ such thaty andy′ are children
of x with the following properties:y andy′ both belong toLA, and we haveXA(y)
and¬XA(y′).

Let h < h′ be such that the notion ofh-inconsistency is already defined.
We say thatA is (h+1)-inconsistentif there exist nodesx, y, y′ such thaty andy′

are children ofx with the following properties:y andy′ both areh-good inA with
RepAh (y) = RepAh (y′), and we haveXA(y) and¬XA(y′).

Furthermore, we say thatA is (≤h)-inconsistentif there exists ãh ∈ {1, . . , h} such
thatA is h̃-inconsistent. It is straightforward (but tedious) to showthe following:

Lemma 6.6. For everyh ≥ 1 there is aFO(τ)-sentenceϕh of size2O(h) such that the
following is true for everyτ -structureA: A |= ϕh ⇐⇒ A |= ¬forest≤h or A is
(≤h)-inconsistent or there exists a nodex that ish-good inA.

Furthermore, it can be shown that this sentenceϕh is preserved under extensions.
This finally enables us to prove Theorem 6.1.

7 Structures of bounded degree — elementary upper bounds

All the non-elementary lower bounds in previous sections depend heavily on the fact
that we consider classes of structures of unbounded degree.On classes of structures of
boundeddegree, the picture looks entirely different as we can proveelementary upper
bounds as counterparts to Theorems 4.1, 5.1, and 6.1. Throughout the remainder of this
section we letτ be a fixed finite relational vocabulary, and we letd be a fixed natu-
ral number. We writeDd to denote the class of allτ -structures whose Gaifman graph
has degree at mostd. By an easy adaption of the model theoretic proof of Gaifman’s
theorem given in [5], one obtains the following elementaryupperbound:

Theorem 7.1. There is a 4-fold exponential functiong : N → N such that for every
FO(τ)-sentenceϕ there is a sentenceψ of size≤ g(||ϕ||) with the following properties:
ψ is a Boolean combination of basic local sentences andψ is equivalent toϕ on all
structures inDd.

By similar techniques we can prove an elementary upper boundfor the Feferman-
Vaught theorem stratified by formula length. Furthermore, there are elementary decision
algorithms for the first-order theories of classes of trees of bounded arity, in particular
for the class of binary trees. Refining the methods of [1], onealso obtains an elementary
upper bound for the following variant of the Łoś-Tarski Theorem.

Theorem 7.2. There is a 5-fold exponential functionf : N → N such that anyFO(τ)-
sentenceϕ that is preserved under extensions on the class of acyclic structures inDd is
equivalent, on this class, to an existential first-order sentence of length at mostf(||ϕ||).
In all the above cases for structures of bounded degree we canalso prove at least 2-fold
exponential lower bounds.
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